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LINE-GRACEFUL DESIGNS

D. ERDEMIR and E. KOLOTOĞLU

Abstract. In [3], the authors adapted the edge-graceful graph labeling definition

into block designs. In this article, we adapt the line-graceful graph labeling defini-

tion into block designs and define a block design (V,B) with |V | = v as line-graceful

if there exists a function f : B → {0, 1, . . . , v − 1} such that the induced mapping

f+ : V → Zv given by f+(x) =
∑

A∈B : x∈A f(A) (mod v) is a bijection. In this

article, the cases that are incomplete in terms of block-graceful labelings, are com-

pleted in terms of line-graceful labelings. Moreover, we prove that there exists a

line-graceful Steiner quadruple system of order 2n for all n ≥ 3 by using a recursive

construction.

1. Introduction

A design (or block design) is a pair (V,B), where V is a finite set of points or sym-
bols, and B is a collection (i.e., multiset) of nonempty subsets of V called blocks.
Let t, v, k and λ be positive integers such that t ≤ k < v. A t-(v, k, λ)-design
is a design (V,B) such that |V | = v, each block contains exactly k points, and
every set of t distinct points is contained in exactly λ blocks. A 2-(v, k, λ)-design
is also called a (v, k, λ)-balanced incomplete block design ((v, k, λ)−BIBD). In a

t-(v, k, λ)-design, every point occurs in exactly r = λ
(
v−1
t−1
)
/
(
k−1
t−1
)

blocks and there

are exactly b = λ
(
v
t

)
/
(
k
t

)
blocks. The number r is called the repetition number of

the design. The complement (V,B) of a (v, k, λ)−BIBD (V,B) with b blocks and
repetition number r, where B = {V \A : A ∈ B}, is a (v, v− k, b− 2r+λ)−BIBD.

Two designs (X,A) and (Y,B) are called isomorphic if there exists a bijection
α : X → Y such that {{α(x) : x ∈ S} : S ∈ A} = B. Furthermore, α is called
an isomorphism. An automorphism of a design is an isomorphism of this design
with itself. An automorphism of a design partitions its blocks into classes called
orbits. A t-(v, k, λ)-design is cyclic if it has an automorphism that is a permutation
consisting of a single cycle of length v.

Let v, k and λ be positive integers such that v > k ≥ 2, and G be a finite additive
group of order v. A (v, k, λ)-difference family is a collection [B1, B2, . . . , Bn] of
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k element subsets of G such that the multiset union
n⋃
i=1

[x− y : x, y ∈ Bi, x 6= y]

contains every nonzero element of G exactly λ times. The difference family is
called cyclic if G is cyclic. The development Dev(B1, B2, . . . , Bn) = [Bi + g : 1 ≤
i ≤ n and g ∈ G], where Bi + g = {x + g : x ∈ Bi}, generates the block set of a
(v, k, λ)−BIBD on the point set G [1, 7].

A graph is an ordered triple G = (V (G), E(G), IG), where V (G) is a nonempty
set, E(G) is a set disjoint from V (G), and IG is an “incidence” relation that
associates with each element of E(G) an unordered pair of elements (same or
distinct) of V (G). Elements of V (G) are called the vertices (or nodes or points) of
G, and elements of E(G) are called the edges (or lines) of G [2]. A graph labeling
is an assignment of integers to the vertices, edges, or both of a graph subject to
certain conditions. Since mid 1960s, over 200 graph labeling techniques have been
studied in over 3000 papers. For a dynamic survey on graph labeling, see [4].

In [3], the authors adapted the edge-graceful graph labeling definition into block
designs and defined a block design (V,B) with |V | = v and |B| = b as block-graceful
if there exists a bijection f : B → {1, 2, . . . , b} such that the induced mapping
f+ : V → Zv given by f+(x) =

∑
A∈B : x∈A f(A) (mod v) is a bijection.

R. B. Gnanajothi defined a graph with n vertices line-graceful if it is possible
to label its edges with 0, 1, 2, . . . , n such that when each vertex is assigned the
sum modulo n of all the edge labels incident with that vertex the resulting vertex
labels are 0, 1, 2, . . . , n − 1 [4]. In this article, we adapt this definition into block
designs and define a block design (V,B) with |V | = v as line-graceful if there exists
a function f : B → {0, 1, . . . , v − 1} such that the induced mapping f+ : V → Zv
given by f+(x) =

∑
A∈B : x∈A f(A) (mod v) is a bijection. For a block A ∈ B

and a point x ∈ V , the values f(A) and f+(x) are called the weights of A and x,
respectively.

Example 1.1. A line-graceful labeling of the 3-(8, 4, 1)-design with
V = {0, 1, 3, 4, 5, 6, 7} and B = {{0, 1, 3, 7}, {1, 2, 4, 7}, {2, 3, 5, 7}, {3, 4, 6, 7},
{4, 5, 0, 7}, {5, 6, 1, 7}, {6, 0, 2, 7}, {2, 4, 5, 6}, {0, 3, 5, 6}, {0, 1, 4, 6}, {0, 1, 2, 5},
{1, 2, 3, 6}, {0, 2, 3, 4}, {1, 3, 4, 5}} is shown below:

{0, 1, 3, 7} → 1 {2, 4, 5, 6} → 5 f+(0) = 1 + 0 + 6 + 5 + 4 + 7 + 3 = 26 ≡ 2 (mod 8)
{1, 2, 4, 7} → 6 {0, 3, 5, 6} → 5 f+(1) = 1 + 6 + 4 + 4 + 7 + 3 + 2 = 27 ≡ 3 (mod 8)
{2, 3, 5, 7} → 1 {0, 1, 4, 6} → 4 f+(2) = 6 + 1 + 6 + 5 + 7 + 3 + 3 = 31 ≡ 7 (mod 8)
{3, 4, 6, 7} → 2 {0, 1, 2, 5} → 7 f+(3) = 1 + 1 + 2 + 5 + 3 + 3 + 2 = 17 ≡ 1 (mod 8)
{4, 5, 0, 7} → 0 {1, 2, 3, 6} → 3 f+(4) = 6 + 2 + 0 + 5 + 4 + 3 + 2 = 22 ≡ 6 (mod 8)
{5, 6, 1, 7} → 4 {0, 2, 3, 4} → 3 f+(5) = 1 + 0 + 4 + 5 + 5 + 7 + 2 = 24 ≡ 0 (mod 8)
{6, 0, 2, 7} → 6 {1, 3, 4, 5} → 2 f+(6) = 2 + 4 + 6 + 5 + 5 + 4 + 3 = 29 ≡ 5 (mod 8)

f+(7) = 1 + 6 + 1 + 2 + 0 + 4 + 6 = 20 ≡ 4 (mod 8)

It is clear from the definitions that every block-graceful design is also line-grace-
ful. In [3], the authors noted that one can easily obtain block-graceful Steiner
triple systems of order v for all v ≡ 1 (mod 6), and block-graceful projective

geometries, i.e. ( q
d+1−1
q−1 , q

d−1
q−1 ,

qd−1−1
q−1 )−BIBDs for every prime power q ≥ 2 and
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integer d ≥ 2. Then the authors constructed infinite families of block-graceful
Steiner triple systems of order v for v ≡ 3 (mod 6), and by considering affine
geometries, proved that for every integer d ≥ 2 and q ≥ 3, where q is an odd prime
power or q = 4, there exists a block-graceful (qd, q, 1)−BIBD.

In this article, we study the existence problem of line-graceful t-(v, k, λ)-designs.
In Section 2, we give a necessary condition for the existence of a line-graceful
t-(v, k, λ)-design and prove some basic results. The cases for Steiner triple systems
and (qd, q, 1)−BIBDs, that are incomplete in terms of block-graceful labelings, are
completed in terms of line-graceful labelings in Sections 3 and 5, where we prove
that there exists a line-graceful Steiner triple system of order v for all v ≡ 1, 3
(mod 6), and a line-graceful (qd, q, 1)−BIBD for every prime power q ≥ 2 and
integer d ≥ 2. Moreover, in Section 4, we prove that there exists a line-graceful
Steiner quadruple system of order 2n for all n ≥ 3 by using a recursive construction.

2. Basic results

In this section, we give a necessary condition for the existence of a line-graceful
t-(v, k, λ)-design and prove some basic results.

Proposition 2.1. If a t-(v, k, λ)-design is line-graceful, where k = 2αs such
that α is a nonnegative integer and s is odd, then either v is odd or v ≡ 0
(mod 2α+1).

Proof. Let (V,B) be a line-graceful t-(v, k, λ)-design, where its blocks are labeled
as a1, a2, . . . , ab. Then

(1)
∑
x∈V

f+(x) = k(a1 + a2 + · · ·+ ab) ≡
(v − 1)v

2
(mod v).

If v is odd, (v−1)v
2 ≡ 0 (mod v) and (1) can be satisfied by choosing the block

labels in such a way that their sum is a multiple of v. On the other hand, if v

is even, (v−1)v
2 ≡ v

2 (mod v) and hence 2αs(a1 + a2 + · · · + ab) must be an odd

multiple of v
2 which can be satisfied only if v ≡ 0 (mod 2α+1). �

In [3], the authors showed that every (v, k, λ)−BIBD with repetition number r
that is generated from a cyclic difference family is block-graceful when gcd(v, r) =
1. As a consequence of this result, all such BIBDs are also line-graceful. For com-
pleteness, we repeat the proof of this result in the line-graceful case here.

Proposition 2.2. If gcd(v, r) = 1, then every (v, k, λ)−BIBD with repetition
number r that is generated from a cyclic difference family is line-graceful.

Proof. Let [B1, . . . , Bn] be a cyclic (v, k, λ)-difference family on Zv and let B =
Dev(B1, . . . , Bn). Define a labeling f : B → {0, 1, . . . , v−1} such that f(Bi+g) = g
for any g ∈ Zv and 1 ≤ i ≤ n. For any a ∈ Zv, we get f+(a) ≡ f+(0)+ar (mod v).
Since gcd(v, r) = 1, the numbers 0, r, 2r, . . . , (v − 1)r are all different mod v, and
the result follows. �
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Proposition 2.3. If (V,B) is a line-graceful (v, k, λ)−BIBD, then its comple-
ment (V,B) is also line-graceful.

Proof. Suppose that (V,B) has a line-graceful labeling f : B → {0, 1, . . . , v− 1}
with the induced mapping f+ : V → Zv on points, where the blocks are labeled
as a1, a2, . . . , ab. Define g : B → {0, 1, . . . , v − 1} such that for every block A ∈ B,
g(V \A) = f(A). Then, the weight of any point x ∈ V in the complement design
will be g+(x) ≡ (a1 + a2 + · · ·+ ab)− f+(x) (mod v). Since f+(x)s are different
mod v, g+(x)s must also be different mod v, and the result follows. �

Proposition 2.4. If there exists a line-graceful (v, k, λ)−BIBD and m is a
positive integer, then there exists a line-graceful (v, k,mλ)−BIBD.

Proof. Take m copies of each block in a line-graceful (v, k, λ)−BIBD, label the
blocks in the first copy as they are labeled in the original design, and label the
remaining blocks as 0. �

Note that, as a consequence of Propositions 2.3 and 2.4, to determine the set of
parameters for which a line-graceful BIBD exists, it is sufficient to consider only
the (v, k, λ)−BIBDs where k ≤ v/2 and λ is the minimum value satisfying the
necessary conditions for the existence of a (v, k, λ)−BIBD and the condition in
Proposition 2.1.

3. Steiner triple systems

A (v, 3, 1)−BIBD is called a Steiner triple system of order v and is denoted by
STS(v). There exists an STS(v) if and only if v ≡ 1 or 3 (mod 6) [7].

In [3], the authors showed that there exists a block-graceful STS(v) for all v ≡ 1
(mod 6), and proved the following result for the case v ≡ 3 (mod 6).

Theorem 3.1 ([3]). There exist block-graceful Steiner triple systems of order

(i) 3t for every integer t ≥ 2,
(ii) 3t5u for all positive integers t and u with t ≥ u, and
(iii) 3t7u for all positive integers t and u.

The case v ≡ 3 (mod 6) is far from complete for block-graceful STS(v). In this
section we prove that there exists a line-graceful STS(v) for all v ≡ 1, 3 (mod 6).

Theorem 3.2. If there exists a line-graceful STS(v) where v ≡ 3 (mod 6), then
there exists a line-graceful STS(3v).

Proof. Let (V,B) be an STS(v) with v ≡ 3 (mod 6), where V = {0, 1, . . . , v−1},
and f : B → {0, 1, 2, . . . , v−1} be a line-graceful labeling with the induced mapping
f+ : V → Zv on points. Define X = V × {0, 1, 2}, C1 = {{(c, i), (d, i), (e, i)} :
{c, d, e} ∈ B, i ∈ {0, 1, 2}}, C2 = {{(c, 0), (d, 1), (c + d (mod v), 2)} : c, d ∈ V }
and C = C1 ∪ C2. Then, it is well known and can be easily seen that (X, C) is an
STS(3v).
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We define g : C → {0, 1, 2, . . . , 3v − 1} as follows. Take g({(c, i), (d, i), (e, i)}) =

3f({c, d, e}) + i for all {c, d, e} ∈ B and i ∈ {0, 1, 2}, and g({(c, 0), (d, 1), (c + d
(mod v), 2)}) = 0 for c, d ∈ V .

For any a ∈ V and i ∈ {0, 1, 2}, we get g+(a, i) = 3f+(a) + ri, where r =
(v − 1)/2 is the repetition number of the STS(v). Since v ≡ 3 (mod 6), we get
r ≡ 1 (mod 3) and hence gcd(r, 3) = 1. Since f+(a)s are all different mod v, we
see that the values 3f+(a) + ri are all different mod 3v. �

A difference triple in Zv is a 3-element subset of {1, 2, . . . , (v − 1)/2} such
that either the sum of these 3 elements is 0 (mod v) or one element is the sum
of the other two mod v. For all v ≡ 1, 3 (mod 6), v 6= 9, there exists a cyclic
STS(v), and these designs can be constructed using difference triples that partition
{1, 2, . . . , (v − 1)/2} when v ≡ 1 (mod 6), and {1, 2, . . . , (v − 1)/2} \ {v/3} when
v ≡ 3 (mod 6). For each difference triple {x, y, z} with x + y ≡ ±z (mod v), the
base block {0, x, x + y} is developed (mod v). For v ≡ 1 (mod 6), all orbits are
of length v and the base blocks obtained from the difference triples form cyclic
difference families, while for v ≡ 3 (mod 6), in addition to the orbits of length v
that are generated from the difference triples, one orbit of length v

3 is developed
from the base block {0, v/3, 2v/3}. The difference triples that generate STS(v) for
v ≡ 3, 15 (mod 18) are given in Table 1 [7].

Table 1. Difference triples of cyclic Steiner triple systems for v ≡ 3, 15 (mod 18) [7]

v = 18s+ 3, s ≥ 1
{3r + 1, 8s− r + 1, 8s+ 2r + 2}, 0 ≤ r ≤ s− 1
{3r + 2, 4s− r, 4s+ 2r + 2}, 0 ≤ r ≤ s− 1
{3r + 3, 6s− 2r − 1, 6s+ r + 2}, 0 ≤ r ≤ s− 1

v = 15 {1, 3, 4}, {2, 6, 7}

v = 18s+ 15, s ≥ 1
{3r + 1, 4s− r + 3, 4s+ 2r + 4}, 0 ≤ r ≤ s
{3r + 2, 8s− r + 6, 8s+ 2r + 8}, 0 ≤ r ≤ s
{3r + 3, 6s− 2r + 3, 6s+ r + 6}, 0 ≤ r ≤ s− 1

Theorem 3.3. There exists a line-graceful STS(v) for all v ≡ 1, 3 (mod 6).

Proof. The case v ≡ 1 (mod 6) follows from Proposition 2.2. Let v ≡ 3, 15
(mod 18) and (Zv,B) be a cyclic STS(v) constructed using the difference triples
given in Table 1 as described above. We define a labeling f : B → {0, 1, . . . , v−1}.

We call one of the orbits of length v as grouped orbit as follows. If v = 18s+ 3
for some integer s ≥ 1 take the orbit with base block {0, 3, 6s + 2}, if v = 15
take the orbit with base block {0, 1, 4}, if v = 33 take the orbit with base block
{0, 4, 10}, and if v = 18s+15 for some integer s ≥ 2 take the orbit with base block
{0, 6, 6s + 7} and call this orbit as grouped orbit. Also call one of the remaining
orbits of length v as ordered orbit.

Let A1 and A2 be the base blocks of the ordered orbit and grouped orbit,
respectively. We label the blocks in these two orbits as follows. For any x ∈ Zv,
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define f(A1 + x) = x, f(A2 + x) = 1 if x ≡ 0 (mod 3), and f(A2 + x) = 0 if x 6≡ 0
(mod 3). Moreover, we label all blocks in the remaining orbits as 0.

For any x ∈ Zv, the contribution of the block weights in the ordered orbit to
the point weights gives f+(x) ≡ f+(0) + 3x (mod v) for all x ∈ Zv.

If v = 18s + 3 for some integer s ≥ 1, the contribution of the block weights
in the grouped orbit will be 1 + 1 + 0 = 2 for x ≡ 0 (mod 3), 0 + 0 + 0 = 0 for
x ≡ 1 (mod 3), and 0 + 0 + 1 = 1 for x ≡ 2 (mod 3). If we add these to the point
weights obtained from the ordered orbit, then f+(x)s become all different mod v
since v/3 = 6s + 1 is relatively prime with 3. The case v = 18s + 15 for s ≥ 0
follows similarly using the base blocks of the grouped orbits given above.

There exists a line-graceful STS(9) by Theorem 3.1. Then by induction and
using the cases above, line-graceful STS(v) for v = 18s + 9 with s ≥ 1 can be
constructed using Theorem 3.2. �

4. Steiner quadruple systems

A 3-(v, 4, 1)-design is called a Steiner quadruple system of order v and is denoted
by SQS(v). There exists an SQS(v) if and only if v ≡ 2, 4 (mod 6) [8].

By Proposition 2.1, a line-graceful SQS(v) must satisfy v ≡ 0 (mod 8). There-
fore, we get the following necessary condition for the existence of a line-graceful
SQS(v).

Proposition 4.1. If an SQS(v) is line-graceful, then v ≡ 8, 16 (mod 24).

We will now construct an infinite family of line-graceful Steiner quadruple sys-
tems using a well-known recursive construction, leaving 40 as the smallest order
for which the existence of a line-graceful Steiner quadruple system is unknown.

Theorem 4.1. If there exist a line-graceful SQS(v), then there exists a line
graceful SQS(2v).

Proof. Let (V,B) be an SQS(v) where f : B → {0, 1, . . . , v−1} is a line-graceful
labeling with the induced mapping f+ : V → Zv on points. Define X = {0, 1}×V ,
C1 = {{(i, x), (j, y), (k, z), (l, t)} : {x, y, z, t} ∈ B, i, j, k, l ∈ {0, 1}, i+ j + k + l ≡ 0
(mod 2)}, C2 = {{(0, a), (0, b), (1, a), (1, b)} : a, b ∈ V, a 6= b}, and C = C1 ∪ C2. It
is known that (X, C) is an SQS(2v), see [5].

Define g : C → {0, 1, . . . , 2v − 1} as follows. Take g({(i, x), (i, y), (i, z), (i, t)}) =

2f({x, y, z, t}) + i for all {x, y, z, t} ∈ B and i ∈ {0, 1}, and label the remaining
blocks as 0. For all x ∈ V , the weight of the point (0, x) is 2f+(x), and the weight
of the point (1, x) is 2f+(x)+r where r = (v−1)(v−2)/6 is the repetition number
of (V,B). Since v ≡ 8, 16 (mod 24) by Proposition 4.1, r must be odd. Hence, the
point weights are all different mod 2v since f+(x)s are all different mod v. �

Theorem 4.2. There exists a line-graceful SQS(2n) for all n ≥ 3.

Proof. Follows by Example 1.1 and Theorem 4.1. �
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5. Affine and projective geometries

An (n2 + n+ 1, n+ 1, 1)−BIBD with n ≥ 2 is called a projective plane of order n,
and an (n2, n, 1)−BIBD with n ≥ 2 is called an affine plane of order n. It is well
known that for every prime power q ≥ 2, there exists a projective plane of order q
and an affine plane of order q [8].

A generalization to higher dimensions shows that for any d ≥ 2, the points and
hyperplanes of the d-dimensional projective geometry PGd(q) form a

( q
d+1−1
q−1 , q

d−1
q−1 ,

qd−1−1
q−1 )−BIBD with repetition number r = (qd − 1)/(q− 1), and it

is known that these BIBDs can be generated from cyclic difference families, see

[6, 8]. The existence of line-graceful ( q
d+1−1
q−1 , q

d−1
q−1 ,

qd−1−1
q−1 )−BIBDs immediately

follows from Proposition 2.2.
In [3], the authors also considered affine geometries and proved that for every

integer d ≥ 2 and q ≥ 3, where q is an odd prime power or q = 4, there exists a
block-graceful (qd, q, 1)−BIBD. In this section, we prove that there exists a line-
graceful (qd, q, 1)−BIBD for every prime power q ≥ 2 and integer d ≥ 2.

Let Fq be the field with q elements and X = Fq × Fq. For all a, b ∈ Fq define
Ca,b = {(x, y) ∈ X : y = ax + b} and B1 = {Ca,b : a, b ∈ Fq}. Also, for all c ∈ Fq
define Cc = {(x, y) ∈ X : x = c} and B2 = {Cc : c ∈ Fq}. Let B = B1 ∪ B2. Then,
(X,B) is an affine plane of order q [8]. We will now make a line-graceful labeling
of the blocks in this structure.

Theorem 5.1. There exists a line-graceful affine plane of order q for every
prime power q ≥ 2.

Proof. Let (X,B) be an affine plane of order q as described above. Take any
bijection h : Fq → {0, 1, 2, . . . , q−1} and define a labeling f : B → {0, 1, 2, . . . , q2−
1} as follows. For all t ∈ Fq define f(C0,t) = h(t), f(Ct) = qh(t), and label the
remaining blocks as 0. Then, f+(r, s) = qh(r) + h(s) for all (r, s) ∈ X and hence
the point weights are all different mod q2. �

Theorem 5.2. If there exists a line-graceful (qd, q, 1)−BIBD, where q is a
prime power and d ≥ 2, then there exists a line-graceful (qd+1, q, 1)−BIBD.

Proof. Let (V,B) be a (qd, q, 1)−BIBD where r = (qd − 1)/(q − 1), V = Fqd ,

the finite field with qd elements, and f : B → {0, 1, 2, . . . , qd − 1} is a line-graceful
labeling with the induced mapping f+ : V → Zqd on points. Let W be the subfield
of order q in V and let X = V ×W .

For all A ∈ B and y ∈ W , let CA,y = A × {y} and define D1 = {CA,y :
A ∈ B and y ∈ W}. For all a, b ∈ V , let Ca,b = {(ya + b, y) : y ∈ W}, define
D2 = {Ca,b : a, b ∈ V } and D = D1 ∪ D2. It can be easily seen that (X,D) is a
(qd+1, q, 1)-BIBD.

Take any bijection h : W → {0, 1, 2, . . . , q − 1} and define
g : D → {0, 1, 2, . . . , qd+1 − 1} as follows. For any A ∈ B and y ∈ W define
g(CA,y) = qf(A) + h(y), and for any a, b ∈ V define g(Ca,b) = 0. The weight of
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any point (x, y) ∈ X is∑
x∈A

g(CA,y) =
∑
x∈A

(qf(A) + h(y)) ≡ qf+(x) + rh(y) (mod qd+1).

Since f+(x)s are all different mod qd, and gcd(q, r) = 1, the values qf+(x) +
rh(y) must be all different mod qd+1. Therefore, g is a line-graceful labeling of
(X,D). �

As a consequence of Theorems 5.1 and 5.2, we get the following result.

Theorem 5.3. There exists a line-graceful (qd, q, 1)−BIBD for every prime
power q ≥ 2 and integer d ≥ 2.
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E. Kolotoğlu, Department of Mathematics, Yildiz Technical University, Istanbul, Turkey,

e-mail : kolot@yildiz.edu.tr


