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QUANTITATIVE APPROXIMATION BY MULTIPLE SIGMOIDS

KANTOROVICH-SHILKRET QUASI-INTERPOLATION NEURAL

NETWORK OPERATORS

G. A. ANASTASSIOU

Abstract. In this article, we derive multivariate quantitative approximation by

Kantorovich-Shilkret type quasi-interpolation neural network operators with respect

to supremum and Lp norms. This is done with rates using the multivariate modulus

of continuity. We approximate continuous and bounded functions on RN , N ∈ N.
When they are also uniformly continuous, we have pointwise and uniform conver-

gences, plus Lp estimates. We include also the related complex approximation. Our

activation functions are induced by multiple general sigmoid functions.

1. Introduction

The author in [1] and [2], see Chapters 2–5, was the first to establish neural
network approximations to continuous functions with rates by very specifically de-
fined neural network operators of Cardaliaguet-Euvrard and “Squashing” types,
by employing the modulus of continuity of the engaged function or its high order
derivative, and producing very tight Jackson type inequalities. He treated there
both the univariate and multivariate cases. The defining these operators “bell-
shaped” and “squashing” functions are assumed to be compact support. Also in
[2], he gave the Nth order asymptotic expansion for the error of weak approxi-
mation of these two operators to a special natural class of smooth functions, see
Chaptes 4–5 there.

The author inspired by [16], continued his studies on neural networks approx-
imation by introducing and using the proper quasi-interpolation operators of sig-
moidal and hyperbolic tangent type which resulted into [3, 4, 5, 6, 7], by treating
both the univariate and multivariate cases. He did also the corresponding frac-
tional case [8]. For recent works, see [9, 10, 11, 12, 13, 14, 15].

The author here performs multivariate multiple general sigmoid activation func-
tions based neural network approximation to continuous functions over the whole
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RN , N ∈ N, then he extends his results to complex valued functions. Lp ap-
proximations are included. All convergences here are with rates expressed via the
modulus of continuity of the involved function and given by very tight Jackson
type inequalities.

The author comes up with the “right” precisely defined flexible quasi-inter-
polation, Kantorovich-Shilkret type integral coefficient neural networks operators
associated with multiple general sigmoid activation functions. In preparation to
prove our results, we present important properties of the general density functions
defining our operators.

Feed-forward neural networks (FNNs) with one hidden layer, the only type of
networks we deal with in this article, are mathematically expressed as

Nn (x) =

n∑
j=0

cjσ (〈aj · x〉+ bj) , x ∈ Rs, s ∈ N,

where for 0 ≤ j ≤ n, bj ∈ R are the thresholds, aj ∈ Rs are the connection
weights, cj ∈ R are the coefficients, 〈aj · x〉 is the inner product of aj and x, and
σ is the activation function of the network. In many fundamental neural network
models, the activation functions are based on multiple general sigmoid activation
functions. About neural networks in general, read [17, 18, 19].

In recent years, non-additive integrals, like the N. Shilkret one [20], have become
fashionable and more useful in Economics, etc.

2. Background

2.1. About Shilkret integral

Here we follow [20].
Let F be a σ-field of subsets of an arbitrary set Ω. An extended non-negative

real valued function µ on F is called maxitive if µ (∅) = 0 and

(1) µ (∪i∈IEi) = sup
i∈I

µ (Ei) ,

where the set I is of cardinality at most countable. We also call µ a maxitive
measure. Here f stands for a non-negative measurable function on Ω. In [20],
Niel Shilkret developed his non-additive integral defined as follows:

(2) (N∗)

∫
D

fdµ := sup
y∈Y
{y · µ (D ∩ {f ≥ y})} ,

where Y = [0,m] or Y = [0,m) with 0 < m ≤ ∞, and D ∈ F . Here we take
Y = [0,∞).

It is easily proved that

(3) (N∗)

∫
D

fdµ = sup
y>0
{y · µ (D ∩ {f > y})} .

The Shilkret integral takes values in [0,∞].
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The Shilkret integral ([20]) has the following properties:

(4) (N∗)

∫
Ω

χEdµ = µ (E) ,

where χE is the indicator function on E ∈ F ,

(N∗)
∫
D

cfdµ = c (N∗)

∫
D

fdµ, c ≥ 0,(5)

(N∗)

∫
D

sup
n∈N

fndµ = sup
n∈N

(N∗)

∫
D

fndµ,(6)

where fn, n ∈ N, is an increasing sequence of elementary (countably valued)
functions converging uniformly to f . Furthermore, we have

(7) (N∗)

∫
D

fdµ ≥ 0,

(8) f ≥ g implies (N∗)

∫
D

fdµ ≥ (N∗)

∫
D

gdµ,

where f, g : Ω→ [0,∞] are measurable.
Let a ≤ f (ω) ≤ b for almost every ω ∈ E, then

aµ (E) ≤ (N∗)

∫
E

fdµ ≤ bµ (E) ,

(N∗)

∫
E

1dµ = µ (E) ,

f > 0 almost everywhere and (N∗)
∫
E
fdµ = 0 imply µ (E) = 0,

(N∗)
∫

Ω
fdµ = 0 if and only if f = 0 almost everywhere,

(N∗)
∫

Ω
fdµ <∞ implies

(9) N (f) := {ω ∈ Ω|f (ω) 6= 0} has σ-finite measure,

(N∗)

∫
D

(f + g) dµ ≤ (N∗)

∫
D

fdµ+ (N∗)

∫
D

gdµ,

and

(10)

∣∣∣∣(N∗)∫
D

fdµ− (N∗)

∫
D

gdµ

∣∣∣∣ ≤ (N∗)

∫
D

|f − g|dµ.

From now on, in this article, we assume µ : F → [0,+∞).

2.2. On activation functions

Let i = 1, . . . , N ∈ N and hi : R→ [−1, 1] be a general sigmoid function such that it
is strictly increasing, hi (0) = 0, hi (−x) = −hi (x), hi (+∞) = 1, hi (−∞) = −1.
Also hi is strictly convex over (−∞, 0] and strictly concave over [0,+∞), with

h
(2)
i ∈ C (R, [−1, 1]).
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Some examples of related sigmoid functions follow:

1

1 + e−x
; tanhx;

2

π
arctan

(π
2
x
)

;
x

2m
√

1 + x2m
, m ∈ N;

4

π
gd (x) ;

x

(1 + |x|)
1
λ

, λ is odd; erf

(√
π

2
x

)
;

1

1 + e−µx
; tanhµx, µ > 0; for all x ∈ R.

We consider the activation function

(11) ψi (x) :=
1

4
(hi (x+ 1)− hi (x− 1)) , x ∈ R, i = 1, . . . , N.

As in [11, p. 285], we get ψi (−x) = ψi (x) , thus ψi is an even function. Since
x+ 1 > x− 1, then hi (x+ 1) > hi (x− 1), and ψi (x) > 0, all x ∈ R.

We see that

(12) ψi (0) =
hi (1)

2
, i = 1, . . . , N.

Let x > 1, we have that

ψ′i (x) =
1

4
(h′i (x+ 1)− h′i (x− 1)) < 0

by h′i being strictly decreasing over [0,+∞).
Let now 0 < x < 1, then 1 − x > 0 and 0 < 1 − x < 1 + x. It holds

h′i (x− 1) = h′i (1− x) > h′i (x+ 1), so that again ψ′i (x) < 0. Consequently, ψi is
stritly decreasing on (0,+∞) .

Clearly, ψi is strictly increasing on (−∞, 0), and ψ′i (0) = 0.
See that

(13) lim
x→+∞

ψi (x) =
1

4
(hi (+∞)− hi (+∞)) = 0

and

(14) lim
x→−∞

ψi (x) =
1

4
(hi (−∞)− hi (−∞)) = 0.

That is, the x-axis is the horizontal asymptote on ψi.
Conclusion: ψ is a bell symmetric function with maximum

ψi (0) =
hi (1)

2
.

We need the following theorems.

Theorem 1. We have

(15)

∞∑
i=−∞

ψi (x− i) = 1 for all x ∈ R, i = 1, . . . , N.

Proof. Exactly the same as in [11, p. 286], is omitted. �
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Theorem 2. It holds

(16)

∫ ∞
−∞

ψi (x) dx = 1, i = 1, . . . , N.

Proof. Similar to [11, p. 287]. It is omitted. �

Thus ψi (x) is a density function on R, i = 1, . . . , N.
We also need the following theorem.

Theorem 3. Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds

(17)

∞∑
k=−∞

|nx−k|≥n1−α

ψi (nx− k) <

(
1− hi

(
n1−α − 2

))
2

, i = 1, . . . , N.

Notice that

lim
n→+∞

(
1− hi

(
n1−α − 2

))
2

= 0, i = 1, . . . , N.

Proof. Similar to [13], as such is omitted. �

We make the following remark.

Remark 4. We define

(18) Z (x1, . . . , xN ) := Z (x) :=

N∏
i=1

ψi (xi) , x = (x1, . . . , xN ) ∈ RN , N ∈ N.

It has the properties:
(i)

(19) Z (x) > 0 for all x ∈ RN ,

(ii)
∞∑

k=−∞

Z (x− k) :=

∞∑
k1=−∞

∞∑
k2=−∞

· · ·
∞∑

kN=−∞

Z (x1 − k1, . . . , xN − kN )

=

∞∑
k1=−∞

∞∑
k2=−∞

· · ·
∞∑

kN=−∞

N∏
i=1

ψi (xi − ki)

=
N∏
i=1

( ∞∑
ki=−∞

ψi (xi − ki)
)

(5)
= 1.

Hence

(20)

∞∑
k=−∞

Z (x− k) = 1.

(iii)

(21)

∞∑
k=−∞

Z (nx− k) = 1 for all x ∈ RN , n ∈ N,
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(iv)
(22)∫

RN
Z (x) dx =

∫
RN

( N∏
i=1

ψi (xi)

)
dx1 . . . dxN =

N∏
i=1

(∫ ∞
−∞

ψi (xi) dxi

)
(16)
= 1.

Thus,

(23)

∫
RN

Z (x) dx = 1,

that is, Z is a multivariate density function.
Here denote x = (x1, . . . , xN ) , ‖x‖∞ := max {|x1| , . . . , |xN |}, x ∈ RN , also

set ∞ := (∞, . . . ,∞), −∞ := (−∞, . . . ,−∞) upon the multivariate context,
0 < β < 1.

(v) We have

∞∑
k=−∞

‖ kn−x‖∞>
1

nβ

Z (nx− k) =

∞∑
k1=−∞

· · ·
∞∑

kN=−∞
‖ kn−x‖∞> 1

nβ

(
N∏
i=1

ψi (nxi − ki)

)

=

N∏
i=1


∞∑

ki=−∞
‖ kn−x‖∞>

1

nβ

ψi (nxi − ki)

 (for some r ∈ {1, . . . , N} )

≤

 N∏
i=1
i 6=r

( ∞∑
ki=−∞

ψi (nxi − ki)

)


∞∑
kr=−∞

| krn −xr|∞>
1

nβ

ψr (nxr − kr)

(24)

=

∞∑
kr=−∞

| krn −xr|∞>
1

nβ

ψr (nxr − kr) =

∞∑
kr=−∞

|nxr−kr|>n1−β

ψr(nxr − kr)

(17)
<

1− hr
(
n1−β − 2

)
2

≤ max
i∈{1,...,N}

(
1− hi

(
n1−β − 2

)
2

)
.

That is,

(25)

∞∑
k=−∞

‖ kn−x‖∞>
1

nβ

Z (nx− k) < max
i∈{1,...,N}

(
1− hi

(
n1−β − 2

)
2

)
,

0 < β < 1, n ∈ N : n1−β > 2, for all x ∈ RN .

Denote by

(26) δN (β, n) := max
i∈{1,...,N}

(
1− hi

(
n1−β − 2

)
2

)
, 0 < β < 1.
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For f ∈ C+
B

(
RN
)

(continuous and bounded functions from RN into R+), we
define the first modulus of continuity

(27) ω1 (f, δ) := sup
x,y∈RN
‖x−y‖∞≤h

|f (x)− f (y)| , h > 0.

Given that f ∈ C+
U

(
RN
)

(uniformly continuous from RN into R+, same definition
for ω1), we have

(28) lim
h→0

ω1 (f, h) = 0.

When N = 1, ω1 is defined as in (27), with ‖·‖∞ collapsing to |·| and having the
property (28).

3. Main Results

We need the following definition.

Definition 5. Let L be the Lebesgue σ-algebra on RN , N ∈ N, and the max-
itive measure µ : L → [0,+∞) such that for any A ∈ L with A 6= ∅, we get
µ (A) > 0.

For f ∈ C+
B

(
RN
)
, we define the multivariate Kantorovich-Shilkret type neural

network operators for any x ∈ RN :

Tµn (f, x) = Tµn (f, x1, . . . , xN )

:=

∞∑
k=−∞

 (N∗)
∫
[0, 1

N ]N
f
(
t+ k

n

)
dµ (t)

µ
([

0, 1
n

]N)
Z (nx− k)

=
∞∑

k1=−∞

∞∑
k2=−∞

. . .
∞∑

kN=−∞

(N∗)
∫ 1
n
0
. . .
∫ 1
n
0
f
(
t1+

k1
n
, t2+

k2
n
, . . . , tN+ kN

n

)
dµ (t1, . . . , tN )

µ
([

0, 1
n

]N)


(29)

×

(
N∏
i=1

ψi (nxi − ki)

)
,

where x = (x1, . . . , xN ) ∈ RN , k = (k1, . . . , kN ), t = (t1, . . . , tN ), n ∈ N.
Clearly here µ

([
0, 1

n

]N)
> 0 for all n ∈ N.

Above we notice that

(30) ‖Tµn (f)‖∞ ≤ ‖f‖∞ ,

so that Tµn (f, x) is well-defined.

We make the following remark.

Remark 6. Let t ∈
[
0, 1

n

]N
and x ∈ RN , then

(31) f

(
t+

k

n

)
= f

(
t+

k

n

)
− f (x) + f (x) ≤

∣∣∣∣f (t+
k

n

)
− f (x)

∣∣∣∣+ f (x) ,
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hence

(32)

(N∗)

∫
[0, 1n ]

N
f

(
t+

k

n

)
dµ (t)

≤ (N∗)

∫
[0, 1n ]

N

∣∣∣∣f (t+
k

n

)
− f (x)

∣∣∣∣ dµ (t) + f (x)µ

([
0,

1

n

]N)
.

That is,

(33)

(N∗)

∫
[0, 1n ]

N
f

(
t+

k

n

)
dµ (t)− f (x)µ

([
0,

1

n

]N)

≤ (N∗)

∫
[0, 1n ]

N

∣∣∣∣f (t+
k

n

)
− f (x)

∣∣∣∣ dµ (t) .

Similarly, we have

f (x) = f (x)− f
(
t+

k

n

)
+ f

(
t+

k

n

)
≤
∣∣∣∣f (t+

k

n

)
− f (x)

∣∣∣∣+ f

(
t+

k

n

)
,

hence

(N∗)

∫
[0, 1n ]

N
f (x) dµ (t)

≤ (N∗)

∫
[0, 1n ]

N

∣∣∣∣f (t+
k

n

)
− f (x)

∣∣∣∣dµ (t) + (N∗)

∫
[0, 1n ]

N
f

(
t+

k

n

)
dµ (t) .

That is,

(34)

f (x)µ

([
0,

1

n

]N)
− (N∗)

∫
[0, 1n ]

N
f

(
t+

k

n

)
dµ (t)

≤ (N∗)

∫
[0, 1n ]

N

∣∣∣∣f (t+
k

n

)
− f (x)

∣∣∣∣ dµ (t) .

By (33) and (34), we derive

(35)

∣∣∣∣∣(N∗)
∫

[0, 1n ]
N
f

(
t+

k

n

)
dµ (t)− f (x)µ

([
0,

1

n

]N)∣∣∣∣∣
≤ (N∗)

∫
[0, 1n ]

N

∣∣∣∣f (t+
k

n

)
− f (x)

∣∣∣∣ dµ (t) .

In particular, it holds
(36)∣∣∣∣∣∣

(N∗)
∫
[0, 1n ]

N f
(
t+ k

n

)
dµ (t)

µ
([

0, 1
n

]N) − f (x)

∣∣∣∣∣∣ ≤
(N∗)

∫
[0, 1n ]

N

∣∣f (t+ k
n

)
− f (x)

∣∣ dµ (t)

µ
([

0, 1
n

]N) .

We present the following approximation result.



QUANTITATIVE APPROXIMATION ... 249

Theorem 7. Let f ∈ C+
B

(
RN
)
, 0 < β < 1, x ∈ RN , N,n ∈ N with n1−β > 2.

Then
i)

(37) sup
µ
|Tµn (f, x)− f (x)| ≤ ω1

(
f,

1

n
+

1

nβ

)
+ 2 ‖f‖∞ δN (β, n) =: λn,

ii)

(38) sup
µ
‖Tµn (f)− f‖∞ ≤ λn.

Given that f ∈
(
C+
U

(
RN
)
∩ C+

B

(
RN
))
, we obtain lim

n→∞
Tµn (f) = f uniformly.

Above δN (β, n) is as in (26).

Proof. We observe

|Tµn (f, x)− f (x)|

=

∣∣∣∣∣∣
∞∑

k=−∞

 (N∗)
∫
[0, 1n ]

N f
(
t+ k

n

)
dµ (t)

µ
([

0, 1
n

]N)
Z (nx− k)−

∞∑
k=−∞

f (x)Z (nx− k)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑

k=−∞

 (N∗)
∫
[0, 1n ]

N f
(
t+ k

n

)
dµ (t)

µ
([

0, 1
n

]N)
− f (x)

Z (nx− k)

∣∣∣∣∣∣
≤

∞∑
k=−∞

∣∣∣∣∣∣
 (N∗)

∫
[0, 1n ]

N f
(
t+ k

n

)
dµ (t)

µ
([

0, 1
n

]N)
− f (x)

∣∣∣∣∣∣Z (nx− k)

(36)

≤
∞∑

k=−∞

 (N∗)
∫
[0, 1n ]

N

∣∣f (t+ k
n

)
− f (x)

∣∣ dµ (t)
µ
([

0, 1
n

]N)
Z (nx− k)

=

∞∑
k=−∞

‖ k
n
−x‖∞> 1

nβ

 (N∗)
∫
[0, 1n ]

N

∣∣f (t+ k
n

)
− f (x)

∣∣ dµ (t)
µ
([

0, 1
n

]N)
Z (nx− k)(39)

+

∞∑
k=−∞

‖ k
n
−x‖∞> 1

nβ

 (N∗)
∫
[0, 1n ]

N

∣∣f (t+ k
n

)
− f (x)

∣∣dµ (t)
µ
([

0, 1
n

]N)
Z (nx− k)

≤
∞∑

k=−∞
‖ k
n
−x‖∞> 1

nβ

 (N∗)
∫
[0, 1n ]

N ω1

(
f, ‖t‖∞ +

∥∥ k
n
− x
∥∥
∞

)
dµ (t)

µ
([

0, 1
n

]N)
Z (nx− k)

+ 2 ‖f‖∞


∞∑

k=−∞
‖ k
n
−x‖∞> 1

nβ

Z (nx− k)

 (by (25))
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≤ ω1

(
f,

1

n
+

1

nβ

)
+ 2 ‖f‖∞ δN (β, n) ,(40)

proving the claim. �

Additionally we give the following definition.

Definition 8. Denote by C+
B

(
RN ,C

)
= {f : RN → C|f = f1 + if2, where

f1, f2 ∈ C+
B

(
RN
)
, N ∈ N}. For f ∈ C+

B

(
RN ,C

)
, we set

(41) Tµn (f, x) := Tµn (f1, x) + i Tµn (f2, x)

for all n ∈ N, x ∈ RN , i =
√
−1.

Theorem 9. Let f ∈ C+
B

(
RN ,C

)
, f = f1 + if2, N ∈ N, 0 < β < 1, x ∈ RN ,

n ∈ N with n1−β > 2. Then
i)

(42)
sup
µ
|Tµn (f, x)− f (x)| ≤

[
ω1

(
f1,

1

n
+

1

nβ

)
+ ω1

(
f2,

1

n
+

1

nβ

)]
+ 2 (‖f1‖∞ + ‖f2‖∞) δN (β, n) =: ln,

ii)

(43) sup
µ
‖Tµn (f)− f‖ ≤ ln.

Proof.

|Tµn (f, x)− f (x)|
= |Tµn (f1, x) + i Tµn (f2, x)− f1 (x)− if2 (x)|
= |(Tµn (f1, x)− f1 (x)) + i (Tµn (f2, x)− f2 (x))|
≤ |Tµn (f1, x)− f1 (x)|+ |Tµn (f2, x)− f2 (x)|
(37)

≤
(
ω1

(
f1,

1

n
+

1

nβ

)
+ 2 ‖f1‖∞ δN (β, n)

)
(44)

+

(
ω1

(
f2,

1

n
+

1

nβ

)
+ 2 ‖f2‖∞ δN (β, n)

)
=

[
ω1

(
f1,

1

n
+

1

nβ

)
+ ω1

(
f2,

1

n
+

1

nβ

)]
+ 2

(
‖f1‖∞ + ‖f2‖∞

)
δN (β, n) ,(45)

proving the claim. �

We finish with an Lp1 , p1 ≥ 1, estimate.

Theorem 10. Let f ∈ C+
B

(
RN ,C

)
, f = f1 + if2, N ∈ N, 0 < β < 1, n ∈ N

with n1−β > 2, and p1 ≥ 1. Then

(46) ‖Tµn (f)− f‖p1,Λ ≤ ln |Λ|
1
p1 ,

where |Λ| <∞ is the Lebesgue measure of compact Λ ⊂ RN , and ln as in (42).

Proof. By integrating (42), etc. �



QUANTITATIVE APPROXIMATION ... 251

References

1. Anastassiou G. A., Rate of convergence of some neural network operators to the unit-

univariate case, J. Math. Anal. Appl. 212 (1997), 237–262.

2. Anastassiou G. A., Quantitative Approximations, Chapman & Hall/CRC, Boca Raton, New

York, 2001.

3. Anastassiou G. A., Intelligent Systems: Approximation by Artificial Neural Networks, In-

telligent Systems Reference Library, Vol. 19, Springer, Heidelberg, 2011.

4. Anastassiou G. A., Univariate hyperbolic tangent neural network approximation, Mathe-

matics and Computer Modelling 53 (2011), 1111–1132.

5. Anastassiou G. A., Multivariate hyperbolic tangent neural network approximation, Comput-

ers and Mathematics 61 (2011), 809–821.

6. Anastassiou G. A., Multivariate sigmoidal neural network approximation, Neural Networks

24 (2011), 378–386.

7. Anastassiou G. A., Univariate sigmoidal neural network approximation, J. Comput. Anal.

Appl. 14(4) (2012), 659–690.

8. Anastassiou G. A., Fractional neural network approximation, Comput. Math. Appl. 64

(2012), 1655–1676.

9. Anastassiou G. A., Univariate error function based neural network approximation, Indian

J. of Math. 57(2) (2015), 243–291.

10. Anastassiou G. A., Intelligent Systems II: Complete Approximation by Neural Network

Operators, Springer, Heidelberg, New York, 2016.

11. Anastassiou G. A., Intelligent Computations: Abstract Fractional Calculus, Inequalities,

Approximations, Springer, Heidelberg, New York, 2018.

12. Anastassiou G. A., Ordinary and Fractional Approximation by Non-additive Integrals: Cho-

quet, Shilkret and Sugeno Integral Approximators, Springer, Heidelberg, New York, 2019.

13. Anastassiou G. A., Algebraic function based Banach space valued ordinary and fractional

neural network approximations, New Trend. Math. Sci. 10, special issues (1) (2022),

100–125.

14. Anastassiou G. A., Gudermannian function activated Banach space valued ordinary and

fractional neural network approximation, Adv. Nonlinear Var. 25(2) (2022), 27–64.

15. Anastassiou G. A., Generalized symmetrical sigmoid function activated Banach space valued

ordinary and fractional neural network approximation, An. Univ. Oradea Fasc. Mat. 30(1)

(2022), 117–134.

16. Chen Z. and Cao F., The approximation operators with sigmoidal functions, Comput. Math.

Appl. 58 (2009), 758–765.

17. Haykin I. S., Neural Networks: A Comprehensive Foundation, 2nd ed., Prentice Hall, New

York, 1998.

18. McCulloch W. and Pitts W., A logical calculus of the ideas immanent in nervous activity,

Bulletin of Mathematical Biophysics 7 (1943), 115–133.

19. Mitchell T. M., Machine Learning, WCB-McGraw-Hill, New York, 1997.

20. Shilkret N., Maxitive measure and integration, Indag. Math. 33 (1971), 109–116.

G. A. Anastassiou, Department of Mathematical Sciences, University of Memphis, Memphis, TN

38152, U.S.A.,

e-mail : ganastss@memphis.edu


