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REPRESENTATIONS OF MENGER HYPERCOMPOSITIONAL

ALGEBRAS BY SOME TYPES OF COMMUTATIVE

HYPEROPERATIONS

T. KUMDUANG

Abstract. We present an abstract characterization of diagonal semihypergroups

derived from any Menger hypercompositional algebra. We also prove that the set

of all k-commutative hyperoperations forms a Menger algebra. The necessary and

sufficient conditions under which a Menger hypercompositional algebra of rank n>1

is embeddable into an algebra of k-commutative hyperoperations are proposed.

1. Introduction and preliminaries

The study of Menger algebras was initiated by K. Menger [21] in the middle of last
century. It has many applications in various areas, for example, cybernetics, multi-
valued computations, and modern universal algebra [2, 5, 23]. In fact, for a fixed
positive integer n, a Menger algebra of rank n is a pair of a nonempty set G and
an (n+ 1)-ary operation on G such that the superassociative law holds. Recently,
such algebras were investigated in different topics, for example, partial Menger al-
gebras of terms [6], Menger algebras of full terms defined by transformations which
preserve a partition [19], ternary Menger algebras [22]. Algebraic properties of
Menger algebras were recently examined in [16]. We now present two babic ex-
amples of Menger algebras. The first one is the set R+ of all positive real numbers
with the operation ◦ : (R+)n+1 → R+, defined by ◦(x0, . . . , xn) = x0 n

√
x1 · · ·xn.

Another one is the set of all real numbers R with the following (n+ 1)-ary opera-
tion ◦, which is defined by ◦(x, y1 . . . , yn) = x+ y1+...+yn

n for all x, y1 . . . , yn ∈ R.
In a view of extensions, a Menger algebra of rank n = 1 is a semigroup. This
means that a Menger algebra of rank n is a generalized structure of semigroups,
too.

It is well known in the theory of representations that semigroups and groups
can be isomorphically represented by functions of one variable. Representations
of other structures can be seen, for example, in [1, 13, 25]. Generally, Menger
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algebras of some types are also studied in the same direction. It turned out that
some types of Menger algebras of rank n can be represented by n-ary functions.
In fact, let An be the Cartesian product of a nonempty set A. By a full n-
ary function on A or an n-ary operation on A, we mean any mapping from An

to A in which it is defined for all elements of An. On the set T (An, A) of all
such mappings, one can consider the Menger’s superposition, i.e., an (n + 1)-ary
operation O : T (An, A)n+1 → T (An, A) defined by

O(f, g1, . . . , gn)(a1, . . . , an) = f(g1(a1, . . . , an), . . . , gn(a1, . . . , an)),

where f, g1, . . . , gn ∈ T (An, A), a1, . . . , an ∈ A. Therefore, (T (An, A),O) is called
a Menger algebra of all full n-ary functions, or a Menger algebra of all n-ary
operations.

In recent years, algebras of operations allowing a certain fixed permutation of
variables were studied. For example, an abstract characterization of the Menger
algebra of all idempotent n-ary operations defined on a fixed set A was presented
in [11]. A Menger algebra of associative and self-distributive n-ary operations
was considered in [8]. Other classes of functions in this direction may be seen
in [9, 10]. Weak near-unanimity functions generated by cyclic and weak near-
unanimity terms were described in [18]. Algebras of partial multiplace functions
for signatures that contain composition and operations given by the set-theoretic
operations were described in [14, 20].

Recall from [17] that a nonempty set G equipped with one (n+1)-ary hyperop-
eration � on G satisfying the identity of the superassociativity is called a Menger
hypercomposition algebra of rank n or a Menger hyperalgebra of rank n. Note
that a Menger hyperalgebra can be reduced to a semihypergroup if we set n = 1.
Recent progress in the theory of semihypergroups can be found, for example, in
[3, 15, 24]. Furthermore, every Menger algebra is a Menger hypercomposition
algebra. Like a representation in classical algebras, the situation for hypercompo-
sition algebras has been studied. The symbol P ∗(A) stands for a power set of A
without empty set. A mapping α : An → P ∗(A) is called a multivalued full n-ary
function or an n-ary hyperoperation on A. One can apply the following (n+1)-ary
operation • : T (An, P ∗(A))n+1 → T (An, P ∗(A)). Actually, it is defined by

•(f, g1, . . . , gn)(x1, . . . , xn) =
⋃

yi∈gi(x1,...,xn)
i∈{1,...,n}

f(y1, . . . , yn)

for all i = 1, . . . , n, where f, g1, . . . , gn ∈ T (An, P ∗(A)), x1, . . . , xn ∈ A. Conse-
quently, the set T (An, P ∗(A)) of all n-ary hyperoperations on A together with an
(n+ 1)-ary operation • forms a Menger algebra.

In this paper, following [12, 17], we continue to study k-commutative opera-
tions in a more general form, which means that we introduce a hyperoperation of
k-commutative variables. The fact that the set of all k-commutative hyperoper-
ations defined on a fixed set is a Menger hypercompositional algebra is proved.
An abstract characterization such that any Menger hypercompositional algebra is
embeddable into an algebra of k-commutative hyperoperations is given.
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2. Results

We begin this section with giving some classes of semihypergroups derived from
any Menger hypercompositional algebra.

In [7, Chapter 2], W. A. Dudek and V. S. Trokhimenko defined the notion of
a diagonal semigroup of a Menger algebra. For this reason, it is interesting to
proceed in the same direction but in another generalized structure.

As a general abbreviation used in the theory of n-ary algebra, in this paper,

the symbol an1 stands for a1, . . . , an. By
n
a, we mean a, . . . , a︸ ︷︷ ︸

n times

.

On a Menger hypercompositional algebra (G, �) of rank n, one can define the
new binary hyperoperation + on G by setting

x+ y = �(x, ny)

for all x, y ∈ G. Due to the satisfaction of an (n + 1)-ary hyperoperation � with
the superassociative law, consequently, it is clear that (G,+) is a semihypergroup.
We call (G,+) the diagonal semihypergroup derived from (G, �).

Theorem 2.1. Any semihypergroup (G, ·) in which an n-ary hyperoperation f
on G satisfies the conditions

(1) f(
n
a) = {a} for all a ∈ G,

(2) f(an1 ) · a =
⋃

bi∈ai·a
i∈{1,...,n}

f(bn1 ) for all a, a1, . . . , an ∈ G,

is a diagonal semihypergroup of some Menger hypercompositional algebra of rank n.

Proof. Assume that all conditions are satisfied. On a semihypergroup (G, ·), we
now define a hyperoperation of type (n+ 1) by

?(a, bn1 ) = a · f(bn1 )

for all a, b1, . . . , bn ∈ G. To show that a hyperoperation ? is superassociative, let
a, b1, . . . , bn, c1, . . . , cn be arbitrary elements in G. Then, we have

?(?(a, bn1 ), cn1 ) = ?(a · f(bn1 ), cn1 )

= (a · f(bn1 )) · f(cn1 ) = a · (f(bn1 ) · f(cn1 ))

= a ·
( ⋃
di∈bi·f(cn1 )
i∈{1,...,n}

f(dn1 )
)

= a ·
( ⋃
di∈?(bi,cn1 )
i∈{1,...,n}

f(dn1 )
)

=
⋃

di∈?(bi,cn1 )
i∈{1,...,n}

?(a, dn1 )

= ?(a, ?(b1, c
n
1 ), . . . , ?(bn, c

n
1 )),
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which shows that (G, ?) is a Menger hypercompositional algebra of rank n. Sup-
pose that (G,+) is a diagonal semihypergroup of a Menger hypercompsotional al-

gebra (G, ?). For every a, b ∈ G, we obtain a+b = ?(a,
n

b) = a ·f(
n

b) = a ·{b} = a ·b.
Thus, (G,+) and (G, ·) are identical, which proves that (G, ·) is a diagonal semi-
hypergroup. �

An element e of a diagonal semihypergroup (G,+) is said to be left diagonal-
scalar identity of a Menger hypercompositional algebra (G, �) if it is a left scalar
identity of the diagonal semihypergroup of (G, �), i.e., it satisfies the identity
e + a = �(e, a, . . . , a) = {a} for all a ∈ G. Analogously, a right-diagonal scalar
identity is defined. If e is both a left and right diagonal scalar identity, then e is
called a diagonal scalar identity.

Theorem 2.2. A semihypergroup (G, ·) with a left scalar identity is a diagonal
semihypergroup of some Menger hypercompositional algebra with a left diagonal-
scalar identity if and only if there exists an operation of type (n) on G which
satisfies the condition (1) and (2) of Theorem 2.1.

Proof. According to Theorem 2.1, (G, ?) is a Menger hypercompositional al-
gebra. Suppose first that (G, ·) is a diagonal semihypergroup of a Menger hy-
percompositional algebra (G, ?) with a left diagonal-scalar identity, say e. We
define an n-ary operation f on G by f(a1, . . . , an) = ?(e, an1 ). Clearly, f satisfies
the conditions (1) and (2) of Theorem 2.1. In fact, for all a, a1 . . . , an, b ∈ G,

we obtain f(
n
a) = ?(e,

n
a) = {a} and f(an1 ) · a = ?(e, an1 ) · a = ?(?(e, an1 ),

n
a) =

?(e, ?(a1,
n
a), . . . , ?(an,

n
a)) = ?(e, a1 · a, . . . , an · a) =

⋃
bi∈ai·a

i∈{1,...,n}

f(bn1 ).

For the converse, assume that (G, ·) is a semihypergroup and all of conditions are
satisfied. It follows from Theorem 2.1 that (G, ·) is a diagonal semihypergroup of
a Menger hypercompositional algebra with the hyperoperation ?(a, bn1 ) = a ·f(bn1 ).
It is obvious that a left identity e of this semihypergroup is a left diagonal-scalar
of the Menger hypercompositional algebra. �

The second part of the main results is contributed to hypercompositional al-
gebras of some type of hyperoperation. We follow the work of W. A. Dudek and
V. S. Trokhimenko [12] but focus on an extended version in sense of its hyperop-
eration.

Let n > 1 and |A| > 1. For each k ∈ {1, . . . , n− 1}, an n-ary hyperoperation f
defined on a nonempty set A is said to be k-commutative if it satisfies the identity

f(
i−1
a ,

k

b,
n−i−k+1

a ) = f(
i−1
b ,

k
a,
n−i−k+1

b )

for all a, b ∈ A and i ∈ {1, . . . , n − k}. Let Mk
n(A,P ∗(A)) be the set of all k-

commutative n-ary hyperoperations on A.

Lemma 2.3. The set Mk
n(A,P ∗(A)) of all k-commutative n-ary hyperopera-

tions on A forms a Menger algebra.
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Proof. Let f, g1, . . . , gn be hyperoperations in Mk
n(A,P ∗(A)). Then

•(f, g1, . . . , gn)(
i−1
a ,

k

b,
n−i−k+1

a ) =
⋃

cl∈gl(
i−1
a ,

k

b,
n−i−k+1

a )
l∈{1,...,n}

f(c1, . . . , cn)

=
⋃

cl∈gl(
i−1

b ,
k
a,

n−i−k+1

b )
l∈{1,...,n}

f(c1, . . . , cn)

= •(f, g1, . . . , gn)(
i−1
b ,

k
a,
n−i−k+1

b ),

which shows that the set Mk
n(A,P ∗(A)) is a Menger algebra with respect to the

composition O. �

Lemma 2.4. The Menger algebra (Mk
n(A),O of all k-commutative n-ary op-

erations on A is embeddable into Menger algebra (Mk
n(A,P ∗(A)), •) of all k-

commutative n-ary hyperoperations on A.

Proof. For each k > 1, suppose first that f is a k-commutative n-ary operation
on A. Define an n-ary hyperoperation f on A by setting f(an1 ) = {f(an1 )} for
all a1, . . . , an ∈ A. It is clear that f belongs to the set Mk

n(A,P ∗(A)) since
f is a k-commutative n-ary operation on A. We have to prove that a map-
ping σ : Mk

n(A) → Mk
n(A,P ∗(A)) defined by σ(f) = f for all f ∈ Mk

n(A),
σ is a monomorphism. To do this, let f, g ∈ Mk

n(A) and a1, . . . , an ∈ A. If
f = g, then also f(a1, . . . , an) = g(a1, . . . , an), subsequently, {f(a1, . . . , an)} =
{g(a1, . . . , an)}. This implies f = g and thus σ is injective. By the definition
of the composition •, it is not hard to verify that a mapping σ preserves the
operations, i.e.,

σ(O(f, g1, . . . , gn)) = •(σ(f), σ(g1), . . . , σ(gn)).

In fact, if we let a1, . . . , an ∈ A, then

O(f, g1, . . . , gn)(a1, . . . , an)

= {O(f, g1, . . . , gn)(a1, . . . , an)} = {f(g1(a1, . . . , an), . . . , gn(a1, . . . , an))}

= f(g1(a1, . . . , an), . . . , gn(a1, . . . , an)) =
⋃

bi∈{gi(a1,...,an)}
i∈{1,...,n}

f(b1, . . . , bn)

=
⋃

bi∈gi(a1,...,an)
i∈{1,...,n}

f(b1, . . . , bn) = •(f, g1, . . . , gn)(a1, . . . , an),

which shows that σ is a homomorphism. �

Lemma 2.5. On the Menger algebra (Mk
n(A,P ∗(A)), •), we have

•(f, i−1g ,
k

h,
n−i−k+1

g ) = •(f,
i−1
h ,

k
g,
n−i−k+1

h )

for all f, g, h ∈Mk
n(A,P ∗(A)) and i ∈ {1, . . . , n− k}.
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Proof. We show that

•(f, i−1g ,
k

h,
n−i−k+1

g )(an1 ) =
⋃

c∈g(an1 )
d∈h(an1 )

f( c, . . . , c︸ ︷︷ ︸
i−1 times

, d, . . . , d︸ ︷︷ ︸
k times

, c, . . . , c︸ ︷︷ ︸
n−i−k+1 times

)

=
⋃

c∈g(an1 )
d∈h(an1 )

f(d, . . . , d︸ ︷︷ ︸
i−1 times

, c, . . . , c︸ ︷︷ ︸
k times

, d, . . . , d︸ ︷︷ ︸
n−i−k+1 times

)

= •(f,
i−1
h ,

k
g,
n−i−k+1

h )(an1 ).

The proof is finished. �

Theorem 2.6. A Menger hypercompositional algebra (G, �) of rank n > 1 is
embeddable into the Menger algebra of all k-commutative n-ary hyperoperations
defined on some set if and only if the identity

�(a,
i−1
b ,

k
c,
n−i−k+1

b ) = �(a, i−1c ,
k

b,
n−i−k+1

c )

holds for all a, b, c ∈ G and i ∈ {1, . . . , n− k}.

Proof. Suppose that there exists a monomorphism from a Menger hypercompo-
sitional algebra (G, �) of rank n > 1 to the Menger algebra of all k-commutative
n-ary hyperoperations. It follows directly from Lemma 2.5 and the injectivity of
such mapping that the necessity is obtained.

For the converse, assume that (G, �) is a Menger hypercompositional algebra of
rank n > 1. Let x, y /∈ G and x 6= y. We extend a set G to G′ := G ∪ {x, y}. For
each g in G′, an n-ary hyperoperation on G′ can be defined by the following

λg(a1, . . . , an) =


�(g, a1, . . . , an) if a1, . . . , an ∈ G,
{g} if aj = x for all j = 1, . . . , n,

{y} otherwise.

For any nonempty set A of G′, an n-ary extended function λA on G′ is defined by

λA(a1, . . . , an) =


�(A, a1, . . . , an) if a1, . . . , an ∈ G,
A if aj = x for all j = 1, . . . , n,

{y} in all other cases.

First, we show that for each g in G′, λg is a k-commutative n-ary hyperopera-
tion. For this, let a, b ∈ G′. We first consider the case when a, b ∈ G. According
to the definition of λg, then by our assumption, we have

λg(
i−1
a ,

k

b,
n−i−k+1

a ) = �(g, i−1a ,
k

b,
n−i−k+1

a ) = �(g,
i−1
b ,

k
a,
n−i−k+1

b )

= λg(
i−1
b ,

k
a,
n−i−k+1

b ).
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In the second case, if a ∈ G and b ∈ {x, y}, or a ∈ {x, y} and b ∈ G, then

λg(
i−1
a ,

k

b,
n−i−k+1

a ) = {y} = λg(
i−1
b ,

k
a,
n−i−k+1

b ).

Finally, if both a, b belong to {x, y}, we consider two situations. If a = b = x, then

λg(
i−1
a ,

k

b,
n−i−k+1

a ) = λg(x, . . . , x︸ ︷︷ ︸
n times

) = {g} = λg(x, . . . , x︸ ︷︷ ︸
n times

)

= λg(
i−1
b ,

k
a,
n−i−k+1

b ).

On the other hand, if a = b = y, then we obtain

λg(
i−1
a ,

k

b,
n−i−k+1

a ) = λg(y, . . . , y︸ ︷︷ ︸
n times

) = {y} = λg(y, . . . , y︸ ︷︷ ︸
n times

)

= λg(
i−1
b ,

k
a,
n−i−k+1

b ).

Consequently, in all cases, we conclude that a hyperoperation λg generated by
each element g of G′ is k-commutative.

Define a mapping ϕ which takes from a Menger hypercompositional algebra
(G, �) to a Menger algebra of all k-commutative hyperoperations defined on an
extended set G′ by ϕ(g) = λg for all g ∈ G. We now show that ϕ is a strong
isomorphism between (G, �) and (Mk

n(G′, P ∗(G′)), •), i.e., the equation

ϕ(�(g, a1, . . . , an)) = •(ϕ(g), ϕ(a1), . . . , ϕ(an)),

which is equivalent to

λ�(g,a1,...,an) = •(λg, λa1 , . . . , λan),

holds for all g, a1, . . . , an ∈ G. For this, we let x1, . . . , xn be arbitrary elements in
G′. If x1, . . . , xn ∈ G, then by the fact that � is superassociative, we have

λ�(g,a1,...,an)(x1, . . . , xn) = �(�(g, a1, . . . , an), x1, . . . , xn)

= �(g, �(a1, x1, . . . , xn), . . . , �(an, x1, . . . , xn))

= �(g, λa1(x1, . . . , xn), . . . , µan(x1, . . . , xn))

=
⋃

ci∈λai
(x1,...,xn)

i∈{1,...,n}

�(g, c1, . . . , cn)

=
⋃

ci∈λai
(x1,...,xn)

i∈{1,...,n}

λg(c1, . . . , cn)

= •(λg, λa1 , . . . , µan)(x1, . . . , xn).
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Now let x1 = · · · = xn = x, then according to the definition of an extension λA,
we obtain

λ�(g,a1,...,an)(x1, . . . , xn) = λ�(g,a1,...,an)(x, . . . , x) = �(g, a1, . . . , an)

= λg(a1, . . . , an) =
⋃

ci∈{ai}
i∈{1,...,n}

λg(c1, . . . , cn)

=
⋃

ci∈λai
(x,...,x)

i∈{1,...,n}

λg(c1, . . . , cn)

= •(λg, λa1 , . . . , λan)(x1, . . . , xn),

which means

λ�(g,a1,...,an)(x, . . . , x) = •(λg, λa1 , . . . , λan)(x, . . . , x).

In all other cases, we have

λ�(g,a1,...,an)(x1, . . . , xn) = {y}
and

•(λg, λa1 , . . . , λan)(x1, . . . , xn) =
⋃

xi∈λai
(x1,...,xn)

i∈{1,...,n}

λg(x1, . . . , xn)

=
⋃

ci∈{y}
i∈{1,...,n}

λg(c1, . . . , cn) = λg(y, . . . , y) = {y},

which means

λ�(g,a1,...,an)(x1, . . . , xn) = •(λg, λa1 , . . . , λan)(x1, . . . , xn).

Therefore, ϕ has a monomorphism property.
To prove that ϕ is injective, suppose ϕ(g1) = ϕ(g2) for some g1, g2 ∈ G, which

means λg1 = λg2 . Because x belongs to the domain of an n-ary hyperoperation
λg for all g ∈ G, as a result, we have λg1(x, . . . , x) = λg2(x, . . . , x), subsequently,
{g1} = {g2}. Thus, g1 = g2. This finishes the proof of the theorem. �

In [7], various kinds of ideals in a Menger algebra were proposed. Note that
these concepts may be seen as ideals in arbitrary semigroups if n = 1.

A nonempty set A of a Menger algebra (G, o) of rank n is called:

(1) an s-ideal if o(a, g1, . . . , gn) ∈ A for all a ∈ A, g1, . . . , gn ∈ G,
(2) a v-ideal if o(g, a1, . . . , an) ∈ A for all g ∈ G, a1, . . . , an ∈ A,
(3) an ideal if it is both an s-ideal and a v-ideal.

An element g of a Menger algebra (G, o) of rank n is called left zero of G if
o(g, a1, . . . , an) = g for all a1, . . . , an ∈ G.

We now focus on a subclass of k-commutative n-ary hyperoperations. For any
element a of a nonempty set A, one can define an n-ary hyperoperation on A,
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denoted by fa and called a constant hyperoperation, which is defined by

fa(a1, . . . , an) = {a}
for all a1, . . . , an ∈ A. The set of all constant hyperoperation on A is denoted
by CA, i.e., CA = {fa | a ∈ A}. Furthermore, a constant hyperoperation on a
nonempty set A is defined by fA(a1, . . . , an) = A and fa(A1, . . . , An) = {a}.

Proposition 2.7. The following statements hold:

1) The set CA is an ideal of the Menger algebra of k-commutative n-ary hy-
peroperations on A.

2) Every constant hyperoperation in CA is a left zero element in the algebra
(Mk

n(A,P ∗(A)), •).

Proof. Clearly, CA ⊂Mk
n(A,P ∗(A)). In order to show that CA is a v-ideal, let

σ be a hyperoperation in the algebra Mk
n(A,P ∗(A)) and δa1 , . . . , δan be constant

hyperoperations in CA. For every b1, . . . , bn ∈ A, we obtain

•(σ, δa1 , . . . , δan)(b1, . . . , bn) = σ(δa1(b1, . . . , bn), . . . , δan(b1, . . . , bn))

=
⋃

ci∈δai
(b1,...,bn)

i∈{1,...,n}

σ(c1, . . . , cn)

=
⋃

ci∈{ai}
i∈{1,...,n}

σ(c1, . . . , cn) = σ(a1, . . . , an)

= fσ(a1,...,an)(b1, . . . , bn).

Thus, •(σ, δa1 , . . . , δan) = fσ(a1,...,an) ∈ CA. Assume now that fa is a constant
hyperoperation on A and δ1, . . . , δn are k-commutative n-ary hyperoperations on
A. Then, by the definition of •, we have

•(fa, δ1, . . . , δn)(a1, . . . , an) =
⋃

bi∈δi(a1,...,an)
i∈{1,...,n}

fa(b1, . . . , bn) = {a} = fa(a1, . . . , an)

for all a1, . . . , an ∈ A, which implies that CA is an s-ideal of (Mk
n(A,P ∗(A)),O)

and each constact hyperoperation in CA is left zero with respect to •. The proof
is completed. �

Proposition 2.8. Let H be a nonempty subset of a Menger hypercomposi-
tional algebra (G, o) of rank n > 1 such that o(h0, h1, . . . , hn) = {h0} for all
h0, h1, . . . , hn ∈ H. Then (H, o) is a Menger hypercompositional subalgebra of
(G, o) which is isomorphic to a Menger subalgebra (CH , •) of (Cn(i,j)(H), •).

Proof. Obviously, (H, o) is a Menger hypercompositional subalgebra of (G, o).
For each element h ∈ H, define a mapping ϕ : (H, o) → (CH , •) by ϕ(h) = fh.
To show that ϕ is a homomorphism, let h0, h1, . . . , hn ∈ H. Then we have
ϕ(o(h0, h1, . . . , hn)) = f◦(h0,h1,...,hn) = f{h0} = •(ϕ(h0), ϕ(h1), . . . , ϕ(hn)). In
fact, we have f{h0}(h1, . . . , hn) = {h0} = •(fh0

, fh1
, . . . , fhn

)(h1, . . . , hn). Clearly,
ϕ is a surjective mapping. Moreover, ϕ is injective, since for h1, h2 ∈ H, if
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ϕ(h1) = ϕ(h2), then fh1
= fh2

, which means fh1
(h1, . . . , hn) = fh2

(h1, . . . , hn).
This implies that {h1} = {h2}, subsequently, h1 = h2. Therefore, ϕ is an isomor-
phism. �

3. Discussion

In this paper, the concepts of diagonal semigroup derived from a Menger algebra
and other special elements with respect to a binary operation · are generalized to
hyperstructures. In particular, the notions of diagonal semihypergroup induced by
a Menger hypercompositional algebra and a diagonal scalar identity are defined.
The characterization of any semihypergroup to be a diagonal semihypergroup is
provided. Besides, based on the paper [12], we extend k-commutative operation
defined on any nonempty set A to a k-commutative hyperoperation. It is proved
that there is a relationship between these concepts via a monomorphism. We also
give necessary and sufficient conditions under which each Menger hypercomposi-
tional algebra of rank n > 1 can be isomorphically embedded into an algebra of all
k-commutative hyperoperations defined on some set. During our study, we have
also found several questions that need further investigation. For example: Can we
describe an automorphism on an algebra all k-commutative hyperoperations? and
if any, What is a general form of such automorphism?
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