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CONFORMALLY CLOSED WEAKLY LANDSBERG METRICS

A. TAYEBI and B. NAJAFI

Abstract. In this paper, we define the notion of conformally closed weakly Lands-

berg metric. Then, we prove that a Finsler metric is a conformally closed weakly

Landsberg metric if and only if it is a Riemannian metric.

1. Introduction

Let F = F (x, y) and F̃ = F̃ (x, y) be two Finsler metrics on a manifold M . Then, F

is said to be conformal with F̃ if there is a scalar function σ = σ(x), called the con-

formal factor of the conformal transformation such that F̃ (x, y) = exp(σ)F (x, y).
The conformal transformations of Finsler metrics and their curvatures have been
studied by many geometers [5, 6, 7, 10, 11, 17]. The celebrated Weyl theorem
shows that the conformal and projective properties of a Finsler metric characterize
the metric properties uniquely. Therefore, studying the conformal transformations
of a Finsler metric deserves an extra consideration.

In [6], Knebelman found out that the conformal factor of the conformal trans-
formation of Finsler metrics is a function of position only. Then, Hashiguchi
studied the basic and interesting properties of Finsler conformal transformations
and obtained some relations between the Riemannian curvature and some non-
Riemannian curvatures of conformal Finsler metrics. Also, he obtained some
conformal invariants. Their investigations show that the conformal transforma-
tions do not preserve the Riemannian and non-Riemannian curvatures in Finsler
geometry [1, 2, 15].

Among the non-Riemannian curvatures in Finsler geometry, the mean Lands-
berg curvature has distinguished place. Geometrically, the mean Landsberg cur-
vature J measures the rate of changes of the mean Cartan torsion I along the
geodesics in a general Finsler space. Indeed, J = ∇0I, where ∇0 denotes the hor-
izontal derivation along Finslerian geodesics. A Finsler metric F is called weakly
Landsberg metric if it has vanishing mean Landsberg curvature J = 0. This non-
Riemannian curvature has been observed in many situations, including the case
when working with the Gauss–Bonnet theorem in the Finslerian setting. Consider
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the Riemannian metric ĝx := gij(x, y)δyi⊗ δyj on TxM0, where gij := 1/2[F 2]yiyj

and {δyi := dyi + N i
jdx

j} is the natural coframe on TxM associated with the

natural basis {∂/∂xi|x} for TxM . The constancy of the volume function of the
unit tangent sphere SxM ⊂ (TxM, ĝx) is required to establish a Gauss–Bonnet
theorem for Finsler manifolds. In [4], it is proved that the volume function is a
constant for every weakly Landsberg metric.

In conformal Finsler geometry, the class of conformally closed Finsler metrics
has an interesting position and many investigations have been done for this class
of metrics. Let us denote by Fn the set of a special kind of n-dimensional Finsler
metrics, e.g., Berwald metrics or weakly Landsberg metrics. If F ∈ Fn remains
to belong to Fn by any conformal transformation, then Fn is called conformally
closed. It is well known that every Riemannian metric is conformally closed. Also,
if a Finsler metric F is conformal to a locally Minkowskian metric, then the Finsler
metric F̃ = exp(σ)F is also conformal to a locally Minkowskian metric [14, 16].
Then, any conformally flat Finsler metric is conformally closed. In [7], Matsumoto
studied conformally closed Berwald metrics and found the necessary and sufficient
conditions under which a Berwald metric is conformally closed. More precisely,
he proved that a Berwald metric is conformally closed if and only if F 2gij are
homogeneous polynomials of degree 2 in y = (yi). Also, he considered conformally
closed Douglas metrics. In [12], Shen studied S-closed conformal transformations
in Finsler geometry and proved that such a transformation must be a homothety
unless the Finsler manifold is Riemannian. Recently, it was proved that two-
dimensional conformally related Douglas metrics are Randers metrics [9]. In [8],
Matsumoto showed that a Landsberg metric is conformally closed if and only if
its T-tensor is vanishing. By definition J := trace(L), every Landsberg metric
is a weakly Landsberg metric. In this paper, we generalize and complete the
Matsumoto theorem. More precisely, we prove the following.

Theorem 1.1. A weakly Landsberg metric remains weakly Landsberg metric
under any conformal transformation if and only if it is a Riemannian metric.

2. Preliminaries

Let M be an n-dimensional C∞ manifold, TM =
⋃
x∈M TxM the tangent bundle,

and TM0 := TM − {0} the slit tangent bundle. A Finsler structure on M is a
function F : TM → [0,∞) with the following properties:

(i) F is C∞ on TM0;
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM , i.e.,

F (x, λy) = λF (x, y) for all λ > 0;
(iii) The following quadratic form gy : TxM × TxM → R is positive definite on

TM0,

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
s=t=0

, u, v ∈ TxM.

Then the pair (M,F ) is called a Finsler manifold.
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Let x ∈M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, one
can define Cy : TxM × TxM × TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
t=0

, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0
is called the Cartan torsion. It is well known that

C = 0 if and only if F is Riemannian.
For y ∈ TxM0, define Iy : TxM → R by

Iy(u) :=

n∑
i=1

gij(y)Cy(u, ∂i, ∂j),

where {∂i} is a basis for TxM at x ∈M . The family I := {Iy}y∈TM0
is called the

mean Cartan torsion. By definition, Iy(y) = 0 and Iλy = λ−1Iy, λ > 0. Therefore,
Iy(u) := Ii(y)ui, where Ii := gjkCijk.

For a Finsler manifold (M,F ), a global vector field G is induced by F on TM0,
which in a standard coordinate (xi, yi) for TM0, is given by

G = yi
∂

∂xi
− 2Gi

∂

∂yi
,

where Gi = Gi(x, y) are local functions on TM given by

Gi :=
1

4
gil
{ ∂2[F 2]

∂xk∂yl
yk − ∂[F 2]

∂xl

}
, y ∈ TxM.

G is called the associated spray to (M,F ).

Define By : TxM×TxM×TxM → TxM by By(u, v, w) := Bijkl(y)ujvkwl ∂
∂xi |x,

where

Bijkl :=
∂3Gi

∂yj∂yk∂yl
.

B is called the Berwald curvature and F is called a Berwald metric if B = 0.

For y ∈ TxM , define the Landsberg curvature Ly : TxM ×TxM ×TxM → R by

Ly(u, v, w) := −1

2
gy
(
By(u, v, w), y

)
.

See page [13, p. 84]. In local coordinates, Ly(u, v, w) := L ijk(y)uivjwk, where

Lijk := −1

2
ylB

l
ijk.

Ly(u, v, w) is symmetric in u, v and w, and Ly(y, v, w) = 0. L is called the
Landsberg curvature. A Finsler metric F is called a Landsberg metric if L = 0.
Also, the Landsberg curvature of F can be defined by following

Ly(u, v, w) :=
d

dt

[
Cσ̇(t)

(
U(t), V (t),W (t)

)]
t=0

,

where y ∈ TxM , σ = σ(t) is the geodesic with σ(0) = x, σ̇(0) = y, and U(t),
V (t, W (t) are linearly parallel vector fields along σ with U(0) = u, V (0) = v,
W (0) = w. Then the Landsberg curvature Ly is the rate of change of Cy along
geodesics for any y ∈ TxM0. For more details, see [13].
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For y ∈ TxM , define Jy : TxM → R by Jy(u) := Ji(y)ui, where

Jy(u) =

n∑
i=1

gij(y)Ly(u, ∂i, ∂j).

The non-Riemannian quantity J is called the mean Landsberg curvature or J-cur-
vature of F . We say that F is a weakly Landsberg metric if J = 0. It is easy to
see that the mean Landsberg curvature of F is also given by

Jy(u) :=
d

dt

[
Iσ̇(t)

(
U(t)

)]
t=0

,

where y ∈ TxM , σ is the geodesic with σ(0) = x, σ̇(0) = y and U is linearly
parallel vector field along σ with U(0) = u. Thus the mean Landsberg curvature
Jy is the rate of change of Iy along geodesics for any y ∈ TxM0 ([13]).

Throughout this paper, we use the Berwald connection on Finsler manifolds.
The h- and v-covariant derivatives of a Finsler tensor field are denoted by “ | ” and
“ . ”, respectively.

3. Proof of Theorem 1.1

Lemma 3.1. A Finsler metric F on a manifold M is conformally closed
Berwald metric if and only if Aij := F 2gij are homogeneous polynomials of de-
gree 2 in y = (yi).

Proof. Let F and F̄ be two Finsler metrics on a manifold M . By using the
Rapcsáks identity, the following relationship between Gi and Ḡi holds

(1) Ḡi = Gi +
1

2F̄
F̄|my

myi +
ḡil

2

{
F̄ (F̄|k).ly

k − F̄ F̄|l
}
,

where “ | ” and “ . ” denote the horizontal and vertical derivations with respect to
the Berwald connection of F (see [13, p. 180]). Suppose that F is conformally
related to F̄ , namely, F̄ = eσF , where σ = σ(x) is a scalar function on M . Since
F|m = 0, then the following hold:

(2)
F̄|m = σmeσF, F̄.i = eσF.i, (F̄|m).l = σmeσF.l,

ḡij = e2σgij , ḡij = e−2σgij ,

where we put

σm :=
∂σ

∂xm
.

By putting (2) in (1), we get

(3) Ḡi = Gi + σ0y
i − 1

2
F 2σi,

where we define

σ0 := σiy
i, σi := gimσm.
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Then, (3) can be written as follows

(4) Ḡi = Gi + Pyi −Qi,
where

(5) P := σky
k, Qi :=

1

2
F 2σi.

Let us define

Gij := Gi.j , Gijk := Gij.k,

Ḡij := Ḡi.j , Ḡijk := Ḡij.k,

Pj := P.j , Pjk := Pj.k,

Qij := Qi.j , Qijk := Qij.k, Qijkl := Qijk.l.

Taking vertical derivations of (4) imply that

Ḡij = Gij + Pjy
i + Pδij −Qij ,(6)

Ḡijk = Gijk + Pjky
i + Pjδ

i
k + Pkδ

i
j −Qijk,(7)

B̄ijkl = Bijkl + Pjkly
i + Pjkδ

i
l + Pjlδ

i
k + Pklδ

i
j −Qijkl,(8)

The following hold

(9) Pi = σi, Pij = Pijk = 0.

By (8) and (9), we get

(10) B̄ijkl = Bijkl −Qijkl.
(10) gives us the proof. �

Lemma 3.2. Let F be a weakly Landsberg metric on a manifold M . Then,
F̄ := eσF is a weakly Landsberg metric if and only if

(11)
[
2(ypIl + ylIp) + F 2(Ip.l + gslC

ks
p.k)
]
σp = 0.

Proof. Since
ȳi = F̄ F̄.i = e2σyi,

contracting (10) with ȳi implies that

(12) L̄jkl = e2σ
(
Ljkl −

1

2
yiQ

i
jkl

)
.

Multiplying (12) with ḡjk implies that

(13) J̄l = Jl −
1

2
yig

jkQijkl.

Thus, F̄ is also weakly Landsberg metric if and only if

(14) yig
jkQijkl = 0.

To complete the proof, we need to simplify (14). Using (σi).j = −2Cijmσ
m, we

get

(15) Qij = yjσ
i − F 2Cijmσ

m,
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(16) Qijk = gjkσ
i − 2

(
yjC

i
km + ykC

i
jm

)
σm − F 2

(
Cijp,k − 2CijmC

m
kp

)
σp,

Qijkl = 2Cjklσ
i − 2gjkC

i
lpσ

p(17)

− 2
(
gjlC

i
km + yjC

i
km.l + gklC

i
jm + ykC

i
jm.l

)
σm

+ 4
(
yjC

i
km + ykC

i
jm

)
Cmlpσ

p − 2yl

(
Cijp.k − 2CijmC

m
kp

)
σp

− F 2
(
Cijp.k.l− 2Cijm.lC

m
kp− 2CijmC

m
kp.l

)
σp

+ 2F 2
(
Cijp.k− 2CijmC

m
kp

)
Cpltσ

t.

Using yiC
i
jk = 0 and contracting (17) with yi imply that

yiQ
i
jkl = 2σ0Cjkl − 2yi(yjC

i
km.l + ykC

i
jm.l)σ

m − 2ylyiC
i
jp.kσ

p(18)

− F 2yi(C
i
jp.k.l−2Cijm.lC

m
kp)σ

p+2F 2yiC
i
jp.kC

p
lqσ

q.

We have

(19) yiC
i
jp.k = −Cjpk.

Also, taking a vertical derivation of (19) with respect to yl yields

(20) yiC
i
jp.k.l = −Cjpk.l − gilCijp.k.

Putting (19) and (20) in (18) gives

yiQ
i
jkl = 2σ0Cjkl + 2(yjClkm + ykCljm + ylCjmk)σm(21)

+ F 2(Cjpk.l + gilC
i
jp.k − 2CjmlC

m
kp)σ

p − 2F 2CjpkC
p
lqσ

q.

Contracting (22) with gjk implies that

yig
jkQijkl =

[
2(ypIl + ylIp)(22)

+ F 2(gjkCjpk.l + gjkgilC
i
jp.k − 2CkmlC

m
kp − 2IqC

q
lp)
]
σp.

We have

Ip.l = (gjkCjpk).l = −2Cjkl Cjpk + gjkCjpk.l,

which yields

(23) gjkCjpk.l = Ip.l + 2Cjkl Cjpk.

Also, we get

Ckip.k = (Ckip).k = (gjkCijp).k = −2IjCijp + gjkCijp.k,

which implies that

(24) gjkCijp.k = Ckip.k + 2IjCijp.

Contracting (24) with gil yields

(25) gilg
jkCijp.k = gilC

ki
p.k + 2IjCljp.
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Putting (23) and (25) in (22) implies

(26) yig
jkQijkl =

[
2(ypIl + ylIp) + F 2(Ip.l + gslC

ks
p.k)
]
σp,

which completes the proof. �

Proof of Theorem 1.1. Suppose that (11) holds for every smooth function
σ = σ(x) on the manifold M . In this case, the following holds:

(27) 2(ypIl + ylIp) + F 2(Ip.l + gslC
ks
p.k) = 0.

We have

(28) Cklp.k = (gslC
ks
p ).k = 2CslkC

ks
p + gslC

ks
p.k,

which yields

(29) gslC
ks
p.k = Cklp.k − 2ClskC

sk
p .

Putting (29) in (27) yields

(30) 2(ypIl + ylIp) + F 2(Ip.l + Cklp.k − 2ClskC
sk
p ) = 0.

We have

(31) ypCklp.k = −Il.

Considering (31) and multiplying (30) with yp imply that Il = 0. In this case, by
Deicke’s theorem, F reduces to a Riemannian metric [3]. �
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