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AN ORDER INDUCED BY THE DIRECT PRODUCT

OF T-NORMS

E. AŞICI and R. MESIAR

Abstract. In this paper, we study the direct product of triangular norms (t-norms)

on bounded lattices. We define an order induced by t-norms, which is a direct
product of two t-norms on bounded lattices, and properties of introduced order

are deeply investigated. We explore some properties of the direct product of two

t-norms on bounded lattices. We investigate the properties of the set of comparable
and incomparable elements with respect to the �T partial order.

1. Introduction and motivation

1.1. A brief review on the development of t-norms and bounded lattice

Triangular norms (t-norms) and triangular conorms (t-conorms) were introduced
in 1963 by Schweizer and Sklar [29] within the framework of probabilistic metric
spaces. More specifically, they are based on a notion used by Menger [25] in
order to extend the triangle inequality in the definition of metric spaces towards
probabilistic metric spaces. In fuzzy set theory, they were introduced for the
first time by Alsina, Trillas and Valverde [1], and Prade [27], who used them for
the definition of new classes of fuzzy union and intersection operators. They are
isotonic, associative and commutative binary operators on the unit interval, that
furthermore satisfy a few special boundary conditions. T-norms and t-conorms
have been used in many applications such as fuzzy sets, fuzzy logic, fuzzy system
modeling, expert systems, neural networks and approximate reasoning [16, 17,
18, 19]. T-norms and t-conorms have been examined by many authors, both
theoretically and in terms of application. Some theoretical results were analyzed
in detail by [2, 4, 8]. Concerning applications, recall, e.g., fuzzy logics [26], expert
systems [15], non-additive integrals [22], fuzzy rule-based systems [32].

In 1986, Mitsch defined a natural order for semigroups [24]. In 1999, De Baets
and Mesiar introduced direct product of t-norms on product lattices and investi-
gated some of the algebraic properties of introduced t-norms [14]. In 2011, Karaçal
and Kesicioğlu defined an order induced by t-norms on bounded lattices [20].

Received June 16, 2023; revised November 11, 2024.
2020 Mathematics Subject Classification. Primary 03B52, 06B20, 03E72.
Key words and phrases. Bounded lattice; t-norm; direct product; partial order.
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1.2. The motivation

Nowadays, the orders induced by t-norms, uninorms and nullnorms on bounded
lattices have been studied extensively. Among these, an order induced by t-norms
on a bounded lattice M has always been a challenging problem due to the poor
structures of M compared with [0, 1].

In this paper, we study the direct product of t-norms on bounded lattices. The
paper consists of four main parts. Firstly, in Preliminaries, we give some necessary
definitions we will work with. In Section 3, we define an order induced by t-norms,
which is a direct product of two t-norms on bounded lattices. We also define the
set of comparable and incomparable elements with respect to the T1 × T2-partial
order, denoted �T1×T2

, and we obtain some interesting results related to direct
product of t-norms on [0, 1]2. In Section 4, some concluding remarks are added.

2. Preliminaries

A lattice [10] is a partially ordered set (M,≤), in which each two element subset
{a, b} has an infimum, denoted as a ∧ b, and a supremum, denoted as a ∨ b. A
bounded lattice (M,≤, 0M , 1M ) is a lattice that has the bottom and top elements
written as 0M and 1M , respectively. Given a bounded lattice (M,≤, 0M , 1M ) and
a, b ∈M , if a and b are incomparable, in this case, we use the notation a ‖ b.

Definition 2.1 ([14]). Let (M1,≤1, 01, 11) and (M2,≤2, 02, 12) be bounded
lattices. Then M1×M2 = (M1×M2,≤, (01, 02), (11, 12)) is a bounded lattice with
partial order relation ≤, ∧ and ∨ defined by

(a1, b1) ≤ (a2, b2)⇐⇒ a1 ≤1 a2 and b1 ≤2 b2.

(a1, b1) ∧ (a2, b2) = (a1 ∧1 a2, b1 ∧2 b2).

(a1, b1) ∨ (a2, b2) = (a1 ∨1 a2, b1 ∨2 b2).

We use M1 instead of (M1,≤1, 01, 11), M2 instead of (M2,≤2, 02, 12) and M1×
M2 instead of (M1 ×M2,≤,∧,∨, (01, 02), (11, 12)).

Definition 2.2 ([28]). Let M be a bounded lattice. A triangular norm T
(briefly t-norm) is a binary operation on M that is commutative, associative,
monotone and has neutral element 1M .

Definition 2.3 ([28]). Let M be a bounded lattice. A triangular conorm S
(briefly t-conorm) is a binary operation on M that is commutative, associative,
monotone and has neutral element 0M .

Definition 2.4 ([14]). Let M1 and M2 be bounded lattices and T1 and T2 be
t-norms on M1 and M2, respectively. Then the direct product T1 × T2 of T1 and
T2, defined by

T1 × T2((a1, b1), (a2, b2)) = (T1(a1, a2), T2(b1, b2)),

is a t-norm on the product lattice M1 ×M2.
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Definition 2.5 ([11]). A t-norm T on M is divisible if the following condition
holds:

∀ a, b ∈M with a ≤ b, there is a m ∈M such that a = T (b,m).

Definition 2.6 ([28]). Let (ai, bi)i∈I be a family of pairwise disjoint open
subintervals of [0, 1] and let (Ti)i∈I be a family of t-norms. Then the ordinal sum
T = (< ai, bi, Ti >)i∈I : [0, 1]2 → [0, 1] is given by

T (a, b) =

{
ai + (bi − ai)Ti( x−ai

bi−ai
, y−ai

bi−ai
), (a, b) ∈ [ai, bi]

2,

min(a, b), otherwise.

Definition 2.7 ([20]). Let M be a bounded lattice and T be a t-norm on M .
The order called a T -partial order (triangular order) for t-norm T is defined as
follows:

a �T b : ⇐⇒ T (`, b) = a for some ` ∈M.

3. �T1×T2
-partial order and properties

In this section, we introduce an order induced by t-norms which is a direct product
of two t-norms on bounded lattices. Additionally, some propositions presented here
are derived from [3, 6], and as such, certain proofs are omitted.

Definition 3.1. Let M1 and M2 be bounded lattices, T1 and T2 be t-norms on
M1 and M2, respectively, and consider their direct product T1 × T2 on M1 ×M2.
Let �T1

and �T2
be partial orders induced by t-norms T1 and T2, respectively.

Then the relation �T1×T2
is defined by

(a, b) �T1×T2 (c, d) ⇐⇒ a �T1 c and b �T2 d

for all (a, b), (c, d) ∈M1 ×M2.

Example 3.2.
Consider the bounded lattice (M1 = M2 = {0M1

, k, p, t,m, s, 1M1
},≤, 0M1

, 1M1
)

given in Figure 1 and the t-norms T1 and T2 on M1 = M2 defined in Tables 1
and 2, respectively.

Table 1. The t-norm T1 on M1 = M2

T1 0M1
k p t m s 1M1

0M1
0M1

0M1
0M1

0M1
0M1

0M1
0M1

k 0M1 k k k k k k
p 0M1 k p k p p p
t 0M1

k k k k k t
m 0M1

k p k m m m
s 0M1

k p k m s s
1M1

0M1
k p t m s 1M1
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Figure 1. The lattice M1

Table 2. The t-norm T2 on M1 = M2

T2 0M1 k p t m s 1M1

0M1
0M1

0M1
0M1

0M1
0M1

0M1
0M1

k 0M1
0M1

0M1
0M1

0M1
0M1

k
p 0M1

0M1
0M1

0M1
0M1

0M1
p

t 0M1
0M1

0M1
0M1

0M1
0M1

t
m 0M1 0M1 0M1 0M1 m m m
s 0M1 0M1 0M1 0M1 m s s

1M1
0M1

k p t m s 1M1

Since T1(m, s) = m and T2(m, s) = m, it follows that m �T1 s and m �T2 s.
Consequently, by Definition 3.1, we have (m,m) �T1×T2 (s, s). Next, we want
to show that (k, k) �T1×T2

(p, p). We assume that (k, k) �T1×T2
(p, p). By

Definition 3.1, this would imply k �T1
p and k �T2

p. Then there exists an element
` ∈ M1 such that T2(p, `) = k. According to Table 2, we obtain T2(p, `) = k, a
contradiction, because there does not exist an element ` ∈M1 such that T2(p, `) =
k. Thus, k �T2 p. So, we have that (k, k) �T1×T2 (p, p) by Definition 3.1.
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Proposition 3.3. Let M1 and M2 be bounded lattices, T1 be a t-norm on M1

and T2 be a t-norm on M2 and consider their direct product T1×T2 on M1×M2.
Then the relation �T1×T2

defined in Definition 3.1 is a partial order on M1 ×M2.

Proposition 3.4. Let M1 and M2 be bounded lattices, T1 be a t-norm on M1

and T2 be a t-norm on M2 and consider their direct product T1×T2 on M1×M2.
Then M1 × M2 is a bounded partially ordered set with respect to the �T1×T2

partial order.

Remark. Let M1 and M2 be bounded lattices, T1 be a t-norm on M1 and T2
be a t-norm on M2 and consider their direct product T1 × T2 on M1 ×M2. Then

(a, b) �T1×T2
(c, d) =⇒ a ≤1 c and b ≤2 d

for all (a, b), (c, d) ∈M1 ×M2.

We now explore some properties of direct product of t-norms on bounded
lattices. We define comparable and incomparable elements with respect to the
T1×T2-partial order on bounded lattices. Using these definitions, we obtain some
interesting results for direct product of t-norms on [0, 1]2.

Definition 3.5. Let M be a bounded lattice and T be a t-norm on bounded
lattice M . The set CT is defined as follows:

CT =
{
a ∈M | there exist b, b′ ∈M \ {0M , a, 1M}, a �T b and b′ �T a

}
.

Remark. It is clear that {0M , 1M} /∈ CT . If we take b, b′ ∈ {0M , a, 1M}, then
it is trivial that all elements in M satisfy the condition of Definition 3.5. So, we
have to take b, b′ /∈ {0M , a, 1M} in Definition 3.5.

Remark. For any t-norm T on bounded lattice, if |M |≤ 4, then it is obtained
that CT = ∅.

Example 3.6.
Consider the lattice (M2 = {0M2

, n, e, k, r, p, s, 1M2
},≤, 0M2

, 1M2
), which is de-

picted by Hasse diagram in Figure 2, and consider the t-norm T (a, b) = a ∧ b on
M2.

Since T (e, k) = e and T (e, n) = n, it follows that e �T k and n �T e. So,
e ∈ CT . Similarly, since T (p, s) = p and T (p, r) = r, we obtain that p �T s and
r �T p. So, p ∈ CT . Thus, it is obtained that CT = {e, p}.

Example 3.7. Consider the t-norm TnM on [0, 1] is defined by

TnM (a, b) =

{
0, a+ b ≤ 1,

min(a, b), otherwise.

Then CTnM = ( 1
2 , 1). Now, let us prove this statement. Let a ∈ ( 1

2 , 1). Then

TnM (a, b) = a for all b ∈ (a, 1). Therefore, a �TnM b. Since TnM (a, b′) = b′

for all b′ ∈ ( 1
2 , a], it follows that b′ �TnM a. So, we obtain that a ∈ CTnM , i.e.,

( 1
2 , 1) ⊆ CTnM . Conversely, let a ∈ CTnM . We want to show that a ∈ ( 1

2 , 1).

Suppose that a /∈ ( 1
2 , 1). Then, it must be a = 1 or a ∈ [0, 12 ]. According to
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Figure 2. The lattice M2

Remark 3, it can not be a = 1. So, it must be a ∈ [0, 12 ]. Since a ∈ CTnM ,
there exist elements b, b′ ∈ (0, 1) \ {a} such that a �TnM b and b′ �TnM a. Let
b′ �TnM a. Then there exists k ∈ [0, 1] such that TnM (a, k) = b′. Since b′ 6= 0,
it follows that TnM (a, k) = min(a, k) = b′. Since a 6= b′, it holds k = b′. So, it is
obtained a+ k ≤ 1. Thus, we obtained TnM (a, k) = b′ = 0, a contradiction.

Proposition 3.8. Let (M,≤, 0M , 1M ) be a bounded lattice such that |M |> 4
and consider the weakest t-norm

TW (x, y) =


x, y = 1M ,

y, x = 1M ,

0M , otherwise,

on M . Then CTW
= ∅.

Proof. Let a ∈ CTW
. Then there exist b, b′ ∈ L\{0M , a, 1M} such that a �TW

b
and b′ �TW

a. Let a �TW
b. Then there exist ` ∈ M such that TW (b, `) = a. If

` = 1, then it must be a = b, a contradiction. If ` 6= 1, then it must be a = 0, a
contradiction. So, it can not be a �TW

b. Similarly, it can be shown that b′ �TW
a.

So, CTW
= ∅. �

Proposition 3.9. Let (M,≤, 0M , 1M ) be a bounded chain such that |M |= n,
n > 4 and consider the greatest t-norm T∧(x, y) = x∧y on M . Then | CT∧ |= n−4.

Example 3.10. Let (M = {0M , p, q, r, s, t, 1M},≤, 0M , 1M ) be a chain such
that 0M < p < q < r < s < t < 1M . It is clear that CT∧ = {q, r, s}. So,
| CT∧ |= 3 = 7− 4.
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Proposition 3.11. Let T1 and T2 be t-norms on the bounded lattice M . If
�T1
⊆�T2

, then CT1
⊆ CT2

.

Example 3.12. Let (M = {0M , p, q, r, s, t, 1M},≤, 0M , 1M ) be a chain such
that 0M < p < q < r < s < t < 1M . Consider the t-norms TW and T∧ on M .
It is clear that �TW

⊆�T∧ . According to Proposition 3.8 and Example 3.10, it
is obtained that CTW

= ∅ and CT∧ = {q, r, s}, respectively. So, it is clear that
CTW

⊆ CT∧ .

Corollary 3.13. Let T1 and T2 be t-norms on the bounded lattice M . If
�T1

=�T2
, then CT1

= CT2
.

Remark. The converse of Corollary 3.13 may not be true. Now, we will show
that this claim holds.

Example 3.14. Consider the t-norm T ? on [0, 1] is defined as follows:

T ∗(a, b) =

{
0, (a, b) ∈ (0, 12 )2,

min(a, b), otherwise,

and consider the t-norm TnM on [0, 1]. It can be shown that CT∗ = ( 1
2 , 1). Ac-

cording to Example 3.7, it is obtained that CTnM = CT∗ . But, it does not need to
be �TnM =�T∗ .

Now, we will show that this claim holds. Since T ∗( 1
3 ,

2
3 ) = 1

3 , it must be
1
3 �T∗

2
3 . On the other hand, 1

3 �TnM
2
3 . We suppose that 1

3 �TnM
2
3 . Then

there exists an element k ∈ [0, 1] such that TnM ( 2
3 , k) = 1

3 . By definition of TnM

, it is obtained that TnM ( 2
3 , k) = min( 2

3 , k) = 1
3 . Then it must be k = 1

3 . Since
2
3 + 1

3 = 1, it must be TnM ( 2
3 ,

1
3 ) = 1

3 = 0, a contradiction. So, 1
3 �TnM

2
3 .

Consequently, �TnM 6=�T∗ .

The set CT allows us to introduce the next equivalence relation on the class of
all t-norms on bounded lattices.

Definition 3.15. Define a relation δ on the class of all t-norms on bounded
lattices by T1δT2

T1δT2 : ⇐⇒ CT1
= CT2

.

Lemma 3.16. The relation δ given in Definition 3.15 is an equivalence relation.

Definition 3.17. For a given t-norm T on bounded lattice M , we denote by
T the δ equivalence class linked to T , i.e,

T = {T ′ | T ′δT}.

Example 3.18. Consider the t-norms T ? and TnM on [0, 1]. Since CT∗ =
( 1
2 , 1) = CTnM , it is clear that the t-norms T ∗ and TnM are equivalent according

to the relation δ.

Proposition 3.19. Let (M,≤, 0M , 1M ) be a bounded lattice. Equivalence class
of the infimum t-norm T∧ is the set of all divisible t-norms on M .
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Proof. Let T ′ ∈ T∧, x ≤ y and y′ ≤ x for x, y, y′ ∈ M . Since T∧(x, y) = x
and T∧(x, y′) = y′, it follows that x �T∧ y and y′ �T∧ x. That is x ∈ CT∧ .
Since CT∧ = CT ′ , it must be x ∈ CT ′ . Then for some z, z′ ∈ M , x �T ′ z and
z′ �T ′ x. Let x �T ′ z. Then there exist m ∈ M such that T ′(z,m) = x. So, it
is obtained that T ′ is a divisible t-norm. Similarly, it can be shown that T ′ is a
divisible t-norm for z′ �T ′ x. Conversely, it is easy to show that T ′δT∧, when T ′

is a divisible t-norm on M . �

When M = [0, 1], it is clear that the equivalence class of the infimum t-norm
TM is the set of all continuous t-norms on [0, 1].

Proposition 3.20. Let M1 and M2 be bounded lattices, T1 be a t-norm on M1

and T2 be a t-norm on M2 and consider their direct product T1×T2 on M1×M2.
Then

CT1×T2 = CT1 × CT2 .

Definition 3.21 ([7]). Let M be a bounded lattice, T be a t-norm on M and
let KT be defined by

KT = {a ∈M | for some b ∈M, [a < b and a �T b] or [b < a and b �T a]}.

Proposition 3.22 ([8]). Let (M,≤, 0M , 1M ) be a bounded lattice and T be a
t-norm on M . If there exist two elements of M such that these are incomparable,
then KT 6= ∅.

Remark. Proposition 3.22 can not be true for set CT . That is, if there exist
two elements of M such that these are incomparable, then it does not need to be
CT 6= ∅. To illustrate this claim we shall give the following example.

Example 3.23. Consider the lattice (M3 = {0M3 , k,m, n, 1M3},≤, 0M3 , 1M3)
given in Figure 3. Consider the t-norm T (a, b) = a ∧ b on M3. It is clear that
CT = ∅.

Figure 3. The lattice M3
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Proposition 3.24. Let M1 and M2 be bounded lattices, T1 be a t-norm on M1

and T2 be a t-norm on M2 and consider their direct product T1×T2 on M1×M2.
Then

KT1
×KT2

⊆ KT1×T2
.

Remark. The converse of Proposition 3.24 may not be true. Here is an example
illustrating such a case.

Example 3.25. Consider the t-norms TnM and T ? on [0, 1]. We want to
demonstrate that it need not to be KTnM×T? ⊆ KTnM ×KT? . We will show that
( 4
5 ,

4
5 ) ∈ KTnM×T? and ( 4

5 ,
4
5 ) /∈ KTnM ×KT? . We claim that 1

5 �TnM
4
5 . Suppose

that 1
5 �TnM

4
5 . Then there exists an element k ∈ [0, 1] such that TnM ( 4

5 , k) = 1
5 .

Since min( 4
5 , k) = 1

5 , it follows that k = 1
5 . In this case, 1

5 + 4
5 = 1, it is obtained

that 1
5 = 0, a contradiction. So, it holds 1

5 �TnM
4
5 . Thus, ( 1

5 , x) �TnM×T? ( 4
5 ,

4
5 )

for all x ∈ [0, 45 ]. So, ( 4
5 ,

4
5 ) ∈ KTnM×T? . On the other side, since KT? = (0, 12 )

by Aşıcı (see [7]), then we have that 4
5 /∈ KT? . So, ( 4

5 ,
4
5 ) /∈ KTnM × KT? .

Consequently, KTnM×T? ⊆ KTnM ×KT? does not hold.

Remark. If we take t-norms T1 and T2 to be equal, then the converse of
Proposition 3.24 is true, i.e., equality is satisfied.

Remark. The converse of Proposition 3.24 may be true for some special
t-norms on the unit interval [0, 1]. Here is an example illustrating such a case.

Example 3.26. Consider the t-norm defined as follows:

T (a, b) =

{
ab
2 , (a, b) ∈ [0, 1)2,

min(a, b), otherwise,

and consider the t-norm TnM . By [23], we know that KT = KTnM = (0, 1). So,
it is clear that KT×TnM = (0, 1)× (0, 1) = KT ×KTnM .

Definition 3.27. Let M be a bounded lattice, T be a t-norm on M and K?
T

defined by

K?
T = {a ∈ KT | for some b, b′ ∈M, [a < b but a �T b] and [b′ < a but b′ �T a]}.

Proposition 3.28. Let M1 and M2 be bounded lattices, T1 be a t-norm on M1

and T2 be a t-norm on M2 and consider their direct product T1×T2 on M1×M2.
Then

K?
T1
×K?

T2
⊆ K?

T1×T2
.

Remark. The converse of Proposition 3.28 may not be true. Here is an example
illustrating such a case.

Example 3.29. Consider the t-norms TnM and T ? on [0, 1]. We want to
demonstrate that K?

TnM×T? * K?
TnM ×K?

T? . We will show that ( 1
4 ,

2
3 ) ∈ K?

TnM×T?

and (1
4 ,

2
3 ) /∈ K?

TnM ×K?
T? . We claim that 1

5 �TnM
1
4 . Suppose that 1

5 �TnM
1
4 .

Then there exists an element k ∈ [0, 1] such that TnM ( 1
4 , k) = 1

5 . Since min( 1
4 , k) =
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1
5 , it follows that k = 1

5 . In this case , 14 + 1
5 < 1, it is obtained that 1

5 = 0, a

contradiction. So, 1
5 �TnM

1
4 and ( 1

5 , x) �TnM×T? ( 1
4 ,

2
3 ) for some x ∈ (0, 23 ).

We also want to show that 1
4 �TnM

3
4 . Suppose that 1

4 �TnM
3
4 . Then there

exists an element ` ∈ [0, 1] such that TnM ( 3
4 , `) = 1

4 . Since min( 3
4 , `) = 1

4 , it follows

that ` = 1
4 . In this case, 3

4 + 1
4 = 1, it is obtained that 1

4 = 0, a contradiction. So,
1
4 �TnM

3
4 and ( 1

4 ,
2
3 ) �TnM×T? ( 3

4 , y
′) for some y′ ∈ ( 2

3 , 1). Consequently, we have

that ( 1
4 ,

2
3 ) ∈ K?

TnM×T? . On the other side, it is clear that K?
TnM = (0, 12 ). So,

we have that 2
3 /∈ K?

TnM and ( 1
4 ,

2
3 ) /∈ K?

TnM ×K?
T? . Consequently, K?

TnM×T? ⊆
K?

TnM ×K?
T? does not hold.

Remark. If we take the t-norms T1 and T2 to be equal, then the converse of
Proposition 3.28 is true, i.e., equality is satisfied.

Remark. The converse of Proposition 3.28 may be true for some special
t-norms on the unit interval [0, 1]. Here is an example illustrating such a case.

Example 3.30. Consider the t-norms TnM and T ? on [0, 1]. It is clear that
KTnM = KT? = (0, 12 ). So, it is apparent that KTnM×T? = (0, 12 ) × (0, 12 ) =
KTnM ×KT? .

4. Concluding remarks

We have introduced and studied t-norms on bounded lattices. We have defined and
discussed T1×T2-partial order, denoted by �T1×T2 . Additionally, we have defined
the set of comparable and incomparable elements with respect to the T1×T2-partial
order, denoted �T1×T2

, and we have obtained some interesting results related to
direct product of t-norms on [0, 1]2. The theoretical developments in this paper
provide a more systematic choice of t-norms and t-conorms under given conditions.
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