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A GENERALIZED STATISTICAL CONVERGENCE

IN NEUTROSOPHIC NORMED SPACE

SHYAMAL DEBNATH and SANTONU DEBNATH

Abstract. In this paper, we introduce one of the generalized concepts of statistical

convergence, namely ρ-statistical convergence and its boundedness in neutrosophic

normed space (NNS). We investigate some fundamental properties of the newly
introduced notion. Lastly, we introduce ρ-statistical convergence of order α in

neutrosophic normed space and establish the relationship of the above convergence
methods with some already known convergence methods in NNS.

1. Introduction

Statistical convergence was introduced by Fast [13] and Steinhaus [33] independen-
tly in the same year 1951. Though the notion was first handled as a summability
method by Schoenberg [32] in 1959. Furthermore, in 1980, Šalát [30] researched
some topological properties of statistical convergence for sequences of real numbers.
Further, it was studied by Fridy [14] in 1985. In 1988, Connor [8] proved that
a strongly p-Cesàro summable sequence for 0 < p < ∞ is statistical convergence
and the converse holds for bounded sequences. Later on, several generalizations
and applications of this concept have been investigated by various authors. For
more details, one may refer to [2, 3, 7, 16, 17, 27, 31].

On the other hand, the concept of fuzzy sets was first introduced by Zadeh [34]
in 1965, which was an extension of the classical set-theoretical concept. Nowadays
it has wide applications in different branches of science and engineering. The the-
ory of fuzzy sets cannot always cope with the lack of knowledge of membership
degrees. To overcome the drawbacks, in 1986, Atanassov [1] introduced intuition-
istic fuzzy sets as an extension of fuzzy sets. Intuitionistic fuzzy sets have been
widely used to solve various decision-making problems. Many times, decision-
makers face some hesitations besides going to direct approaches (i.e., yes or no)
in decision making. In addition, we can obtain a tricomponent outcome in some
real events like sports, the procedure for voting, etc. For more details, one may
refer to [9, 19, 25, 26]. Considering all in 1998, Smarandache [29] introduced
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the notion of neutrosophic set as a generalization of both fuzzy set and intuition-
istic fuzzy set. An element belonging to a neutrosophic set consists of a triplet,
namely truth-membership function (T), indeterminacy-membership function (F),
and falsity-membership function (I). A neutrosophic set is determined as a set
where every component of the universe has a degree of T, F and I. The notion
of fuzzy normed space was introduced by Felbin [12] in 1992. Later on, in 2006,
the concept of intuitionistic fuzzy normed spaces was introduced by Saadati and
Park [28]. Furthermore, in 2020, Kirisçi and Simsek [23] introduced the notion
of statistical convergence in neutrosophic normed linear spaces and investigated
some of its properties. For more details, one may refer to [20, 21, 22].

The opinion of statistical convergence depends on the density of subsets of the
set N of natural numbers. We say that δ(E) is the density of a subset E of N if
the following limit exists

δ(E) = lim
n→∞

1

n

n∑
k=1

χE(k),

where χE is the characteristic function of E. It is clear that any finite subset of
N has zero natural density and δ (N \ E) = 1− δ (E). A sequence x = (xk) is said
to be statistical convergence [14] to ` if for every ε > 0,

δ ({k ∈ N : |xk − `| ≥ ε }) = 0.

ρ-density [7] of a set E ⊂ N is defined by

δρ(E) = lim
n→∞

1

ρn
|{ k ≤ n : k ∈ E}| ,

provided this limit exists, where afterward ρ = (ρn) is a non-decreasing sequence
of positive real numbers tending to ∞ such that

(1) lim
n

sup
ρn
n
<∞, ∆ρn = O(1), and ∆ρn = ρn+1 − ρn,

for each positive integer n. It is clear that for ρn = n, the above definition
turns to the definition of natural density. If x = (xk) is a sequence such that xk
holds property P (k) for all k except a set of ρ-density zero, then we say that xk
holds P (k) for “almost all k according to ρ” and we denote this by “a.a.k (ρ)”.
A sequence x = (xk) is said to be ρ-statistical convergence [7] to ` if for each ε > 0,

lim
n→∞

1

ρn
|{k ≤ n : |xk − `| ≥ ε}| = 0.

If ρn = n for all n ∈ N, then ρ-statistical convergence coincides with statistical
convergence. The set of all ρ-statistical convergence sequences is denoted by Sρ.
Cakalli et al. [6] introduced the concept of ρ-statistical convergence of order β
defined as

lim
n→∞

1

ρβn
|{k ≤ n : |xk − `| ≥ ε}| = 0

for each ε > 0 and 0 < β ≤ 1. The concept of statistical boundedness was given
by Fridy et al. [15] as follows: a real number sequence x = (xk) is statistically
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bounded if there exists a number M ≥ 0 such that

δ ({k : |xk| > M}) = 0.

The set of all statistically bounded sequences is denoted by S (b) . It can be shown
that every bounded sequence is statistically bounded, but the converse is not true.
For this, consider a sequence x = (xk) defined by

xk =

{
k if k is a square,

1 if k is not a square.

Clearly, x = (xk) is not a bounded sequence, but it is statistically bounded. For
further generalization on the concept of statistical boundedness, one may refer to
[4, 5, 10, 11].

In this paper, we introduce ρ-statistical convergence and ρ-statistical bounded-
ness on neutrosophic normed spaces and investigate some of their properties. We
also introduce ρ-statistical convergence of order α as an extension of ρ-statistical
convergence.

2. Definitions and preliminaries

Definition 2.1 ([24]). A binary operation ◦ : [0, 1]× [0, 1]→ [0, 1] is said to be
a continuous t-norm if the following conditions are satisfied:

1. ◦ is associative and commutative,
2. ◦ is continuous,
3. s ◦ 1 = s for all s ∈ [0, 1],
4. s ◦ t ≤ u ◦ v whenever s ≤ u and t ≤ v for all s, t, u, v ∈ [0, 1].

Definition 2.2 ([24]). A binary operation • : [0, 1] × [0, 1] → [0, 1], is said to
be a continuous t-conorm if the following conditions are satisfied:

1. • is associative and commutative,
2. • is continuous,
3. s • 0 = s for all s ∈ [0, 1],
4. s • t ≤ u • v whenever s ≤ u and t ≤ v for all s, t, u, v ∈ [0, 1].

Definition 2.3 ([23]). Let V be a vector space and

N = {〈u,R(u),T(u),W(u)〉 : u ∈ V }
be a normed space (NS) such that R,T,W : V × R+ → [0, 1]. Let ◦ and • be
the continuous t-norm and continuous t-conorm, respectively. Then the four-tuple
(V,N , ◦, •) is called neutrosophic normed space (NNS) if the following conditions
hold, for all u, v ∈ V and λ, µ > 0 and for each σ 6= 0:

1. 0 ≤ R(u, λ) ≤ 1, 0 ≤ T(u, λ) ≤ 1, 0 ≤W(u, λ) ≤ 1,

2. 0 ≤ R(u, λ) + T(u, λ) + W(u, λ) ≤ 3,

3. R(u, λ) = 1 (for λ > 0) if and only if u = 0,

4. R(σu, λ) = R(u, λ|σ| ),
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5. R(u, λ) ◦ R(v, µ) ≤ R(u+ v, λ+ µ),

6. R(u, .) is a continuous and non-decreasing function,

7. lim
λ→∞

R(u, λ) = 1,

8. T(u, λ) = 0 (for λ > 0) if and only if u = 0,

9. T(σu, λ) = T(u, λ|σ| ),

10. T(u, λ) • T(v, µ) ≥ T(u+ v, λ+ µ),

11. T(u, .) is a continuous and non-increasing function,

12. lim
λ→∞

T(u, λ) = 0,

13. W(u, λ) = 0 (for λ > 0) if and only if u = 0,

14. W(σu, λ) = W(u, λ|σ| ),

15. W(u, λ) •W(v, µ) ≥W(u+ v, λ+ µ),

16. W(u, .) is a continuous and non-increasing function,

17. lim
λ→∞

W(u, λ) = 0,

18. if λ ≤ 0, then R(u, λ) = 0,T(u, λ) = 1 and W(u, λ) = 1.

Then, N = (R,T,W) is a neutrosophic norm.

Example 2.4 ([18]). Suppose (V, ‖ · ‖) to be a normed space. For s, t ∈ [0, 1],
define the t-norm ◦ and the t-conorm • as s ◦ t = st and s • t = s + t − st,
respectively. For λ > ‖u‖, let

R(u, λ) =
λ− ‖u‖
λ+ ‖u‖

, T(u, λ) =
‖u‖

λ+ ‖u‖
, W(u, λ) =

‖u‖
λ

for all u( 6= 0) ∈ V.

Then, (V,N , ◦, •) is a neutrosophic normed space (NNS).

Definition 2.5 ([18]). Let V be an NNS. A sequence (xk) of V is said to be
statistical convergence to ` with respect to the N , if for every 0 < ε < 1 and λ > 0,

δ({k ∈ N : R(xk − `, λ) ≤ 1− ε or T(xk − `, λ) ≥ ε,W(xk − `, λ) ≥ ε}) = 0,

or equivalently,

lim
n→∞

1

n
|{k ≤ n : R(xk − `, λ) ≤ 1− ε or T(xk − `, λ) ≥ ε,W(xk − `, λ) ≥ ε}| = 0.

Symbolically, it is denoted as st-N - limxk = ` or xk → `(st-N ). We denote the
set of all statistical convergence sequences in NNS V by st(N ).

Definition 2.6. Let V be a NNS. A sequence (xk) of V is said to be statistically
bounded if there exists some t0 > 0 and b ∈ (0, 1) such that

δ({k ∈ N : R(xk, t0) > 1− b or T(xk, t0) < b,W(xk, t0) < b}) = 0,

or equivalently,

lim
n→∞

1

n
|{k ∈ N : R(xk, t0) > 1− b or T(xk, t0) < b,W(xk, t0) < b}| = 0.

We denote the set of all statistically bounded sequences in a NNS V by stN (b).



A GENERALIZED STATISTICAL CONVERGENCE IN NNS 83

3. Main results

The main results is divided into three subsections. Firstly, we introduce ρ-statisti-
cal convergence, secondly, ρ-statistical boundedness on NNS, exploring several of
their properties. Lastly, we introduce ρ-statistical convergence of order α in NNS.

3.1. ρ-statistical convergence on NNS

Definition 3.1. Let V be a NNS. A sequence (xk) of V is said to be ρ-statistical
convergence to ` with respect to the N , if for every 0 < ε < 1 and λ > 0,

δρ({k ∈ N : R(xk − `, λ) ≤ 1− ε or T(xk − `, λ) ≥ ε,W(xk − `, λ) ≥ ε}) = 0,

or equivalently,

lim
n→∞

1

ρn
|{k≤n : R(xk − `, λ)≤1− ε or T(xk−`, λ)≥ε,W(xk − `, λ)≥ε}| = 0.

Symbolically, it is denoted as stρ-N - limxk = ` or xk → `(stρ-N ). We denote
the set of all ρ-statistical convergence sequence in a NNS V by stρ(N ).

Definition 3.2. Let V be a NNS and (xk) be a sequence of V . Then, (xk) is
said to be ρ-statistical Cauchy if for any 0 < ε < 1, there exists N = N(ε) ∈ N
such that

δρ({k ∈ N : R(xk−xN , λ) ≤ 1−ε or T(xk−xN , λ) ≥ ε, W(xk−xN , λ) ≥ ε}) = 0,

or equivalently,

lim
n→∞

1

ρn

∣∣{k ≤ n : R(xk − xN , λ) ≤ 1− ε or T(xk − xN , λ) ≥ ε,

W(xk − xN , λ) ≥ ε}
∣∣ = 0.

Example 3.3. Let V = R. For all s, t ∈ [0, 1], define the continuous t-norm
s ◦ t = st and the continuous t-conorm s • t = min{s + t, 1}. We take R,T,W in
Example 2.4 for all λ > 0. Then, we define the sequence (xk) as

xk =

{
k, [ρn]− 1 < k ≤ [ρn], n = 1, 2, 3, . . . ,

0, otherwise.

Then, xk → 0(stρ-N ).

Justification: For every 0 < ε < 1, we have

Kε = {k ∈ N : R(xk − 0, λ) ≤ 1− ε or T(xk − 0, λ) ≥ ε,W(xk − 0, λ) ≥ ε}.
This implies

Kε =

{
k ∈ N :

λ− |xk|
λ+ |xk|

≤ 1− ε or
|xk|

λ+ |xk|
≥ ε, |xk|

λ
≥ ε

}
=

{
k ∈ N : |xk| ≥

λε

2− ε
or |xk| ≥

λε

1− ε
, |xk| ≥ λε

}
⊆
{
k ∈ N : |xk| ≥

λε

1− ε
or |xk| ≥ λε

}
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⊆
({

k : |xk| >
λε

1− ε

})
= {k ∈ N : xk = k}
= {k ∈ N : [ρn]− 1 < k ≤ [ρn]}.

Therefore,

|Kε| ≤ |{k ∈ N : [ρn]− 1 < k ≤ [ρn]}|

=⇒ 1

ρn
|Kε| ≤

1

ρn
|{k ∈ N : [ρn]− 1 < k ≤ [ρn]}|

=⇒ lim
n→∞

1

ρn
|Kε| ≤ lim

n→∞

1

ρn
|{k ∈ N : [ρn]− 1 < k ≤ [ρn]}| = 0.

Hence, xk → 0(stρ-N ).

Theorem 3.4. Let ρ = (ρn) be a non-decreasing sequence of positive real num-
bers tending to ∞ and satisfying condition (1). Let x = (xn) and y = (yn) be the
sequences of a NNS V . Then

(i) xk → `(stρ-N ) implies cxk → c `(stρ-N ),

(ii) xk → `1(stρ-N ) and yk → `2(stρ-N ) imply (xk + yk)→ (`1 + `2)(stρ-N ).

Proof. (i) Proof is clear for c = 0. Let c 6= 0. We can write

lim
n→∞

1

ρn
|{k ≤ n : R(cxk − c `, λ) ≤ 1− ε or T(cxk − c `, λ) ≥ ε,

W(cxk − c `, λ) ≥ ε}|

≤ lim
n→∞

1

ρn

∣∣∣∣{k ≤ n : R(xk − `, λ) ≤ 1− ε
|c|

or T(xk − `, λ) ≥ ε

|c|
,

W(xk − `, λ) ≥ ε

|c|

}∣∣∣∣,
so xk → `(stρ −N ) implies cxk → c `(stρ −N ).

(ii)

lim
n→∞

1

ρn
|{k ≤ n : R((xk + yk)− (`1 + `2), λ) ≤ 1− ε or

T((xk + yk)− (`1 + `2), λ) ≥ ε,
W((xk + yk)− (`1 + `2), λ) ≥ ε}|

≤ lim
n→∞

1

ρn

∣∣∣∣{k ≤ n : R(xk − `1, λ) ≤ 1− ε

2
or T(xk − `2, λ) ≥ ε

2
,

W(xk − `2, λ) ≥ ε

2

}∣∣∣∣
+ lim
n→∞

1

ρn

∣∣∣∣{k ≤n : R(yk − `1, λ) ≤ 1− ε

2
or T(yk − `2, λ) ≥ ε

2
,

W(yk − `2, λ) ≥ ε

2

}∣∣∣∣.
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So, we have xk → `1(stρ-N ) and yk → `2(stρ-N ), that implies (xk + yk) →
(`1 + `2)(stρ-N ). �

Lemma 3.5. Let V be a NNS. Then, for any 0 < ε < 1, the following state-
ments are equivalent:

1. xk → `(stρ-N );

2. δρ({k ∈ N : R(xk − `, λ) ≤ 1− ε}) = δρ({k ∈ N : T(xk − `, λ) ≥ ε})
= δρ({k ∈ N : W(xk − `, λ) ≥ ε}) = 0;

3. δρ({k ∈ N : R(xk − `, λ) > 1− ε}) = δρ({k ∈ N : T(xk − `, λ) < ε})
= δρ({k ∈ N : W(xk − `, λ) < ε}) = 1;

4. R(xk−`, λ)→ 1(stρ-N ), T(xk−`, λ)→ 0(stρ-N ), W(xk−`, λ)→ 0(stρ-N ).

Theorem 3.6. Let ρ = (ρn) be a non-decreasing sequence of positive real
numbers tending to ∞ and satisfying condition (1). If lim

n
inf(ρnn ) ≥ 1, then

st(N ) ⊆ stρ(N ) with respect to neutrosophic norm N .

Proof. If xk → `(st-N ), then for every ε > 0, we have

lim
n→∞

1

n
|{k≤n : R(xk − `, λ)≤1− ε or T(xk − `, λ)≥ε, W(xk − `, λ)≥ε}| = 0.

Now,

1

n
|{k ≤ n : R(xk − `, λ) ≤ 1− ε or T(xk − `, λ) ≥ ε, W(xk − `, λ) ≥ ε}|

=
ρn
n

1

ρn
|{k ≤ n : R(xk − `, λ) ≤ 1− ε or T(xk − `, λ) ≥ ε, W(xk − `, λ) ≥ ε}|

≥ inf(
ρn
n
)
1

ρn
|{k ≤ n : R(xk − `, λ) ≤ 1− ε or T(xk − `, λ) ≥ ε, W(xk − `, λ) ≥ ε}|

≥ 1

ρn
|{k ≤ n : R(xk − `, λ) ≤ 1− ε or T(xk − `, λ) ≥ ε, W(xk − `, λ) ≥ ε}| .

Therefore,

lim
n→∞

1

n
|{k ≤ n : R(xk − `, λ) ≤ 1− ε or T(xk − `, λ) ≥ ε, W(xk − `, λ) ≥ ε}|

≥ lim
n→∞

1

ρn
|{k ≤ n : R(xk − `, λ) ≤ 1− ε or T(xk − `, λ) ≥ ε, W(xk − `, λ) ≥ ε}|.

Hence, st(N ) ⊆ stρ(N ). �

Theorem 3.7. Let ρ = (ρn) and τ = (τn) be two sequences, both satisfying
condition (1), and ρn ≤ τn for all n ∈ N. If (xk) is a sequence in a NNS V such
that xk → `(stρ-N ), then xk → `(stτ -N ).

Proof. By our assumption, for any 0 < ε < 1,

δρ({k ∈ N : R(xk − `, λ) ≤ 1− ε or T(xk − `, λ) ≥ ε, W(xk − `, λ) ≥ ε}) = 0, i.e.,

lim
n→∞

1

ρn
|{k ≤ n : R(xk − `, λ) ≤ 1− ε or T(xk − `, λ) ≥ ε, W(xk − `, λ) ≥ ε}| = 0.
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Now, since ρn ≤ τn holds for all n ∈ N, so we must have

1

τn
|{k ≤ n : R(xk − `, λ) ≤ 1− ε or T(xk − `, λ) ≥ ε, W(xk − `, λ) ≥ ε}|

≤ 1

ρn
|{k ≤ n : R(xk − `, λ) ≤ 1− ε or T(xk − `, λ) ≥ ε, W(xk − `, λ) ≥ ε}| .

Hence, xk → `(stτ -N ). �

Theorem 3.8. In a NNS V , limit of ρ-statistical convergence sequence is
unique.

Proof. If possible, suppose xk → `1(stρ-N ) and xk → `2(stρ-N ) for l1 6= l2.
Then, for a given 0 < ε < 1, we can choose µ > 0 such that (1−ε)◦ (1−ε) > 1−µ
and ε • ε < µ. Now, for any λ > 0, we define the following sets:

KR1(ε, λ) =

{
k ∈ N : R

(
xk − `1,

λ

2

)
≤ 1− ε

}
,

KR2
(ε, λ) =

{
k ∈ N : R

(
xk − `2,

λ

2

)
≤ 1− ε

}
,

KT1
(ε, λ) =

{
k ∈ N : T

(
xk − `1,

λ

2

)
≥ ε
}
,

KT2(ε, λ) =

{
k ∈ N : T

(
xk − `2,

λ

2

)
≥ ε
}
,

KW1
(ε, λ) =

{
k ∈ N : W

(
xk − `1,

λ

2

)
≥ ε
}
,

KW2
(ε, λ) =

{
k ∈ N : W

(
xk − `2,

λ

2

)
≥ ε
}
.

Since xk → `1(stρ-N ), by Lemma 3.5, for any λ > 0, we have

δρ(KR1(ε, λ)) = δρ(KT1(ε, λ)) = δρ(KW1(ε, λ)) = 0.

Again, since xk → `2(stρ-N ), by Lemma 3.5, for any λ > 0, we have

δρ(KR2
(ε, λ)) = δρ(KT2

(ε, λ)) = δρ(KW2
(ε, λ)) = 0.

Now, let K(ε, λ) = (KR1
(ε, λ)∪KR2

(ε, λ))∩(KT1
(ε, λ)∪KT2

(ε, λ))∩(KW1
(ε, λ)∪

KW2
(ε, λ)). Then, we have δρ(K(ε, λ)) = 0 and eventually δρ(N \ K(ε, λ)) 6= 0,

and therefore, N \K(ε, λ) is non-empty. Choose p ∈ N \K(ε, λ). Then, there are
three possibilities:

(i) p ∈ (N \ (KR1
(ε, λ)) ∩ (N \ (KR2

(ε, λ)),

(ii) p ∈ (N \ (KT1
(ε, λ)) ∩ (N \ (KT2

(ε, λ)), and

(iii) p ∈ (N \ (KW1
(ε, λ)) ∩ (N \ (KW2

(ε, λ)).

If we consider case (i), then we have the following:

(2) R(`1 − `2, λ) ≥ R
(
xk − `1,

λ

2

)
◦ R
(
xk − `2,

λ

2

)
> (1− ε) ◦ (1− ε) > 1− µ.
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Now, since µ is arbitrary, so from equation (2), for any λ > 0, we obtain R(`1 −
`2, λ) = 1, i.e., `1 = `2.

If we consider case (ii), then we have the following:

(3) T(`1 − `2, λ) ≤ T
(
xk − `1,

λ

2

)
• T
(
xk − `2,

λ

2

)
< ε • ε < µ.

Now, since µ is arbitrary, so from equation (3), for any λ > 0, we obtain T(`1 −
`2, λ) = 1, i.e., `1 = `2.

Again, if we consider case (iii), then we have the following

(4) W(`1 − `2, λ) ≤W
(
xk − `1,

λ

2

)
•W

(
xk − `2,

λ

2

)
< ε • ε < µ.

Now, since µ is arbitrary, so from equation (4), for any λ > 0, we obtain W(`1 −
`2, λ) = 0, i.e., `1 = `2. This completes the proof. �

3.2. ρ-statistical boundedness on NNS

Definition 3.9. A sequence (xk) in a NNS V is said to be ρ-statistically
bounded if there exists some t0 > 0 and b ∈ (0, 1) such that

lim
n→∞

1

ρn
|{k ∈ N : R(xk, t0) > 1− b or T(xk, t0) < b, W(xk, t0) < b}| = 0.

We denote the set of all ρ-statistically bounded sequences in a NNS V by stNρ (b).

Theorem 3.10. Every ρ-statistical convergence sequence (xk) in a NNS V is
ρ-statistically bounded.

Proof. Let (xk) be ρ-statistical convergence to x ∈ V with respect to neutro-
sophic norm N . Then for every λ > 0, we have

lim
n→∞

1

ρn
|{k ∈ N : R(xk−x, λ) ≤ 1− ε or T(xk−x, λ) ≥ ε, W(xk−x, λ) ≥ ε}| = 0.

Let m be any element of {k ∈ N : R(xk, λ) ≤ 1− ε or T(xk, λ) ≥ ε,W(xk, λ) ≥ ε}.
Then,

R(xm, λ) ≤ 1− ε or T(xm, λ) ≥ ε,W(xm, λ) ≥ ε.
Now,

R(xm − x, λ) ≤ R(xm, λ) • R(x, 0) ≤ (1− ε) • 0 ≤ 1− ε,(5)

T(xm − x, λ) ≥ T(xm, λ) ◦ T(x, 0) ≥ ε ◦ 1 ≥ ε, and(6)

W(xm − x, λ) ≥W(xm, λ) ◦W(x, 0) ≥ ε ◦ 1 ≥ ε.(7)

From (5), (6), and (7), we have that m is an element of

{k ∈ N : R(xk − x, λ) ≤ 1− ε or T(xk − x, λ) ≥ ε,W(xk − x, λ) ≥ ε}.

Thus,

{k ∈ N : R(xk, λ) ≤ 1− ε or T(xk, λ) ≥ ε, W(xk, λ) ≥ ε}
⊆ {k ∈ N : R(xk − x, λ) ≤ 1− ε or T(xk − x, λ) ≥ ε, W(xk − x, λ) ≥ ε},
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which implies

lim
n→∞

1

ρn
|{k ∈ N : R(xk, λ) ≤ 1− ε or T(xk, λ) ≥ ε, W(xk, λ) ≥ ε}|

≤ lim
n→∞

1

ρn
|{k ∈ N : R(xk − x, λ) ≤ 1− ε or T(xk − x, λ)≥ε, W(xk − x, λ)≥ε}|.

So that,

lim
n→∞

1

ρn
|{k ∈ N : R(xk, λ) > 1− ε or T(xk, λ) < ε, W(xk, λ) < ε}| = 0,

for a.a.k, i.e., (xk) ρ-statistically bounded in a NNS V . �

But, the converse of the above theorem is not true. For this, let us consider the
following example.

Example 3.11. Let V = R, and consider a real sequence (xk) defined by

xk =


4k if k is an odd square,

3 if k is an even square,

1 if k is an odd nonsquare,

0 if k is an even nonsquare.

We take R,T,W as in Example 2.4, i.e., R(xk, λ) = λ−|xk|
λ+|xk| , T(xk, λ) = |xk|

λ+|xk| ,

W(xk, λ) = |xk|
λ for all xk(6= 0) ∈ R.

The above sequence is clearly unbounded with respect to N . On the other
hand, it is ρ-statistically bounded with respect to N . For this, we have

δρ({k : R(xk, λ) > 1− b or T(xk, λ) < b,W(xk, λ) < b})

= δρ

({
λ− |xk|
λ+ |xk|

> 1− b or
|xk|

λ+ |xk|
< b,

|xk|
λ

< b

})
≤ δρ

({
k : |xk| >

bλ

1− b
or |xk| > bλ

})
≤ δρ

({
k : |xk| >

bλ

1− b

})
.

Choose λ = 2(1−b)
b . Then for λ > 0, we have

δρ({k : R(xk, λ) < 1− b or T(xk, λ) > b, W(xk, λ) > b})

= δρ

({
k : |xk| >

b

1− b
× 2(1− b)

b
= 2
})

= δρ ({k : |xk| > 2}) = 0.

Hence, it is ρ-statistically bounded with respect to N . In a NN space, every
statistical convergence sequence is ρ-statistical convergence. So, if we take ρn = n,
then for every ε > 0,

lim
n→∞

1

n
|{k ∈ N : R(xk − 0, λ) ≤ 1− ε or T(xk − 0, λ) ≥ ε, W(xk − 0, λ) ≥ ε}| 6= 0,
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lim
n→∞

1

n
|{k ∈ N : R(xk − 1, λ) ≤ 1− ε or T(xk − 1, λ) ≥ ε, W(xk − 1, λ) ≥ ε}| 6= 0,

and lim
n→∞

1

n
|{k ∈ N : R(xk − 3, λ) ≤ 1− ε or T(xk − 3, λ) ≥ ε, W(xk − 3, λ) ≥ ε}| 6= 0.

Therefore, the given sequence is not statistically convergent with respect to N
which implies that it is not ρ-statistical convergence with respect to N .

Theorem 3.12. Let ρ = (ρn) be a non-decreasing sequence of positive real
numbers tending to ∞ and satisfying condition (1) such that lim

n
supρnn = M <∞.

Then stN (b) ⊆ stNρ (b).

Proof. Let (xk) be a sequence in stN (b). Then for a given λ > 0, b ∈ (0, 1), we
have

lim
n→∞

1

n
|{k ∈ N : R(xk, t0) > 1− b or T(xk, t0) < b, W(xk, t0) < b}| = 0.

Now,

1

n
|{k ≤ n : R(xk, λ) ≤ 1− ε or T(xk, λ) ≥ ε, W(xk, λ) ≥ ε}|

≤ lim sup
(ρn
n

) 1

ρn
|{k ≤ n : R(xk, λ) ≤ 1− ε or T(xk, λ) ≥ ε, W(xk, λ) ≥ ε}| ,

lim
n→∞

1

n
|{k ≤ n : R(xk, λ) ≤ 1− ε or T(xk, λ) ≥ ε, W(xk, λ) ≥ ε}|

≤ lim
n→∞

lim sup(
ρn
n

)
1

ρn
|{k ≤ n : R(xk, λ) ≤ 1− ε or T(xk, λ) ≥ ε, W(xk, λ) ≥ ε}|

≤ lim
n→∞

M

ρn
|{k ≤ n : R(xk, λ) ≤ 1− ε or T(xk, λ) ≥ ε, W(xk, λ) ≥ ε}| .

As lim
n

supρnn = M <∞, we get stN (b) ⊆ stNρ (b). �

3.3. ρ-statistical convergence of order α in NNS

Definition 3.13. Let V be a NNS. A sequence (xk) of V is said to be ρ-sta-
tistical convergence of order α with 0 < α ≤ 1, if for each ε > 0,

lim
n→∞

1

ραn
|{k ≤ n : R(xk − `, λ)≤1− ε or T(xk − `, λ)≥ε, W(xk − `, λ)≥ε}| = 0,

where ρ = (ρn) is a non-decreasing sequence of positive real numbers tending
to ∞ and satisfying the condition (1). In this case, we write stαρ -N - limxk = `
or xk → `(stαρ -N ). We denote the set of all ρ-statistical convergence of order α
sequence by stαρ (N ). If ρn = n, then ρ-statistical convergence of order α in a NNS
V coincides with the statistical convergence of order α in a NNS V , in addition,
if α = 1, it coincides with statistical convergence in a NNS V .

Example 3.14. Let V = R. For all s, t ∈ [0, 1], define the continuous t-norm
s ◦ t = st and the continuous t-conorm s • t = min{s + t, 1}. We take R,T,W as
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in Example 2.4, for all λ > 0. Define the sequence (xk) as

xk =

{
1, k = p3 (p ∈ N),

0, otherwise.

Then, xk → 0(stαρ -N ), taking ραn = nα for α ∈ ( 1
3 , 1].

Justification: For every 0 < ε < 1, we have

Kε = {k ≤ n : R(xk − 0, λ) ≤ 1− ε or T(xk − 0, λ) ≥ ε, W(xk − 0, λ) ≥ ε}.
This implies

Kε =

{
k ∈ N :

λ− |xk|
λ+ |xk|

≤ 1− ε or
|xk|

λ+ |xk|
≥ ε, |xk|

λ
≥ ε

}
=

{
k ∈ N : |xk| ≥

λε

2− ε
or |xk| ≥

λε

1− ε
, |xk| ≥ λε

}
⊆
{
k ∈ N : |xk| ≥

λε

1− ε
or |xk| ≥ λε

}
= {k ≤ n : xk = 1}.

Then,

δαρ (Kε) = lim
n→∞

|Kε|
nα
≤ lim
n→∞

3
√
n

nα
= 0 for α ∈ (

1

3
, 1].

Hence, xk → 0(stαρ -N ).

Theorem 3.15. In an NNS, the limit of ρ-statistical convergence sequence of
order α is unique.

Proof. The proof is similar to Theorem 3.8, so omitted. �

Remark. The ρ-statistical convergence of order α is well defined for 0 < α ≤ 1,
but it is not well defined for α > 1, in general. For this let us consider V = R. We
take R,T,W as in Example 2.4, then

xk =

{
1 if k = 2n,
0 if k 6= 2n.

For α > 1, where ρn = n and ε > 0, we have

lim
n→∞

1

ραn
|{k ≤ n : R(xk − 1, λ) ≤ 1− ε or T(xk − 1, λ) ≥ ε,W(xk − 1, λ) ≥ ε}|

≤ lim
n→∞

n

2ραn
= 0,

lim
n→∞

1

ραn
|{k ≤ n : R(xk − 0, λ) ≤ 1− ε or T(xk − 0, λ) ≥ ε,W(xk − 0, λ) ≥ ε}|

≤ lim
n→∞

n

2ραn
= 0.

Thus, xk → 1(stρ-N ) and xk → 0(stρ-N ), which is impossible. So, 0 < α ≤ 1.

Theorem 3.16. Let 0 < α ≤ β ≤ 1. Then stαρ (N ) ⊆ stβρ (N ) and the inclusion
is strict.
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Proof. If 0 < α ≤ β ≤ 1, then

lim
n→∞

1

ραn
|{k ∈ N : R(xk − `, λ) ≤ 1− ε or T(xk − `, λ) ≥ ε, W(xk − `, λ) ≥ ε}|

≤ lim
n→∞

1

ρβn
|{k ∈ N : R(xk − `, λ) ≤ 1− ε or T(xk − `, λ) ≥ ε, W(xk − `, λ) ≥ ε}|

which implies stαρ (N ) ⊆ stβρ (N ). �

Corollary 3.17. If a sequence is ρ-statistical convergence of order α in NNS
V , then it is ρ-statistical convergence in NNS V , that is, stαρ (N ) ⊆ stρ(N ) for
each α ∈ (0, 1], and the inclusion is strict.

Theorem 3.18. Let ρ = (ρn) be a non-decreasing sequence of positive real
numbers tending to ∞ and satisfying condition (1). Let x = (xn) and y = (yn) be
the sequences of NNS V . Then

(i) xk → `(stαρ -N ) and c ∈ R imply cxk → c `(stαρ -N ),

(ii) xk → `1(stαρ -N ), yk → `2(stαρ -N ) and c ∈ R imply (xk + yk) → (`1 +
`2)(stαρ -N ).

Proof. The proof is similar to the proof of Theorem 3.4, so omitted. �

Theorem 3.19. Let ρ = (ρn) be a non-decreasing sequence of positive real
numbers tending to ∞ and satisfying condition (1). If lim

n
inf(ρnn )α > 1, then

stα(N ) ⊆ stαρ (N ) with respect to neutrosophic norm N .

Proof. The proof is similar to Theorem 3.6, so omitted. �

Lemma 3.20. Let V be an NNS. Then, for any 0 < ε < 1, the following
statements are equivalent:

1. xk → `(stαρ -N );

2. δαρ ({k ∈ N : R(xk − `, λ) ≤ 1− ε}) = δαρ ({k ∈ N : T(xk − `, λ) ≥ ε})
= δαρ ({k ∈ N : W(xk − `, λ) ≥ ε}) = 0;

3. δαρ ({k ∈ N : R(xk − `, λ) > 1− ε orT(xk − `, λ) < ε,W(xk − `, λ) < ε}) = 1;

4. R(xk − `, λ)→ 1(stαρ -N ), T(xk − `, λ)→ 0(stαρ -N ),

W(xk − `, λ)→ 0(stαρ -N ).

Theorem 3.21. Let (xk) and (yk) be two sequences in a NNS V such that
yk → `(N ) and δαρ ({k ∈ N : xk 6= yk}) = 0. Then, xk → `(stαρ -N ).

Proof. Suppose δαρ ({k ∈ N : xk 6= yk}) = 0 holds and yk → `(N ). Then,
by definition, for every 0 < ε < 1, the set Kε = {k ∈ N : R(yk − `, λ) ≤ 1 −
ε or T(yk − `, λ) ≥ ε,W(yk − `, λ) ≥ ε} contains almost finite number of elements,
and consequently, δαρ (Kε) = 0. Now, since the inclusion

K ′ε = {k ∈ N : R(xk − `, λ) ≤ 1− ε or T(xk − `, λ) ≥ ε, W(xk − `, λ) ≥ ε}
⊆ Kε ∩ {k ∈ N : xk 6= yk}

holds, so we must have δαρ (K ′ε) = 0. Hence, xk → `(stαρ -N ). �
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Theorem 3.22. Let ρ = (ρn) and τ = (τn) be two sequences, both satisfying
condition (1) and ρn ≤ τn for all n ∈ N. If (xk) be a sequence in a NNS V such
that xk → `(stαρ -N ), then xk → `(stατ -N ).

Proof. The proof is similar to Theorem 3.7, so omitted. �

4. Conclusion

In this paper, we have presented and explored the concept of ρ-statistical conver-
gence in neutrosophic normed spaces (NNS). We have investigated its fundamental
properties and established its boundedness within the NNS. Additionally, we have
extended our analysis to include ρ-statistical convergence of order α in NNS, fur-
ther enriches our understanding of convergence in this context. Furthermore, we
have explored the relation between ρ-statistical convergence and existing conver-
gence methods in NNS, thereby contributing to a more inclusive understanding
of convergence theory within neutrosophic normed spaces. Our findings not only
deepen the theoretical basis of statistical convergence in NNS. Moving forward,
these observations can serve as a foundation for further research and exploration
in the domain of convergence theory and its applications in neutrosophic normed
spaces.
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31. Savaş E. and Et M., On λ-statistical convergence of order α, Period. Math. Hungar. 71(2)

(2015), 135–145.
32. Schoenberg I. J., The integrability of certain functions and related summability methods,

Amer. Math. Monthly 66(5) (1959), 361–375.

33. Steinhaus H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math.
2 (1951), 73–74.

34. Zadeh L. A., Fuzzy sets, Inf. Control 8(3) (1965), 338–353.

Shyamal Debnath, Department of Mathematics, Tripura University (A Central University), India,
e-mail : shyamalnitamath@gmail.com

Santonu Debnath, Department of Mathematics, Tripura University (A Central University), India,

e-mail : santonudebnath16@gmail.com


