Acta Math. Univ. Comenianae 129
Vol. XCIII, 3 (2024), pp. 129-136

LINE-GRACEFUL DESIGNS

D. ERDEMIR anp E. KOLOTOGLU

ABSTRACT. In [3], the authors adapted the edge-graceful graph labeling definition
into block designs. In this article, we adapt the line-graceful graph labeling defini-
tion into block designs and define a block design (V, B) with |V| = v as line-graceful
if there exists a function f: B — {0,1,...,v — 1} such that the induced mapping
JT:V — Zy given by ft(z) = 3 4ci . yea F(A) (mod v) is a bijection. In this
article, the cases that are incomplete in terms of block-graceful labelings, are com-
pleted in terms of line-graceful labelings. Moreover, we prove that there exists a
line-graceful Steiner quadruple system of order 2™ for all n > 3 by using a recursive
construction.

1. INTRODUCTION

A design (or block design) is a pair (V, B), where V is a finite set of points or sym-
bols, and B is a collection (i.e., multiset) of nonempty subsets of V' called blocks.
Let t,v,k and X\ be positive integers such that ¢t < k < v. A t-(v,k, \)-design
is a design (V,B) such that |V| = v, each block contains exactly k points, and
every set of ¢ distinct points is contained in exactly A blocks. A 2-(v, k, \)-design
is also called a (v, k, A)-balanced incomplete block design ((v,k,\)—BIBD). In a
t-(v, k, \)-design, every point occurs in exactly r = )\(’t’:ll)/(};:ll) blocks and there
are exactly b = )\(;’)/(f) blocks. The number r is called the repetition number of
the design. The complement (V,B) of a (v, k, \)—BIBD (V, B) with b blocks and
repetition number 7, where B={V\ A: A € B},is a (v,v—k,b—2r+ \)—BIBD.

Two designs (X, A) and (Y, B) are called isomorphic if there exists a bijection
a: X — Y such that {{a(x) : z € S} : S € A} = B. Furthermore, « is called
an isomorphism. An automorphism of a design is an isomorphism of this design
with itself. An automorphism of a design partitions its blocks into classes called
orbits. A t-(v, k, X)-design is cyclic if it has an automorphism that is a permutation
consisting of a single cycle of length v.

Let v, k and X be positive integers such that v > k > 2, and G be a finite additive
group of order v. A (v, k, \)-difference family is a collection [By, Ba, ..., By] of
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n
k element subsets of G such that the multiset union |J [x —y: z,y € B, x # y]

contains every nonzero element of G exactly A timesl. The difference family is
called cyclic if G is cyclic. The development Dev(By, Ba,...,B,) =[B;+¢g:1<
i <nandg € G|, where B; + g = {x + g : * € B;}, generates the block set of a
(v, k, A\)—BIBD on the point set G [1, 7].

A graph is an ordered triple G = (V(G), E(G), I¢), where V(G) is a nonempty
set, E(G) is a set disjoint from V(G), and Ig is an “incidence” relation that
associates with each element of E(G) an unordered pair of elements (same or
distinct) of V(G). Elements of V(G) are called the vertices (or nodes or points) of
G, and elements of F(G) are called the edges (or lines) of G [2]. A graph labeling
is an assignment of integers to the vertices, edges, or both of a graph subject to
certain conditions. Since mid 1960s, over 200 graph labeling techniques have been
studied in over 3000 papers. For a dynamic survey on graph labeling, see [4].

In [3], the authors adapted the edge-graceful graph labeling definition into block
designs and defined a block design (V, B) with |V| = v and |B| = b as block-graceful
if there exists a bijection f: B — {1,2,...,b} such that the induced mapping
JT:V = Zy, given by fT(x) =3 4cp . zea f(A) (mod v) is a bijection.

R. B. Gnanajothi defined a graph with n vertices line-graceful if it is possible
to label its edges with 0,1,2,...,n such that when each vertex is assigned the
sum modulo n of all the edge labels incident with that vertex the resulting vertex
labels are 0,1,2,...,n — 1 [4]. In this article, we adapt this definition into block
designs and define a block design (V, B) with |V| = v as line-graceful if there exists
a function f: B — {0,1,...,v — 1} such that the induced mapping f*: V — Z,
given by ft(z) = 3 4cp . sea f(A) (mod v) is a bijection. For a block A € B
and a point z € V, the values f(A) and f*(x) are called the weights of A and z,
respectively.

Example 1.1. A line-graceful labeling of the 3-(8,4, 1)-design with
vV ={0,1,3,4,5,6,7} and B={{0,1,3,7},{1,2,4,7},{2,3,5,7},{3,4,6, 7},
{4,5,0,7},{5,6,1,7},{6,0,2,7},{2,4,5,6},{0,3,5,6},{0, 1, 4,6}, {0, 1,2, 5},
{1,2,3,6},{0,2,3,4},{1,3,4,5}} is shown below:

{0,1,3,7} > 1 {2,4,5,6} 5 f*(
{1,2,4,7y = 6 {0,3,5,6} =5 f*(

0)=1+0+6+5+4+7+3=26=2 (mod 8)
1)=146+4+4+7+3+2=27=3 (mod 8)
{2,3,5,7} -1 {0,1,4,6} 4 fT(2)=6+1+6+5+7+3+3=31=7 (mod 8)
{3,4,6,7} -2 {0,1,2,5} =7 f+(3)71+1+2+5+3+3+2f17_1(m0d8)
{4,5,0,7} =0 {1,2,3,6} -3 fT(4)=6+2404+5+4+3+2=22=6 (mod 8)
{5,6,1,7} =4 {0,2,3,4} -3 fT(5)=14+04+44+5+5+7+2=24=0 (mod 8)
{6,0,2,7} -6 {1,3,4,5} -2 fT(6)=2+4+6+5+5+4+3=29=5 (mod 8)

fAr(N)=146+1+24+0+44+6=20=4 (mod 8)

It is clear from the definitions that every block-graceful design is also line-grace-
ful. In [3], the authors noted that one can easily obtain block-graceful Steiner

triple systems of order v for all v = 1 (mod 6), and block-graceful projective
dt1_q1 gd_q gd-1_1
q—1 7 qq—l ’ : q—1 )

geometries, i.e. (2 —BIBDs for every prime power g > 2 and



LINE-GRACEFUL DESIGNS 131

integer d > 2. Then the authors constructed infinite families of block-graceful
Steiner triple systems of order v for v = 3 (mod 6), and by considering affine
geometries, proved that for every integer d > 2 and ¢ > 3, where ¢ is an odd prime
power or g = 4, there exists a block-graceful (¢¢, ¢, 1)—BIBD.

In this article, we study the existence problem of line-graceful ¢-(v, k, A)-designs.
In Section 2, we give a necessary condition for the existence of a line-graceful
t-(v, k, \)-design and prove some basic results. The cases for Steiner triple systems
and (¢?, ¢, 1)—BIBDs, that are incomplete in terms of block-graceful labelings, are
completed in terms of line-graceful labelings in Sections 3 and 5, where we prove
that there exists a line-graceful Steiner triple system of order v for all v = 1,3
(mod 6), and a line-graceful (q%,q,1)—BIBD for every prime power ¢ > 2 and
integer d > 2. Moreover, in Section 4, we prove that there exists a line-graceful
Steiner quadruple system of order 2™ for all n > 3 by using a recursive construction.

2. BASIC RESULTS

In this section, we give a necessary condition for the existence of a line-graceful
t-(v, k, A)-design and prove some basic results.

Proposition 2.1. If a t-(v, k, \)-design is line-graceful, where k = 2%s such
that o is a nonnegative integer and s is odd, then either v is odd or v = 0
(mod 2%+1).

Proof. Let (V, B) be a line-graceful ¢t-(v, k, A)-design, where its blocks are labeled
as ai,as,...,ay. Then

(1) @) =kla+ay+-+a) =
zeV

If v is odd, w = 0 (mod v) and (1) can be satisfied by choosing the block

labels in such a way that their sum is a multiple of v. On the other hand, if v

is even, @ = § (mod v) and hence 2%s(a; + ag + - -+ + a;) must be an odd

multiple of 4 which can be satisfied only if v =0 (mod 2**1). O

(v—1)

5 (mod v).

In [3], the authors showed that every (v, k, \)—BIBD with repetition number
that is generated from a cyclic difference family is block-graceful when ged(v,r) =
1. As a consequence of this result, all such BIBDs are also line-graceful. For com-
pleteness, we repeat the proof of this result in the line-graceful case here.

Proposition 2.2. If gcd(v,r) = 1, then every (v, k, \)—BIBD with repetition
number r that is generated from a cyclic difference family is line-graceful.

Proof. Let [By, ..., By] be a cyclic (v, k, \)-difference family on Z, and let B =
Dev(By,...,B,). Define alabeling f: B — {0,1,...,v—1} such that f(B;+g) =g
for any g € Z, and 1 <i < n. For any a € Z,, we get f*(a) = fT(0)+ar (mod v).
Since ged(v,r) = 1, the numbers 0,7, 2r, ..., (v — 1)r are all different mod v, and
the result follows. O



132 D. ERDEMIR aND E. KOLOTOGLU

Proposition 2.3. If (V,B) is a line-graceful (v, k, \)—BIBD, then its comple-
ment (V,B) is also line-graceful.

Proof. Suppose that (V, B) has a line-graceful labeling f: B — {0,1,...,v—1}
with the induced mapping f*: V — Z, on points, where the blocks are labeled
as ap,as,...,ap. Define g: B — {0,1,...,v — 1} such that for every block A € B,
g(V'\ A) = f(A). Then, the weight of any point 2 € V' in the complement design
will be g™ (z) = (a1 +az + -+ + ap) — fT(x) (mod v). Since f*(z)s are different
mod v, g7 (z)s must also be different mod v, and the result follows. O

Proposition 2.4. If there exists a line-graceful (v,k,\)—BIBD and m is a
positive integer, then there exists a line-graceful (v, k,mA)—BIBD.

Proof. Take m copies of each block in a line-graceful (v, k, \)—BIBD, label the
blocks in the first copy as they are labeled in the original design, and label the
remaining blocks as 0. O

Note that, as a consequence of Propositions 2.3 and 2.4, to determine the set of
parameters for which a line-graceful BIBD exists, it is sufficient to consider only
the (v, k,\)—BIBDs where k < v/2 and X is the minimum value satisfying the
necessary conditions for the existence of a (v,k,\)—BIBD and the condition in
Proposition 2.1.

3. STEINER TRIPLE SYSTEMS

A (v,3,1)—BIBD is called a Steiner triple system of order v and is denoted by
STS(v). There exists an STS(v) if and only if v =1 or 3 (mod 6) [7].

In [3], the authors showed that there exists a block-graceful STS(v) for all v = 1
(mod 6), and proved the following result for the case v =3 (mod 6).

Theorem 3.1 ([3]). There exist block-graceful Steiner triple systems of order
(i) 3! for every integer t > 2,

(ii) 3'5% for all positive integers t and u with t > u, and

(iii) 3'7“ for all positive integers t and u.

The case v = 3 (mod 6) is far from complete for block-graceful STS(v). In this
section we prove that there exists a line-graceful STS(v) for all v = 1,3 (mod 6).

Theorem 3.2. If there exists a line-graceful STS(v) where v =3 (mod 6), then
there exists a line-graceful STS(3v).

Proof. Let (V,B) be an STS(v) withv =3 (mod 6), where V = {0,1,...,v—1},
and f: B — {0,1,2,...,v—1} be aline-graceful labeling with the induced mapping
ft:V — Z, on points. Define X =V x {0,1,2}, C1 = {{(¢,9), (d, ), (e,9)} :
{¢,d,e} € B, i € {0,1,2}}, C2 = {{(¢,0),(d,1),(c +d (mod v),2)} : ¢,d € V}
and C = C; UCy. Then, it is well known and can be easily seen that (X,C) is an
STS(3v).
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We define g: ¢ — {0,1,2,...,3v — 1} as follows. Take g({(c, 1), (d, 1), (e,i)}) =
3f({c,d,e}) +i for all {c,d,e} € B and i € {0,1,2}, and g({(c,0),(d,1),(c + d
(mod v),2)}) =0 for c,d € V.

For any @ € V and i € {0,1,2}, we get g¥(a,i) = 3f"(a) + ri, where r =
(v —1)/2 is the repetition number of the STS(v). Since v = 3 (mod 6), we get
r =1 (mod 3) and hence ged(r,3) = 1. Since f*(a)s are all different mod v, we
see that the values 3f " (a) + ri are all different mod 3v. O

A difference triple in Z, is a 3-element subset of {1,2,...,(v — 1)/2} such
that either the sum of these 3 elements is 0 (mod v) or one element is the sum
of the other two mod v. For all v = 1,3 (mod 6),v # 9, there exists a cyclic
STS(v), and these designs can be constructed using difference triples that partition
{1,2,...,(v=1)/2} when v =1 (mod 6), and {1,2,..., (v —1)/2} \ {v/3} when
v =3 (mod 6). For each difference triple {z,y, 2z} with z +y = £z (mod v), the
base block {0, z,z + y} is developed (mod v). For v = 1 (mod 6), all orbits are
of length v and the base blocks obtained from the difference triples form cyclic
difference families, while for v = 3 (mod 6), in addition to the orbits of length v
that are generated from the difference triples, one orbit of length % is developed
from the base block {0,v/3,2v/3}. The difference triples that generate STS(v) for
v = 3,15 (mod 18) are given in Table 1 [7].

Table 1. Difference triples of cyclic Steiner triple systems for v = 3,15 (mod 18) [7]

{3r+1,8s—r+1,8+2r+2},,0<r<s-—1
v=18s+3,s>1 {3r+2,4s —r,ds+2r+2},0<r<s-—1
{3r+3,6s—2r—1,6s+r+2},0<r<s-—1
v=15 \ {1,3,4},{2,6,7}
{3r+1,4s —r+3,4s+2r+4},0<r <s
v=185+15,521 {3r +2,85—r+6,85+2r +8,,0 <r <s
{3r+3,6s—2r+3,6s+r+6},0<r<s—1

Theorem 3.3. There exists a line-graceful STS(v) for allv =1,3 (mod 6).

Proof. The case v = 1 (mod 6) follows from Proposition 2.2. Let v = 3,15
(mod 18) and (Z,, B) be a cyclic STS(v) constructed using the difference triples
given in Table 1 as described above. We define a labeling f: B — {0,1,...,v—1}.

We call one of the orbits of length v as grouped orbit as follows. If v = 185+ 3
for some integer s > 1 take the orbit with base block {0,3,6s + 2}, if v = 15
take the orbit with base block {0,1,4}, if v = 33 take the orbit with base block
{0,4,10}, and if v = 185+ 15 for some integer s > 2 take the orbit with base block
{0,6,6s 4+ 7} and call this orbit as grouped orbit. Also call one of the remaining
orbits of length v as ordered orbit.

Let A; and A be the base blocks of the ordered orbit and grouped orbit,
respectively. We label the blocks in these two orbits as follows. For any = € Z,,
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define f(A14+z) =z, f(As+2)=1if 2 =0 (mod 3), and f(Aa+z)=0if 2 #0
(mod 3). Moreover, we label all blocks in the remaining orbits as 0.

For any = € Z,, the contribution of the block weights in the ordered orbit to
the point weights gives f(z) = f(0) + 3z (mod v) for all z € Z,.

If v = 18s + 3 for some integer s > 1, the contribution of the block weights
in the grouped orbit will be 1+ 140 =2 for z =0 (mod 3), 0+ 0+ 0 = 0 for
z=1 (mod 3),and 0+ 0+1 =1 for x =2 (mod 3). If we add these to the point
weights obtained from the ordered orbit, then f¥(x)s become all different mod v
since v/3 = 6s + 1 is relatively prime with 3. The case v = 18s 4 15 for s > 0
follows similarly using the base blocks of the grouped orbits given above.

There exists a line-graceful STS(9) by Theorem 3.1. Then by induction and
using the cases above, line-graceful STS(v) for v = 18s 4+ 9 with s > 1 can be
constructed using Theorem 3.2. O

4. STEINER QUADRUPLE SYSTEMS

A 3-(v,4,1)-design is called a Steiner quadruple system of order v and is denoted
by SQS(v). There exists an SQS(v) if and only if v = 2,4 (mod 6) [8].

By Proposition 2.1, a line-graceful SQS(v) must satisfy v =0 (mod 8). There-
fore, we get the following necessary condition for the existence of a line-graceful
SQS(v).

Proposition 4.1. If an SQS(v) is line-graceful, then v = 8,16 (mod 24).

We will now construct an infinite family of line-graceful Steiner quadruple sys-
tems using a well-known recursive construction, leaving 40 as the smallest order
for which the existence of a line-graceful Steiner quadruple system is unknown.

Theorem 4.1. If there exist a line-graceful SQS(v), then there exists a line
graceful SQS(2v).

Proof. Let (V,B) be an SQS(v) where f: B — {0,1,...,v—1} is a line-graceful
labeling with the induced mapping f*: V — Z, on points. Define X = {0,1} x V|
Cr={{G,z), (4, y), (k,2), (1)} : {z,y,2,t} € B, 4,5,k, 1 €{0,1},i+j+k+1=0
(mod 2)}, C2 = {{(0,a),(0,b),(1,a),(1,0)} : a,b €V, a# b}, and C =C, UCs. Tt
is known that (X,C) is an SQS(2v), see [5].

Define g: C — {0,1,...,2v — 1} as follows. Take g({(i, ), (i,9), (4, 2), (5,1)}) =
2f({z,y,2,t}) + 4 for all {x,y,2,t} € B and i € {0,1}, and label the remaining
blocks as 0. For all z € V, the weight of the point (0, z) is 2T (z), and the weight
of the point (1,z) is 2f T (x) +r where r = (v—1)(v—2)/6 is the repetition number
of (V,B). Since v = 8,16 (mod 24) by Proposition 4.1,  must be odd. Hence, the
point weights are all different mod 2v since f¥(x)s are all different mod v. O

Theorem 4.2. There exists a line-graceful SQS(2"™) for all n > 3.
Proof. Follows by Example 1.1 and Theorem 4.1. O
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5. AFFINE AND PROJECTIVE GEOMETRIES

An (n®?+n+1,n+1,1)-BIBD with n > 2 is called a projective plane of order n,
and an (n?,n,1)—BIBD with n > 2 is called an affine plane of order n. It is well
known that for every prime power g > 2, there exists a projective plane of order ¢
and an affine plane of order ¢ [8].

A generalization to higher dimensions shows that for any d > 2, the points and
hyperplanes of the d-dimensional projective geometry PG4(q) form a

(qd;_ll_l, qqf‘_—117 qd(;_ll_l )—BIBD with repetition number r = (¢ — 1)/(q — 1), and it

is known that these BIBDs can be generated from cyclic difference families, see
[6, 8]. The existence of line-graceful (qdqtll_l, qqd:ll, qd;l_ L)—BIBDs immediately
follows from Proposition 2.2.

In [3], the authors also considered affine geometries and proved that for every
integer d > 2 and g > 3, where ¢ is an odd prime power or ¢ = 4, there exists a
block-graceful (q?,q,1)—BIBD. In this section, we prove that there exists a line-
graceful (¢¢,q,1)—BIBD for every prime power ¢ > 2 and integer d > 2.

Let Fy be the field with ¢ elements and X = F, x F,. For all a,b € F, define
Cop={(z,y) € X :y=ax+b} and By = {Cup : a,b € F,}. Also, for all c € F,
define C, = {(z,y) € X :x =c} and By = {C. : ¢ € F}. Let B = B; U B;y. Then,
(X, B) is an affine plane of order ¢ [8]. We will now make a line-graceful labeling
of the blocks in this structure.

Theorem 5.1. There exists a line-graceful affine plane of order q for every
prime power q > 2.

Proof. Let (X, B) be an affine plane of order ¢ as described above. Take any
bijection h: F, — {0,1,2,...,¢— 1} and define a labeling f: B — {0,1,2,...,¢*—
1} as follows. For all ¢ € F, define f(Co:) = h(t), f(C) = qh(t), and label the
remaining blocks as 0. Then, f*(r,s) = gh(r) + h(s) for all (r,s) € X and hence
the point weights are all different mod ¢2. O

Theorem 5.2. If there exists a line-graceful (¢, q,1)—BIBD, where q is a
prime power and d > 2, then there exists a line-graceful (¢%*+*, q,1)— BIBD.

Proof. Let (V,B) be a (¢%,¢,1)—BIBD where r = (¢ = 1)/(¢ — 1), V = Fa,
the finite field with ¢? elements, and f: B — {0,1,2,...,¢? — 1} is a line-graceful
labeling with the induced mapping f*: V — Z,a on points. Let W be the subfield
of order gin V and let X =V x W.

For all A € Bandy € W, let Cs,, = A x {y} and define D1 = {Cy, :
A€ Bandy € W} Forall a,b € V, let Cpp = {(ya +b,y) : y € W}, define
Dy ={Cup:a,beV}and D =Dy UD,. It can be easily seen that (X,D) is a
(qurl’ q, 1)_BIBD

Take any bijection h: W — {0,1,2,...,q — 1} and define
g:D — {0,1,2,...,¢%"1 — 1} as follows. For any A € B and y € W define
9(Cay) = qf(A) + h(y), and for any a,b € V define g(Cy ) = 0. The weight of
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any point (z,y) € X is

> 9(Cay) = (af(A) +h(y) = qf *(x) + rh(y) (mod ¢*).

z€A TCEA

Since f*(x)s are all different mod ¢, and ged(q,7) = 1, the values ¢f*(z) +

rh(y) must be all different mod ¢

d+1  Therefore, g is a line-graceful labeling of

(X,D). O

As a consequence of Theorems 5.1 and 5.2, we get the following result.

Theorem 5.3. There erists a line-graceful (¢%,q,1)—BIBD for every prime

power q > 2 and integer d > 2.

EN|
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