
Acta Math. Univ. Comenianae
Vol. XCII, 3 (2023), pp. 225–239

225

PROPERTIES OF THE CONE OF NON-NEGATIVE

POLYNOMIALS AND DUALITY

J. HRDINA

Abstract. Polynomial optimization problems are problems of optimizing a mul-
tivariate polynomial over the feasible set defined by a finite number of polynomial

inequalities. It encompasses many problems within various fields of mathematics,

e.g., binary optimization, mixed-integer linear programming, global optimization
and partial differential inequalities. Problems of polynomial optimization can be

equivalently reformulated as problems over the convex cone of non-negative poly-

nomials. In this paper, the geometric and topological properties of a cone of poly-
nomials non-negative on a given set and the respective dual cone are studied.

1. Introduction

Consider a polynomial optimization problem in the following form

min p(x)(1)

x ∈ K,
where p is a multivariate polynomial and K ⊆ Rn is a non-empty set. By defining
a new variable γ, which will serve as the lower bound of p on K, the problem (1)
can be equivalently formulated as

max γ(2)

p(x)− γ ≥ 0 for all x ∈ K.

The constraint in problem (2) requires a polynomial to be non-negative on a given
set K.

Formulation (2) gives rise to a few questions such as: whether one can optimize
over the set of polynomials non-negative on K, what the structure of that set
is, whether one can test if a polynomial is non-negative on K and whether such
testing can be done efficiently.

In [10], it was shown that testing whether a polynomial of degree at least
4 is non-negative on a basic semialgebraic set K is NP-hard, even if K = Rn.
Moreover, it was shown that unconstrained optimization of a quartic polynomial,
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optimization of a cubic polynomial over the sphere and optimization of a quadratic
polynomial over the simplex are all NP-hard problems (see [5, Section 5], [3,
Section 2]). As a consequence, formulation (2) provides motivation for examining
the structure of a set of non-negative multivariate polynomials on a non-empty
set K.

Non-negativity of polynomials on K = Rn has been widely examined for more
than 100 years. It is obvious that if a polynomial can be represented as a finite
sum of squares of other polynomials with lower degree, it is non-negative on Rn.
However, it is not obvious whether the converse holds. In fact, David Hilbert in
[4, p. 344] proved that there are only three cases when the converse holds: for all
odd-degree univariate polynomials, for all quadratic polynomials, and for all two-
variable quartic polynomials. Thus, in general, the set of SOS (sum-of-squares)
polynomials is a proper subset of the set of polynomials non-negative on Rn.

In fact, both these sets are proper cones (see [1, Section 1.1], [9, Theorem 1]).
The most important difference between these two cones is their structure. The
cone of SOS polynomials is closely linked with semidefinite programming. More
precisely, testing whether a given polynomial is SOS can be transformed into
solving a feasibility problem of semidefinite programming (see [7, Section 2.1]).
On the other hand, no simple and tractable characterization of the cone of non-
negative polynomials is known (see [6, Section 1.1]). Therefore, the SOS cone
serves as a computational substitute for the cone of non-negative polynomials.
More details on the SOS cone, its geometry and applications can be found in [11]
and [12].

Non-negativity of polynomials and polynomial optimization have been studied
within the context of convex and conic optimization and real algebra. In [18],
it was proposed that a convex optimization technique be used to minimize an
unconstrained multivariate polynomial. In [9], the author discussed the duality
of cones of non-negative polynomials and moment cones. More specifically, a
moment cone was shown to be characterized by semidefinite constraints or, in
other words, by linear matrix inequalities on condition that the corresponding
dual cone, the cone of non-negative polynomials, was SOS-representable. Non-
negativity of polynomials with use of real algebraic results was discussed in [13].
Finally, with the real algebra result of Putinar (see [16, Section 3]), Lasserre [8]
constructed a sequence of semidefinite program relaxations with optima converging
to the optimum of a polynomial optimization problem, known as SOS or Lasserre
hierarchy.

In this paper, we concentrate on analyzing the properties of the set of polyno-
mials non-negative on a given non-empty set K ⊆ Rn by means of convex analysis
and linear algebra results, slightly extending the results in [1]: whereas in [1] the
authors formulated the results for K = Rn, the results presented in this paper
are formulated for a general non-empty set K. Moreover, we formulate the so-
called dual cone theorem and demonstrate its use when searching for the explicit
characterizations of the set of polynomials non-negative on K = [−1, 1]. Our char-
acterizations are in concordance with the characterizations of Fekete, Lukács and



CONE OF NON-NEGATIVE POLYNOMIALS AND DUALITY 227

Markov (see [6, Theorem 2.4], [15, Problem 46, p. 78]), however, applying a differ-
ent method. While Fekete, Lukács and Markov used a strictly algebraic method
to directly derive the characterization of the set of polynomials non-negative on
[−1, 1], our approach relies on convex analysis and linear algebra results, providing
an interesting geometrical insight into the problem.

The paper is organized as follows: Basic definitions, notations, basic results
and auxiliary propositions are contained in Section 2. Section 3 concernes with
the properties of the cone of polynomials non-negative on the setK. The respective
dual cone and the dual cone theorem are presented in Section 4. Section 5 provides
explicit characterizations of the cone of polynomials of degree at most 2 non-
negative on K = [−1, 1] and its dual cone. Proofs of a few auxiliary propositions
from Section 2 can be found in Appendix.

2. Preliminaries

In this section, we include standard definitions, notations and basic results con-
cerning cones and multivariate polynomials.

We denote R[x]d the real vector space of n-variate polynomials (x ∈ Rn) with
degree at most d and R[x] the real vector space of n-variate polynomials. The
standard (or canonical) basis of R[x]d consists of all monomials of degree at most
d, namely,

1, x1, . . . , xn, x
2
1, x1x2, . . . , xn−1xn, . . . , x

2
n, . . . , x

d
1, . . . , x

d
n.

For instance, for n = 2 and d = 3, the canonical basis consists of monomials

1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2.

In fact, there are s(d) :=
∑d
i=0

(
n+i−1

i

)
=
(
n+d
d

)
monomials of degree at most

d (d ∈ N0). This implies that dim(R[x]d) = s(d), and thus, vector spaces R[x]d
and Rs(d) are isomorphic (donated by '), i.e., R[x]d ' Rs(d). Apparently, any
polynomial p ∈ R[x]d can be represented as a linear combination of canonical
basis vectors.

Introducing the standard multi-index notation, for

Nn 3 α := {(α1, α2, . . . , αn) | αi ∈ N0, i = 1, 2, . . . , n},

we set |α| =
∑n
i=1 αi and Nnd := {α ∈ Nn | |α| ≤ d}. We set xα := xα1

1 xα2
2 . . . xαnn .

Now, every polynomial p ∈ R[x]d can be expressed in the form

p(x) =
∑
α∈Nnd

pαx
α, x ∈ Rn,

where pα ∈ R are coefficients.
The inner product 〈·, ·〉 : R[x]d × R[x]d → R is defined as follows:

(3) 〈p, q〉 =
∑
α∈Nnd

pαqα, p, q ∈ R[x]d.
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The norm induced by inner product (3) takes the following form

(4) ‖p‖ =

( ∑
α∈Nnd

p2α

) 1
2

.

The norm (4) induces a topology on R[x]d. A set O ⊆ R[x]d is open if

∀p ∈ O ∃r > 0 : B(p, r) := {q ∈ R[x]d | ‖p− q‖ < r} ⊂ O.

Note that all norms on R[x]d are equivalent, and therefore, they define the same
open sets of R[x]d. A set C ⊆ R[x]d is closed if the set R[x]d \ C is open. The
closure of the set S ⊆ R[x]d, denoted cl(S), is the smallest closed set containing
S. The interior of S, denoted int(S), is the largest open set contained in S.

Note that a sequence {pj}∞j=1 ⊆ R[x]d converges to p ∈ R[x]d, denoted

lim
j→∞

pj = p,

if

∀ε > 0 ∃n0 ∈ N ∀j > n0 : ‖pj − p‖ < ε.

Vector space R[x]d equipped with the norm ‖·‖ is a normed space, and therefore,
it is first-countable. It means that for any subset S ⊆ R[x]d, it holds that x ∈ cl(S)
if and only if there exists a sequence {xj}∞j=1 ⊆ S such that limj→∞ xj = x.

We denote

md(x) =
(
1, x1, . . . , xn, x

2
1, x1x2, . . . , xn−1xn, . . . , x

2
n, . . . , x

d
1, . . . , x

d
n

)T
for every x ∈ Rn. Note that md : Rn → Rs(d). We formulate two auxiliary propo-
sitions – Proposition 1 and Proposition 2 – which will be useful in the succeeding
section. Their proofs can be found in Appendix.

Proposition 1. Let p ∈ R[x]d. Then

∀x ∈ Rn : |p(x)| ≤ ‖p‖‖md(x)‖2,

where ‖·‖2 denotes the Euclidean norm.

Proposition 2. For every x ∈ Rn and d ∈ N, the following inequality holds

‖md(x)‖22 ≥ ‖m2d(x)‖2.

Finally, a set C ⊆ R[x]d is called a cone in R[x]d if it is closed under non-
negative scalar multiplication, i.e., cp ∈ C for all c ≥ 0 and p ∈ C.
A cone C is called:

– a convex cone if for all c1, c2 ≥ 0 and p, q ∈ C, it holds that c1p+ c2q ∈ C;
– a closed cone if C is a closed set;
– a solid cone if int(C) 6= ∅;
– a pointed cone if p ∈ C and (−p) ∈ C implies p ≡ 0.
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A closed, convex, solid and pointed cone is called a proper cone. The conic hull
of a set S ⊆ R[x]d, denoted cone(S), is the set of all finite conic combinations of
elements included in S, i.e.,

cone(S) :=

{ k∑
i=1

cipi | k ∈ N, pi ∈ S, ci ≥ 0, i = 1, 2, . . . , k

}
,

or, equivalently, as the smallest convex cone containing S.

3. Cone of polynomials non-negative on a non-empty set

In this section, we concentrate on the properties of the set of polynomials non-
negative on a non-empty set K ⊆ Rn. We show that this set is a convex, closed
and solid cone. Moreover, if int(K) 6= ∅, it is a pointed cone, and hence a proper
cone. More details on (convex) cones can be found in [2, Section 2.4].

We denote Cn,d(K) the set of all n-variate polynomials with degree at most d
which are non-negative on the set K,

Cn,d(K) := {p ∈ R[x]d | p(x) ≥ 0 for all x ∈ K} .
The following proposition states that the set Cn,d(K) has a conic structure.

Proposition 3. Let K ⊆ Rn be a non-empty set. Then Cn,d(K) is a convex
cone.

Proof. For arbitrary p ∈ Cn,d(K) and c ≥ 0, it holds that cp(x) ≥ 0 for all
x ∈ K, and therefore, cp ∈ Cn,d(K). Moreover, for arbitrary c1, c2 ≥ 0 and
p, q ∈ Cn,d(K), it holds that c1p(x) + c2q(x) ≥ 0 for all x ∈ K, and therefore,
c1p+ c2q ∈ Cn,d(K). We have shown that Cn,d(K) is a convex cone. �

Another interesting property of Cn,d(K) is the nesting property: one can ob-
serve that polynomials with lower degree than d which are non-negative on K are
also included in Cn,d(K).

Proposition 4. Let K ⊆ Rn be a non-empty set. Then

Cn,d(K) ⊇ Cn,d−1(K) ⊇ Cn,d−2(K) ⊇ · · · ⊇ Cn,0(K).

Remark 1. In some cases it may happen that Cn,d(K) = Cn,d−1(K), for
example, C1,3(R) = C1,2(R).

In the following proposition, we show that Cn,d(K) is a closed solid cone. More-
over, under the additional condition placed on the set K, it is also a pointed cone.
Part a) and c) in Proposition 5 can be found in [12, Section 4.2] and [1, Section 1.1]
for K = Rn.

Proposition 5. Let d ∈ N. The convex cone Cn,d(K) is

a) closed in R[x]d,
b) pointed if int(K) 6= ∅,
c) solid.
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Proof. a) Consider an arbitrary sequence {pj}∞j=1 ⊆ Cn,d(K) such that pj →
p for j → ∞. We have pj(x) ≥ 0 for all x ∈ K and all j ∈ N, and thus,
limj→∞ pj(x) = p(x) ≥ 0 for all x ∈ K, which implies that p ∈ Cn,d(K).

b) Assume by contradiction that int(K) 6= ∅, but there exists a non-zero polyno-
mial p ∈ Cn,d(K) such that −p ∈ Cn,d(K). It immediately follows that p(x) = 0
for all x ∈ K. Choose a point x̄ ∈ int(K). Then there exists r > 0 such that
B(x̄, r) ⊂ K, which means that p(x) = 0 for all x ∈ B(x̄, r). Set

g(x) := p(x̄− x) for all x ∈ Rn.
It is obvious that g(x) is a multivariate polynomial with degree at most d, and
thus, it can be expressed in the form

g(x) =
∑
α∈Nnd

gαx
α.

Moreover, g is infinitely many times differentiable on Rn and g(x) = 0 for all
x ∈ B(0, r). Note that

∂|α|g

∂xα1
1 ∂xα2

2 . . . ∂xαnn
(0, 0, . . . , 0) = α1! · α2! · · · · · αn! · g(α1,α2,...,αn), α ∈ Nnd .

Since ∂|α|g
∂x
α1
1 ∂x

α2
2 ...∂xαnn

(0, 0, . . . , 0) = 0, we obtain gα = 0 for all α ∈ Nnd , which

implies that g ≡ 0. Note that p(x) = g(x̄ − x), and thus, p ≡ 0, which is a
contradiction.

c) We show that Cn,2k(K) is a solid cone for any k ∈ N. Note that if d is
divisible by 2, then set d = 2k to show that Cn,d(K) is a solid cone. If d is not
divisible by 2, recall that by Proposition 4, we have Cn,d−1(K) ⊆ Cn,d(K) with
d−1 being divisible by 2. Since ∅ 6= int(Cn,d−1(K)) ⊆ int(Cn,d(K)), we eventually
have int(Cn,d(K)) 6= ∅.

We show that a polynomial q(x) = mk(x)Tmk(x) is an interior point of Cn,2k(K)
for any non-empty set K ⊆ Rn. Obviously, for any polynomial p ∈ R[x]2k, we have

p(x) = q(x) + p(x)− q(x) for all x ∈ Rn.
By Proposition 1, we have |p(x)− q(x)| = |(p− q)(x)| ≤ ‖p− q‖‖m2k(x)‖2 for all
x ∈ Rn. We have

∀x ∈ Rn : p(x) ≥ q(x)− ‖p− q‖‖m2k(x)‖2.
We choose r such that for all x ∈ K, it holds that q(x) − r‖m2k(x)‖2 ≥ 0 by
setting

r =
1

2
inf
x∈K

{
mk(x)Tmk(x)√
m2k(x)Tm2k(x)

}
.

Since mk(x)
Tmk(x)√

m2k(x)Tm2k(x)
≥ 1 for all x ∈ Rn (see Proposition 2), r > 0 is indeed well

defined.
Note that for any p ∈ R[x]2k such that r > ‖p− q‖, it holds that

0 ≤ q(x)− r‖m2k(x)‖2 < q(x)− ‖p− q‖‖m2k(x)‖2 ≤ p(x) for all x ∈ K,
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implying that if p ∈ B(q, r), then p ∈ Cn,2k(K).
By this construction of r > 0, we have shown that B(q, r) = {p ∈ R[x]2k | ‖p−

q‖ < r} ⊂ Cn,2k(K). �

Example 1. The assumption of non-empty interior of K in Proposition 5 b)
cannot be disposed of. Consider K = {(x1, x2) ∈ R2 | (x2 − 1)2 ≤ 0} =
{(x1, 1) | x1 ∈ R} and C2,2(K) = {p ∈ R[x1, x2]2 | p(x1, 1) ≥ 0 for all x1 ∈ R}.
Clearly, int(K) = ∅ the polynomial p, defined as p(x1, x2) = (x2−1)x1, is included
in C2,2(K) but also −p ∈ C2,2(K). It shows that C2,2(K) is not pointed.

4. Dual cone and the dual cone theorem

In this section, we introduce the dual cone of Cn,d(K) and the dual cone theorem.
Note that the (algebraic) dual cone of Cn,d(K) by definition consists of linear
functionals ` : R[x]d → R such that `(p) ≥ 0 for all p ∈ Cn,d(K) (see, e.g., [1] or
[6]), and thus, ` ∈ R[x]∗d, which is the dual vector space of R[x]d. However, since
R[x]d is finite dimensional, it holds R[x]d ' R[x]∗d. Therefore, the dual cone of
Cn,d(K) can be represented as follows:

(5) Cn,d(K)∗ = {q ∈ R[x]d | 〈p, q〉 ≥ 0, p ∈ Cn,d(K)}.

Note that the representation of Cn,d(K)∗ in [6] and [1] differs from the represen-
tation that we have introduced.

The properties of Cn,d(K)∗ follow directly from the general theory of dual
cones (see [2, Section 2.6.1] and the bipolar theorem (Theorem 14.1) in [17]) and
Proposition 5. They are included in the following proposition. Note that a similar
statement to part c) is mentioned in [6, Lemma 4.6].

Proposition 6. For the dual cone Cn,d(K)∗, the following statements hold:

a) Cn,d(K)∗ is a closed convex cone in R[x]d,
b) Cn,d(K)∗ is pointed,
c) if int(K) 6= ∅, then Cn,d(K)∗ is solid,
d) Cn,d(K)∗∗ = Cn,d(K).

The dual cone Cn,d(K)∗ represented by (5), can be characterized as a closure
of a conic hull of polynomials of the form

∑
α∈Nnd

tαxα, where t ∈ K. We state

and prove this characterization of Cn,d(K)∗ in the following theorem. A similar
characterization theorem of Cn,d(Rn)∗ in terms of linear functionals was proved
in e.g., [12, Lemma 4.11] or [1, Lemma 2.1]. Another characterization Cn,d(K)∗

in terms of vectors of Rs(d) having a finite representing measure with support
contained in K was proved in [6, Lemma 4.7] with additional assumption on K
being compact.
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Theorem 1. Let Cn,d(K) be a cone of non-negative polynomials on K of degree
at most d (d ∈ N). Then

Cn,d(K)∗ = cl

(
cone

[ ∑
α∈Nnd

tαxα | t ∈ K
])
.

Proof. ⊇: Take q ∈ cone
[∑

α∈Nnd
tαxα | t ∈ K

]
. It means that there exist a

number m ∈ N, coefficients c1, c2, . . . , cm ≥ 0 and vectors t1, t2, . . . , tm ∈ K such
that

q(x) =

m∑
i=1

ci
∑
α∈Nnd

tαi x
α =

∑
α∈Nnd

m∑
i=1

cit
α
i x

α.

Now take an arbitrary p ∈ Cn,d(K) to show that

〈p, q〉 =
∑
α∈Nnd

pαqα =
∑
α∈Nnd

pα

m∑
i=1

cit
α
i

=

m∑
i=1

ci
∑
α∈Nnd

pαt
α
i =

m∑
i=1

cip(ti) ≥ 0.

Note that p(ti) ≥ 0 for all i = 1, 2, . . . ,m, because ti ∈ K and p is non-negative
on K. Since p is chosen arbitrarily, we obtain that q ∈ Cn,d(K)∗.

Now suppose that q /∈ cone
[∑

α∈Nnd
tαxα | t ∈ K

]
, but

q ∈ cl

(
cone

[ ∑
α∈Nnd

tαxα | t ∈ K
])
.

There exists a sequence of polynomials {qj}∞j=1 ⊆ cone
[∑

α∈Nnd
tαxα | t ∈ K

]
such that limj→∞ qj = q. Using the argument above, it is obvious that for any
p ∈ Cn,d(K), it holds that 〈p, qj〉 ≥ 0 for all j ∈ N. With inner product being
continuous, by limit transition, we have 〈p, q〉 ≥ 0, and hence, q ∈ Cn,d(K).

⊆: We use the separating hyperplane theorem (see, e.g., [2, Chapter 2.5]).
Suppose that q ∈ Cn,d(K)∗, but

q /∈ cl

(
cone

[ ∑
α∈Nnd

tαxα | t ∈ K
])
.

Since cl
(

cone
[∑

α∈Nnd
tαxα | t ∈ K

])
is a closed convex cone, there exists a sep-

arating polynomial v ∈ R[x]d such that

〈v, q〉 < 0 and

〈v, r〉 ≥ 0 for all r ∈ cl

(
cone

[ ∑
α∈Nnd

tαxα | t ∈ K
])
.
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For arbitrary t̄ ∈ K, set r(x) =
∑
α∈Nnd

t̄αxα. Note that 〈v, r〉 ≥ 0, and thus, we

have

〈v, r〉 =
∑
α∈Nαd

vαt̄
α = v(t̄) ≥ 0.

Since t̄ was chosen arbitrarily, we have v(t) ≥ 0 for all t ∈ K, and thus, v ∈
Cn,d(K). But this is in contradiction with 〈v, q〉 < 0. �

5. Characterization of C1,2([−1, 1])∗ and C1,2([−1, 1])

In this section, we demonstrate the use of the dual cone theorem in finding ex-
plicit characterizations of the cones C1,2([−1, 1])∗ and C1,2([−1, 1]). Note that the
general characterization of Cn,d(K) is not known.

According to Theorem 1, we have

C1,2([−1, 1])∗ = cl
(
cone

[
1 + tx+ t2x2 | t ∈ [−1, 1]

])
.

It means that for every polynomial in cone
[
1 + tx+ t2x2 | t ∈ [−1, 1]

]
, there exist

a number k ∈ N, t1, t2, . . . , tk ∈ [−1, 1] and c1, c2, . . . , ck ≥ 0 such that

q(x) =

( k∑
i=1

ci

)
︸ ︷︷ ︸

=:q0

+

( k∑
i=1

citi

)
︸ ︷︷ ︸

=:q1

x+

( k∑
i=1

cit
2
i

)
︸ ︷︷ ︸

=:q2

x2.

It can be easily verified that

cone
[
1 + tx+ t2x2 | t ∈ [−1, 1]

]
⊆
{
q ∈ R[x]2 | q2 ≥ 0, q0 ≥ q2, q0q2 ≥ q21

}
.

Now, if q ∈ C1,2([−1, 1])∗, but q /∈ cone
[
1 + tx+ t2x2 | t ∈ [−1, 1]

]
, there exists

a sequence of polynomials {q(j)}∞j=1 such that limj→∞ q(j) = q. Note that for all

j ∈ N, it holds that q
(j)
2 ≥ 0, q

(j)
0 ≥ q

(j)
2 and q

(j)
0 q

(j)
2 ≥ (q

(j)
1 )2. Calculating the

limits, we obtain that q ∈ {q ∈ R[x]2 | q2 ≥ 0, q0 ≥ q2, q0q2 ≥ q21}, which shows
that C1,2([−1, 1])∗ ⊆ {q ∈ R[x]2 | q2 ≥ 0, q0 ≥ q2, q0q2 ≥ q21}.

To show the converse inclusion, consider an arbitrary polynomial q(x) = q0 +
q1x + q2x

2 ∈ {q ∈ R[x]2 | q2 ≥ 0, q0 ≥ q2, q0q2 ≥ q21}. We need to show that
〈p, q〉 = p0q0 + p1q1 + p2q2 ≥ 0 for all polynomials p(x) = p0 + p1x + p2x

2 ∈
C1,2([−1, 1]).

Note that we may assume that q0 6= 0. If q0 = 0, then we also have q2 = 0 and
q1 = 0, and thus, q ≡ 0 and 〈p, q〉 = 0 for all p ∈ C1,2([−1, 1]).

Also note that since q2 ≥ 0, we have q0 ≥ 0 and q20 ≥ q21 , which implies that
q0 ≥ |q1|. Hence, if q0 > 0, we have −1 ≤ q1

q0
≤ 1.

Now, take an arbitrary polynomial p ∈ C1,2([−1, 1]). There are three cases to
consider.
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1. p2 ≥ 0.

In this case, we have

〈p, q〉 = q0

(
p0 + p1

q1
q0

+ p2
q2
q0

)
≥ q0

(
p0 + p1

q1
q0

+ p2
q21
q20

)
= q0p

(
q1
q0

)
≥ 0.

2. p2 < 0 and p1 < 0.

In this case, we define P (x) = (−p1−p2)+p1x+p2x
2. It holds that p(x)−P (x) =

p0 + p1 + p2 = p(1) ≥ 0 for all x ∈ R, and thus, 〈p − P, q〉 = q0p(1) ≥ 0, from
which we have 〈p, q〉 = 〈P, q〉+ q0p(1). Now,

〈P, q〉 = q0(−p1 − p2) + q1p1 + q2p2

= p1(q1 − q0) + p2(q2 − q0) ≥ 0

since p1 < 0, q1 − q0 ≤ 0 and p2 < 0, q2 − q0 ≤ 0. Hence,

〈p, q〉 = 〈P, q〉+ q0p(1) ≥ 0.

3. p2 < 0 and p1 ≥ 0.

In this case, we define P (x) = (p1 − p2) + p1x + p2x
2. Again, p(x) − P (x) =

p0 − p1 + p2 = p(−1) ≥ 0 for all x ∈ R, and again 〈p− P, q〉 = q0p(−1) ≥ 0, from
which we have 〈p, q〉 = 〈P, q〉+ q0p(−1). Now,

〈P, q〉 = q0(p1 − p2) + q1p1 + q2p2

= p1(q0 + q1) + p2(q2 − q0) ≥ 0

since p1 ≥ 0, q0 + q1 ≥ 0 and p2 < 0, q2 − q0 ≤ 0. Hence,

〈p, q〉 = 〈P, q〉+ q0p(−1) ≥ 0.

Since p was chosen arbitrarily, we have shown that 〈p, q〉 ≥ 0 for all p ∈
C1,2([−1, 1]), and thus, q ∈ C1,2([−1, 1])∗.

We have found the explicit characterization of C1,2([−1, 1])∗. In fact,

(6) C1,2([−1, 1])∗ =
{
q ∈ R[x]2 | q2 ≥ 0, q0 ≥ q2, q0q2 ≥ q21

}
.

From the geometrical point of view, it can be said that C1,2([−1, 1])∗ is the inter-
section of a cone isomorphic to the cone of 2 × 2 symmetric positive semidefinite
matrices and a polyhedral cone. More specifically,

C1,2([−1, 1])∗ = {q0 + q1x+ q2x
2 ∈ R[x]2 | q0, q2 ≥ 0, q0q2 ≥ q21}(7)

∩ {q0 + q1x+ q2x
2 ∈ R[x]2 | q2 ≥ 0, q0 ≥ q2, q1 ∈ R}.
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Since C1,2([−1, 1]) is a closed convex cone (see Propositions 3 and 5), it holds
C1,2([−1, 1]) = C1,2([−1, 1])∗∗. Thus the explicit characterization of C1,2([−1, 1])
can be found by taking the dual of both sides in (7). More specifically,

C1,2([−1, 1]) = cl
({
q ∈ R[x]2 | q0, q2 ≥ 0, q0q2 ≥ q21

}∗
(8)

+
{
q ∈ R[x]2 | q2 ≥ 0, q0 ≥ q2, q1 ∈ R

}∗)
,

or after calculating the dual cones,

C1,2([−1, 1]) = cl
({
p ∈ R[x]2 | p0, p2 ≥ 0, p0p2 ≥ p21/4

}
(9)

+ {p ∈ R[x]2 | p0 ≥ 0, p0 + p2 ≥ 0, p1 = 0
})
.

In fact, the closure operator in (8) and (9) is not needed since the sum of these
two cones is closed. Note that the sum of two closed convex cones is closed if the
intersection of their relative interiors is non-empty (for more details, see, e.g., [14,
Section 2.7]). It can be easily verified that 1+x2 belongs to the (relative) interiors
of both cones.

We finally obtain the characterization of C1,2([−1, 1]) in the following form:

C1,2([−1, 1]) =
{

(p0 + r0) + p1x+ (p2 + r2)x2 ∈ R[x]2 |(10)

p0, p2, r0 ≥ 0, p0p2 ≥ p21/4, r0 + r2 ≥ 0
}
.

Note that in (10), one can write r0 + r2x
2 = r0(1− x2) + (r0 + r2)x2 with r0 ≥ 0

and r0 + r2 ≥ 0. Since the set {p ∈ R[x]2 | p0, p2 ≥ 0, p0p2 ≥ p21/4} is a convex
cone, it holds that if p0, p2 ≥ 0, p0p2 ≥ p21/4, r0 ≥ 0, r0 + r2 ≥ 0, then

(p0 + p1x+ p2x
2) + (0 + 0x+ (r0 + r2)x2) ∈ {p ∈ R[x]2 | p0, p2 ≥ 0, p0p2 ≥ p21/4}.

Hence, one can rewrite (10) as follows:

C1,2([−1, 1]) =
{
p0 + p1x+ p2x

2 + r(1− x2) ∈ R[x]2 |(11)

p0, p2 ≥ 0, p0p2 ≥ p21/4, r ≥ 0
}
.

Note that from the characterization (11), it is possible to find the characteriza-
tion of C1,2([a, b]), where a < b (a, b ∈ R), by using an affine change of variables

x 7→ 2

b− a
x− a+ b

b− a
.

It can be easily verified that if p ∈ C1,2([−1, 1]), then

(12) q(x) := p

(
2

b− a
x− a+ b

b− a

)
≥ 0 for all x ∈ [a, b],

and thus, q ∈ C1,2([a, b]). On the other hand, for every q ∈ C1,2([a, b]), we may
observe that

p(x) := q

(
b− a

2
x+

b+ a

2

)
≥ 0 for all x ∈ [−1, 1],

and thus, p ∈ C1,2([−1, 1]). Thus q ∈ C1,2([a, b]) if and only if q can be written in
the form (12) for some p ∈ C1,2([−1, 1]).
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Now from (11), it follows that p ∈ C1,2([−1, 1]) if and only if p can be written
as

p(x) = s(x) + r(1− x2) for all x ∈ R,
where s(x) := p0 + p1x + p2x

2 and p0, p2 ≥ 0, p0p2 ≥ p21/4, r ≥ 0. Note that
s ∈ C1,2(R), and thus,

s

(
2

b− a
x− a+ b

b− a

)
= s0 + s1x+ s2x

2 ≥ 0 for all x ∈ R,

so it also holds that s0, s2 ≥ 0 and s0s2 ≥ s21/4. We obtain that q ∈ C1,2([a, b]) if
and only if q can be written in the form

q(x) = p

(
2

b− a
x− a+ b

b− a

)
= s

(
2

b− a
x− a+ b

b− a

)
+

4r

(b− a)2
(b− x)(x− a)

= s0 + s1x+ s2x
2 +R(b− x)(a− x) for all x ∈ R,

where s0, s2 ≥ 0, s0s2 ≥ s21/4, R ≥ 0. We conclude that

C1,2([a, b]) =
{
s0 + s1x+ s2x

2 +R(b− x)(x− a) ∈ R[x]2 |(13)

s0, s2 ≥ 0, s0s2 ≥ s21/4, R ≥ 0
}
.

Note that we have derived the characterizations (11) using the dual cone theorem
and the basic convex analysis and linear algebra results. First, we derived the char-
acterization of C1,2([−1, 1])∗, and subsequently, we derived the characterization of
C1,2([−1, 1]) by dualizing the characterization of C1,2([−1, 1])∗. However, usually
different methods, requiring powerful results on trigonometric polynomials and
complex analysis or cumbersome algebraic manipulations with polynomials (see,
e.g., [15, p. 259]), are applied to derive such characterizations. The characteriza-
tions (11) and (13) are in concordance with the characterizations of Fekete (see,
e.g., [6, Theorem 2.4] or [15, Problem 46, p. 78]).

6. Conclusion

In this paper, we have analyzed the properties of the set of polynomials non-
negative on a given non-empty set K ⊆ Rn, which can be encountered e.g. in
polynomial optimization problems. We have shown that this set is in fact a con-
vex, closed and solid cone, which shows a link between polynomial and conic
optimization. Moreover, if the interior of the set K is non-empty, it is a pointed
cone and hence a proper cone.

We have introduced a representation of the respective dual cone and proved the
dual cone theorem, owing to which we have managed to find the characterization
of the dual cone of the cone of polynomials non-negative on K. Furthermore, we
have found the characterizations of C1,2([−1, 1])∗, using the dual cone theorem;
and C1,2([−1, 1]). In fact, we have shown that C1,2([−1, 1])∗ is isomorphic to
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the intersection of two cones: the cone of 2 × 2 symmetric positive semidefinite
matrices and a polyhedral cone. In addition, by a change of variables, we have
also found the characterization of C1,2([a, b]), where a < b and a, b ∈ R. These
characterizations correspond to the results of Fekete (see [6], [15]).

Even though no tractable characterization of the cone Cn,d(K) is known, a
similar approach to the one included in Section 5 may be applied to finding the
explicit characterization of at least some of these cones, for instance, Cn,2([−1, 1]n).

Appendix

Proof of Proposition 1.
The claim follows from Cauchy-Schwarz inequality applied to a vector of coeffi-
cients (pα)α∈Nnd and the vector of monomial basis md(x) since

p(x) = md(x)T (pα)α∈Nnd for all x ∈ Rn. �

Proof of Proposition 2.
Since both right-hand side and left-hand side of the inequality are non-negative
numbers, we can equivalently prove (md(x)Tmd(x))2 ≥ m2d(x)Tm2d(x) for all
x ∈ Rn and d ∈ N. Note that

m2d(x)Tm2d(x) =
∑
γ∈Nn2d

x2γ11 x2γ22 · · ·x2γnn for all x ∈ Rn,

and

(md(x)Tmd(x))2 =
∑

α,β∈Nnd

x2α1+2β1

1 x2α2+2β2

2 · · ·x2αn+2βn
n for all x ∈ Rn.

Fix an arbitrary x ∈ Rn and d ∈ N. We show that every term included in
m2d(x)Tm2d(x) is also included in (md(x)Tmd(x))2. Since both m2d(x)Tm2d(x)
and (md(x)Tmd(x))2 are sums of non-negative numbers for any given x ∈ Rn, we
prove that (md(x)Tmd(x))2 ≥ m2d(x)Tm2d(x) for all x ∈ Rn and d ∈ N.

More specifically, we want to show that for any γ ∈ Nn2d, there exist α, β ∈ Nnd
such that α+ β = γ. For an arbitrary but fixed γ ∈ Nn2d, we construct α ∈ Nnd by
setting

αi =


γi
2 , γi ≡ 0 (mod 2),

γi−1
2 , γi ≡ 1 (mod 2) ∧

∑i−1
j=1 αj >

∑i−1
j=1(γj − αj),

γi+1
2 , γi ≡ 1 (mod 2) ∧

∑i−1
j=1 αj ≤

∑i−1
j=1(γj − αj),

i = 1, 2, . . . , n. Then βi = γi−αi, i = 1, 2, . . . , n. We need to show that α, β ∈ Nnd .
It is obvious that α+ β = γ and that αi, βi ∈ N0, i = 1, 2, . . . , n, and therefore, it
suffices to show that

∑n
i=1 αi ≤ d and

∑n
i=1 βi ≤ d.
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Denote o1 the number of cases when γi ≡ 1 (mod 2) ∧
∑i−1
j=1 αj ≤

∑i−1
j=1(γj−αj),

i = 1, 2, . . . , n and o2 the number of cases when γi ≡ 1 (mod 2) ∧
∑i−1
j=1 αj >∑i−1

j=1(γj − αj), i = 1, 2, . . . , n. Then it follows that

n∑
i=1

αi =

n∑
i=1

γi
2

+
1

2
(o1 − o2),

n∑
i=1

βi =

n∑
i=1

γi
2

+
1

2
(o2 − o1).

Firstly, we show that o1 − o2 ∈ {0, 1}. Suppose that there are k odd numbers
among γ1, γ2, . . . , γn, where k ∈ {0, 1, 2, . . . , n}. If k = 0, then obviously o1 = o2 =
0, and thus, o1 − o2 ∈ {0, 1}. If k 6= 0, denote these odd numbers γi1 , γi2 , . . . , γik .
If k ≡ 1 (mod 2), then k = 2l− 1 for some l ∈ N and by construction of α we have

αi1 =
γi1+1

2 , αi2 =
γi2−1

2 , . . . , αi2l−2
=

γi2l−2
−1

2 , αi2l−1
=

γi2l−1
+1

2 . Therefore,
o1 = l and o2 = l − 1, and therefore, o1 − o2 = 1 ∈ {0, 1}. If k ≡ 0 (mod 2),

then k = 2l for some l ∈ N. Again, by construction of α, we have αi1 =
γi1+1

2 ,

αi2 =
γi2−1

2 , . . . , αi2l−1
=

γi2l−1
+1

2 , αi2l =
γi2l−1

2 . Therefore, o1 = o2 = l, and
therefore, o1 − o2 = 0 ∈ {0, 1}.

Since o1 − o2 ∈ {0, 1}, we have shown that
∑n
i=1 αi ≥

∑n
i=1 βi. Now, we show

that
∑n
i=1 αi ≤ d. It is evident that

∑n
i=1 αi ≤

∑n
i=1

γi
2 + 1

2 . Moreover, since
γ ∈ Nn2d, we have

∑n
i=1 γi ≤ 2d. There are two cases to consider:

1.
∑n
i=1 γi ≤ 2d− 1 < 2d.

It follows automatically that
∑n
i=1

γi
2 + 1

2 ≤ d, and therefore,
∑n
i=1 αi ≤ d.

2.
∑n
i=1 γi = 2d.

However, that is possible if and only if k ≡ 0 (mod 2), which means that
o1 − o2 = 0, and therefore,

∑n
i=1 αi =

∑n
i=1

γi
2 = d.

We have finally shown that d ≥
∑n
i=1 αi ≥

∑n
i=1 βi, which completes the proof.

�
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