
Acta Math. Univ. Comenianae
Vol. XCII, 4 (2023), pp. 281–286

281

A NOTE ON THE SPECTRUM OF THE FOLDED HYPERCUBE

S. MORTEZA MIRAFZAL

Abstract. The folded hypercube FQn is the Cayley graph Cay(Zn
2 , S), where

S = {e1, e2, . . . , en} ∪ {u = e1 + e2 + · · ·+ en}, ei = (0, . . . , 0, 1, 0, . . . , 0), with 1 at

the ith position, 1 ≤ i ≤ n. In this paper, the spectrum of this graph is determined
by an elementary and self contained method. Then, some properties of this graph

are studied.

1. Introduction

In this paper, a graph Γ = (V,E) is considered as an undirected simple graph,
where V = V (Γ) is the vertex-set and E = E(Γ) is the edge-set. For all the
terminology and notation not defined here, we follow [2, 6].

Let n ≥ 3 be an integer. The hypercube Qn of dimension n is the graph
with the vertex-set {(x1, x2, . . . , xn)|xi ∈ {0, 1}}, two vertices (x1, x2, . . . , xn),
(y1, y2, . . . , yn) are adjacent if and only if xi = yi for all but one i. This graph
has been studied from various aspects by many authors. Some algebraic and
topological aspects of this graph were studied in some recent works [11, 13, 14,
15]. As a variant of the hypercube, the n-dimensional folded hypercube FQn was
proposed first in [4]. The folded hypercube FQn of dimension n, is the graph
obtained from the hypercube Qn by adding edges, called complementary edges,
between any two vertices x = (x1, x2, . . . , xn), y = (x̄1, x̄2, . . . , x̄n), where 1̄ = 0
and 0̄ = 1. The folded hypercube FQn has some interesting properties. For
example, although it is regular of degree n+ 1 (while the hypercube Qn is regular
of degree n), its diameter is almost half of the hypercube Qn, that is, dn2 e [4]. FQn

is highly symmetric, namely, it is arc-transitive [9], and hence its connectivity is
maximum [16].

It can be shown that the hypercube Qn is the Cayley graph Cay(Zn
2 , B), where

B = {e1, e2, . . . , en}, ei is the element of Zn
2 with 1 in the ith position and 0 in the

other positions for 1 ≤ i ≤ n. Also, the folded hypercube FQn is the Cayley graph
Cay(Zn

2 , S), where S = B∪{u = e1 + e2 + · · ·+ en}. Hence the hypercube Qn and
the folded hypercube FQn are vertex-transitive graphs. Since Qn is Hamiltonian
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[17, 18] and also it is a spanning subgraph of FQn, so FQn is Hamiltonian. Some
properties of the folded hypercube FQn are discussed in [5, 9, 15, 17, 18].

The graphs shown in Figure 1 are the folded hypercubes FQ3 and FQ4.

In this paper, we determine the spectrum of the folded hypercube FQn. Up to
our knowledge, there is a work in finding the spectrum of the folded hypercube in
chinese language, available on Web, that uses linear algebraic methods [3]. Our
method is completely different from that. We want to determine the spectrum of
this graph by an elementary and self contained method. Our approach uses group
theory. Next, we study some properties of this graph.

2. Preliminaries

Let Γ = (V,E) be a finite simple graph with the vertex-set V and the edge-set E.
The adjacency matrix of Γ is a (0-1) matrix indexed by the vertex set V , where
Avw = 1 when the vertices v, w are adjacent and Avw = 0 otherwise.

The eigenvalues of a graph are the eigenvalues of its adjacency matrix. The
relationships between the algebraic properties of these eigenvalues and the usual
(topological and geometric) properties of graphs have been studied quite inten-
sively. The study of the relations between eigenvalues and structures in graphs
is the heart of spectral graph theory. Thus someone interested in using spectral
graph theory needs to be familiar with both the graph theory and the basic tools of
linear algebra including eigenvalues, eigenvectors, determinants and so on. Most
introductory linear algebra courses impart the belief that the way to compute the
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eigenvalues of a matrix is to find the zeros of its characteristic polynomial. For ma-
trices with order greater than two, this is false. Generally, the best way to obtain
eigenvalues lies in finding eigenvectors: If Av = λv, v 6= 0, then λ is an eigenvalue
of A, and v is an eigenvector of A corresponding to λ [6]. When we work with
graphs, there is an additional refinement. We can suppose that an eigenvector is
a real function f defined on the vertex-set. Then if at any vertex v you sum up
the values of f on its neighboring vertices, you should get λ times the values of f
at v. Formally, ∑

w∈N(v)

f(w) = λf(v).

In this paper, we think about eigenvectors and eigenvalues in this manner.
Let G be a finite abelian group (written aditively) of order |G| with identity

element 0=0G. A character χ of G is a homomorphism from G into the multi-
plicative group U of complex numbers of absolute value 1, that is, a mapping from
G into U with χ(g1 + g2) = χ(g1)χ(g2) for all g1, g2 ∈ G. If G is a finite abelian
group, then there are integers n1, . . . , nk, such that G ∼= Zn1

× · · · × Znk .

Now if ωij = e
2πij
ni , 0 ≤ i ≤ k, 1 ≤ j ≤ ni, is an nith root of unity, then

each homomorphism of f : G −→ C∗, is of the form f = f(ω1,...,ωk) with the rule
f(ω1,...,ωk)(x1, . . . , xk) = ωx1

1 ωx2
2 . . . ωxk

k [8].
Let G be any abstract finite group with identity 1, and suppose Ω is a subset

of G, with the properties:

(i) x ∈ Ω =⇒ x−1 ∈ Ω;
(ii) 1 /∈ Ω.

The Cayley graph Γ = Cay(G,Ω) is the (simple) graph whose vertex-set and
edge-set are defined as follows:

V (Γ) = G, E(Γ) = {{g, h} | g−1h ∈ Ω}.

3. Main results

Let G be a finite abelian group and S = {s1, . . . , sn} be a non-empty subset of G
such that 0 6∈ S and S = −S. Let Γ = Cay(G,S). Assume f : G −→ C∗ is a group
homomorphism, where C∗ is the multiplicative group of the complex numbers. If
v is a vertex of Γ, then we know that N(v) = {v + s1, . . . , v + sn} is the set of
vertices that are adjacent to v. We now have∑

w∈N(v)

f(w) =

n∑
i=1

f(v + si) =

n∑
i=1

f(v)f(si) = f(v)
( n∑

i=1

f(si)
)
.

Therefore, if we let λ = λf =
∑

s∈S f(s), then we have
∑

w∈N(v) f(w) =

λff(v), and hence the mapping f is an eigenvector for the Cayley graph Γ with
corresponding eigenvalue λ = λf =

∑
s∈S f(s).

Theorem 3.1. Let G = Zn
2 , S = {e1, . . . , en, u}, where u = e1 + · · · + en =∑n

i=1 ei. If Γ = FQn = Cay(Zn
2 , S), then each eigenvalue of Γ is of the form



284 S. MORTEZA MIRAFZAL

λi = (n− 2i) + (−1)i, 0 ≤ i ≤ n. Moreover, if i ∈ {1, 3, . . . , 2m− 1}, 2m− 1 ≤ n,
then the multiplicity of the eigenvalue (n−2i)+(−1)i is

(
n
i

)
+
(

n
i+1,

)
and λi = λi+1.

Proof. According to what is stated above, every eigenvector of the graph Γ =
FQn = Cay(Zn

2 , S) is of the form f = f(ω1,...,ωn), where each ωi, 1 ≤ i ≤ n, is a

complex number such that ω2
i = 1, namely, ωi ∈ {1,−1}. Let x be a vertex in the

folded hyper cube FQn. We now have∑
w∈N(x)

f(w) =

n∑
i=1

f(x+ ei) + f(x+ u)

=

n∑
i=1

f(x)f(ei) + f(x)f(u)

=

n∑
i=1

f(x)f(ei) + f(x)f
( n∑

i=1

ei

)
= f(x)

( n∑
i=1

f(ei) +

n∏
i=1

f(ei)
)

= λff(x),

where λf =
∑n

i=1 f(ei) +
∏n

i=1 f(ei). Note that for every vertex v = (x1, . . . , xn),
xi ∈ {0, 1} in Γ, we have f(x1, . . . , xn) = f(w1,...,wn)(x1 . . . , xn) = wx1

1 . . . wxn
n .

Since in computing the value of wx1
1 . . . wxn

n we can ignore wi when wi = 1, thus
for ek = (0, . . . , 0, 1, 0 . . . , 0), where 1 is the kth entry, we have

f(ek) = f(w1,...,wn)(0, . . . , 0, 1, 0, . . . , 0)

= w0
1 . . . w

1
kw

0
k+1 . . . w

0
n

=

{
−1 if wk = −1,

1 if wk = 1.

Hence, if in the sequence (n-tuple) (w1, . . . , wn) the number of −1s is i (and
therefore the number of 1s is (n− i)), then in the sum

n∑
k=1

f(ek) =

n∑
k=1

f(w1,...,wn)(0, . . . , xk, 0, . . . , 0), xk = 1,

the contribution of −1 is i and the contribution of 1 is n − i, and hence we have∑n
k=1 f(ek) = −i+ (n− i) = n− 2i. On the other hand, we have

f(w1,...,wn)(u) = f(w1,...,wn)

( n∑
i=1

ei

)
=

n∏
i=1

f(w1,...,wn)(ei) = (−1)i1(n−i) = (−1)i,

and therefore,∑
s∈S

f(w1,...,wn)(s) = (n− 2i) + (−1)i = λi, 0 ≤ i ≤ n.

Note that the number of sequence (w1 . . . , wn) such that in which i entries are
−1 is

(
n
i

)
, where 0 ≤ i ≤ n. It is an easy task to show that if i > j + 1, then
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(n− 2i) + (−1)i 6= (n− 2j) + (−1)j . Now, note that for i = 2t− 1, t > 0, we have
(n− 2i) + (−1)i = (n− 2(2t− 1)) + (−1)(2t−1) = n− 4t+ 2− 1 = n− 4t+ 1, also
(n − 2(2t)) + (−1)2t = n − 4t + 1. Hence we have λi = λi+1. This observation
shows that it is sufficient to consider the eigenvalue λi = (n − 2i) + (−1)i for
i ∈ {1, 3, . . . , 2m− 1}, 2m− 1 ≤ n.
Now by a simple calculation, we can see that the multiplicity of the eigenvalue
λi = (n − 2i) + (−1)i, i ∈ {1, 3, . . . , 2m − 1}, is

(
n
i

)
+
(

n
i+1

)
. For i = 0, we have

λ0 = n+ (−1)0 = n+ 1, and the multiplicity of this eigenvalue is 1.
We can also see that if n = 2m+ 1 is an odd integer, then for i = n = 2m+ 1,

we have λi = (n − 2i) + (−1)i = −n − 1, and the multiplicity of this eigenvalue
is 1. �

By a similar argument, we can obtain the following result.

Corollary 3.2. Let G = Zn
2 , S1 = {e1, . . . , en}. If Γ = Qn = Cay(Zn

2 , S1),
then each eigenvalue of Γ is of the form λi = (n− 2i), 0 ≤ i ≤ n, with multiplicity(
n
i

)
.

Remark 3.3. Note that if n = 2m + 1 is an odd integer, then for the odd
integers i, i ∈ {1, 3, . . . , 2m − 1}, n − i is an even integer, hence we have λn−i =
(n− 2(n− i)) + 1 = −n+ 2i+ 1 = −λi = λn−i−1. Note also that in this case, the
multiplicity of λi and λn−i are the same. It is clear that λ2m+1 = −n− 1 = −λ0.

Some results from Theorem 3.1
A graph Γ is called integral if all its eigenvalues are integers. The study of

integral graphs was initiated by Harary and Schwenk in 1974 (see [7]). A survey
of papers up to 2002 appeared in [1]. Recently, some classes of integral graphs
were studied in [10, 12]. From Corollary 3.2, it follows that the hypercube Qn

is an integral graph. It was also shown how new classes of integral graphs from
the hypercube Qn can be constructed [11, 14]. From Theorem 3.1, we have the
following result.

Theorem 3.4. The folded hypercube FQn is an integral graph.

Let Γ = (V,E) be a bipartite graph. Then we have the following result.

Theorem 3.5 ([2, 6]). A graph Γ is bipartite if and only if its spectrum is
symmetric about 0.

From Theorem 3.1 and Remark 3.3, we can see that if n = 2m is an even
integer, then the spectrum of the folded hypercube FQn is not symmetric about
0. Note that if n = 2m, then λ0 = n + 1 is the largest eigenvalue of FQn, while
λn = −n + 1 is the least eigenvalue of FQn. Hence −n − 1 is not an eigenvalue
of the graph FQn. On the other hand, if n = 2m + 1 is an odd integer, then the
spectrum of FQn is symmetric about 0.

Now, from Theorem 3.1 and 3.4, we can conclude the following result.

Theorem 3.6. The folded hypercube FQn is a bipartite graph if and only if n
is an odd integer.
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The present result was obtained in [17] in a different manner.

Acknowledgement. The author is thankful to the anonymous reviewers for
their valuable comments and suggestions.
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