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ALTERNATING DIRECTION EXPLICIT METHODS FOR

CONVECTION DIFFUSION EQUATIONS

Z. BUČKOVÁ, M. EHRHARDT AND M. GÜNTHER

Abstract. In this work, we investigate the stability and consistency properties of
alternating direction explicit (ADE) finite difference schemes applied to convection-

diffusion-reaction equations. Employing different discretization strategies of the

convection term, we obtain various ADE schemes and study their stability and
consistency properties. An ADE scheme consists of two sub steps (called upward

and downward sweeps) where already computed values at the new time level are

used in the discretization stencil. For linear convection-diffusion-reaction equations,
the consistency of the single sweeps is of order O

(
k2 + h2 + k/h

)
, but the average

of these two sweeps has a consistency of order O(k2 + h2), where k, h denote the

step size in time and space.

1. Introduction

In this work, we consider the alternating direction explicit (ADE) method for
the solution of convection diffusion reaction equations. This scheme strongly uses
boundary data in the solution algorithm and hence, it is very sensible to incorrect
treatment of boundary conditions. The ADE scheme consists of two steps (upward
and downward sweeps).

The ADE method for linear partial differential equations (PDEs) is an uncon-
ditionally stable explicit scheme of second order and thus can compete with the
Crank-Nicolson scheme, the alternating direction implicit (ADI) and the locally
one-dimensional (LOD) splitting methods. The ADI methods and splitting meth-
ods are examples of the Multiplicative Operator Scheme (MOS), which is rather
difficult to parallelise. In contrast, ADE methods belong to the group of Additive
Operator Scheme (AOS) which is easier to parallelise.

The structure of this work is as follows: In Section 2, we present the considered
PDEs and explain the basic idea of the ADE scheme and its modified difference
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quotients. Next, the numerical analysis studying stability and consistency of the
method is presented in Sections 3 and 4, respectively.

2. Solving PDEs with the ADE method

We start considering the partial differential equation (PDE)

vt = a vxx + b vx − c v, t ≥ 0 and for all x ∈ R,(1)

with the constant coefficients a ≥ const. > 0, b ≥ 0, c ≥ 0 and supplied
with smooth initial data. We denote the analytical classical solution of (1) by
v := v(x, t) and use subscripts to abbreviate partial differentiation, e.g., vxx :=
∂2v/∂x2.

Secondly, we consider the classical linear Black-Scholes (BS) equation

vt =
1

2
σ2S2vSS + rSvS − rv, t ≥ 0 and for all S ∈ R,(2)

which is a generalization of the PDE (1) to space dependent coefficients. In com-
putational finance, a solution v(S, t) of the PDE (2) represents a European option
price. A European option is a contract between the holder of the option and the
future buyer, that at a time instance T , the expiration time, the underlying asset
(stock) can be sold or bought (call or put option) for a fixed strike price K. Using
the BS formula, the option price is calculated for the corresponding underlying
asset price S (stock price) in a time interval t ∈ (0, T ).

Let us note that the BS equation (2) is derived under quite restrictive market
assumptions which are not very realistic. Relaxing these assumptions leads to
new models (e.g., including transaction costs, illiquidity on the market) that are
strongly nonlinear BS equations that can only be solved analytically in very simple
cases.

While there exist analytical tools to solve explicitly (1) and (2), the interest
in studying the ADE method for these simple 1D cases is the fact that we want
to extend this approach in a subsequent work to nonlinear PDEs and to higher
dimensions. Applying the ADE to the nonlinear BS equations, we need to solve
only a scalar nonlinear equation (instead of a nonlinear system of equations for
a standard implicit method). Thus, the computational effort using ADE instead
of an implicit scheme is highly reduced. Also, for higher space dimensions, the
number of ADE sweeps does not increase, it remains two. These facts make the
ADE methods an attractive candidate to study in more detailed way.

2.1. The Idea of the ADE scheme

The ADE scheme consists of two explicit sub steps called sweeps. A sweeping
step is constructed from one boundary to another and vice versa. Figure 1 is an
illustrative example of an upward sweep (analogous to the downward sweep in
Figure 2).
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Figure 1. Upward sweep. Figure 2. Downward sweep.

Figures 1 and 2 display grid for calculation price of call option in the Black-
Scholes model. Blue line represents payoff as an initial condition and the green
lines are given by Dirichlet boundary conditions for small and big asset values.
Calculation is provided backward in time.

To calculate the value of the yellow point, we use the black values. We can
see that we do not use only values from the previous time level but also already
known values from the current time level, which preserve explicitness of the scheme.
After each time,we combine the solutions from the upward and downward sweep
by averaging.

To introduce the ADE method systematically, we follow the lines of of Leung
& Osher [3], and Duffy [1]. The computational spatial interval (xmin, xmax), or
(0, Smax), respectively, is divided into J subintervals, i.e., the space step is h =
(xmax−xmin)/J and the grid points xj = jh, or h = Smax/J , Sj = jh, respectively.
Thus for the coefficients of the BS equation (2), we get a(Sj) = 1

2σ
2(jh)2, b(Sj) =

rjh, c(Sj) = r.
We consider the resulting spatial semidiscretization to the PDE (1), i.e., the

following system of ODEs

v′ = A(v)v, t > 0,(3)

with v(t) ∈ RJ−1. For simplicity, let us consider a uniform grid; the time interval
[0, T ] divided uniformly into N sub-intervals with the step size k = T/N , i.e., we
have the grid points tn = nk. Applying the trapezoidal rule to (3) leads to the
Crank-Nicolson scheme

vn+1 =
[
I − kA(vn)

]−1[
I + kA(vn)

]
vn,(4)

where vn ≈ v(tn). While this classical scheme (4) is unconditionally stable and of
second order in time and space, it becomes computationally expensive to invert
the operator I−kA(vn), especially, in higher space dimensions. In order to obtain
an efficient scheme while keeping the other desirable properties, this operator is
split additively by the matrix decomposition A = L + D + U , where L is lower
diagonal, D is diagonal and U denotes an upper-diagonal matrix. Next, following
the notation of [3], we further define the symmetric splitting

B = L+
1

2
D, C = U +

1

2
D.(5)
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Then we can formulate the three steps of the ADE scheme with its upward/down-
ward sweeps and the combination (also for higher dimensions) as

UP un+1 =
[
I − kB(vn)

]−1[
I + kC(vn)

]
vn,(6)

DOWN dn+1 =
[
I − kC(vn)

]−1[
I + kB(vn)

]
vn,(7)

COMB vn+1 =
1

2

[
un+1 + dn+1

]
.(8)

In other words, in the two sweeps above, we assign solution values that are already
computed at the new time level to the operator to be inverted. Hence, the resulting
scheme is explicit, i.e., efficient. It remains the questions if we could preserve the
unconditional stability and second order accuracy. This will be our main topic in
the sequel.

Let us summarize the procedure for one space dimension. The approximation to
the solution v(x, t) at the grid point (xj , tn) is c(xj , tn) =: cnj given as an average
of upward sweep unj and downward sweep dnj . This combination cnj contains the
initial data at the beginning. For n = 0, 1, . . . , N − 1, we repeat the following
steps:

1. Initialization: unj = cnj , dnj = cnj , j = 1, . . . , J − 1

2. Upward sweep: un+1
j , j = 1, . . . , J − 1

3. Downward sweep: dn+1
j , j = J − 1, . . . , 1

4. Combination: cn+1 = (un+1 + dn+1)/2

Using different approximation strategies for the convection, diffusion and reaction
terms, we obtain different variations of the ADE schemes, which were proposed
by Saul’ev [4].

2.2. The modified difference quotients for the ADE method

In this subsection, we want to illustrate the outcome of the previous Section 2.1.
Thus, we select some spatial discretization and investigate which ADE scheme will
result.

For the discretization of the diffusion term, we use, cf. [4],

∂2v(xj , tn)

∂x2
≈
unj+1 − unj − u

n+1
j + un+1

j−1

h2
, j = 1, . . . , J − 1

∂2v(xj , tn)

∂x2
≈
dn+1
j+1 − d

n+1
j − dnj + dnj−1
h2

, j = J − 1, . . . , 1.

(9)

In order to obtain a symmetric scheme, we use the following approximations of
the reaction term, the same for the upward and downward sweep

v(xj , tn) ≈
un+1
j + unj

2
, j = 1, . . . , J − 1,

v(xj , tn) ≈
dn+1
j + dnj

2
, j = J − 1, . . . , 1.

(10)
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Different approximations of the convection term are possible [3], [2]. In the fol-
lowing we state three of them. First, Towler and Yang [7] used special kind of
centered differences

∂v(xj , tn)

∂x
≈
unj+1 − u

n+1
j−1

2h
, j = 1, . . . , J − 1,

∂v(xj , tn)

∂x
≈
dn+1
j+1 − dnj−1

2h
, j = J − 1, . . . , 1.

(11)

More accurate approximations were proposed by Roberts and Weiss [6], Piacsek
and Williams [5]

∂v(xj , tn)

∂x
≈
unj+1 − unj + un+1

j − un+1
j−1

2h
, j = 1, . . . , J − 1,

∂v(xj , tn)

∂x
≈
dn+1
j+1 − d

n+1
j + dnj − dnj−1

2h
, j = J − 1, . . . , 1.

(12)

As a third option we will use upwind approximations combined with the ADE
technique. Since we have in mind financial applications, we will focus on left going
waves, i.e., b > 0 in (1). Right going waves b < 0 are treated analogously.

The well-known first order approximation reads

∂v(xj , t)

∂x
≈ vj+1(t)− vj(t)

h
j = J − 1, . . . , 1,(13)

and the forward difference of second order [8]

∂v(xj , t)

∂x
≈ −vj+2(t) + 4vj+1(t)− 3vj(t)

2h
, j = J − 1, . . . , 1.(14)

Applying the ADE time splitting idea of Section 2.1, we obtain for the upwind
strategy (13)

∂v(xj , tn+1)

∂x
≈
unj+1 − unj

h
, j = 1, . . . , J − 1,

∂v(xj , tn+1)

∂x
≈
dnj+1 − dnj + dn+1

j+1 − d
n+1
j

2h
, j = J − 1, . . . , 1,

(15)

and for the second order approximation

∂v(xj , tn+1)

∂x
≈
−unj+2 + 4unj+1 − 3unj

2h
, j = 1, . . . , J − 1,

∂v(xj , tn+1)

∂x
≈
−dnj+2 + 4dnj+1 − 3dnj

4h

+
−dn+1

j+2 + 4dn+1
j+1 − 3dn+1

j

4h
, j = J − 1, . . . , 1.

(16)

We will show that this upwind approximation (15) leads to a stable scheme.
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3. Stability of the ADE method

In this section, we investigate the stability of the proposed ADE method using
the matrix approach in Section 3.1 and the classical von-Neumann method in Sec-
tion 3.2. For the convection-diffusion-reaction equation (1), we obtain uncondi-
tional stability using the matrix approach. This stability analysis can be extended
by adding homogeneous BCs, without affecting the stability results. This is our
motivation to deal with the matrix approach.

3.1. Stability analysis using Matrix approach

We are motivated by [3], where the authors claim and proof that “if A is sym-
metric negative definite, the ADE scheme is unconditionally stable”. We have to
define symmetric discretization quotients to get symmetric discrete operators. For
reaction-diffusion equation, applying central difference quotients, we get symmet-
ric operator A. We can follow the ideas for the proof for the heat equation from
[3].

Using upwind discretization formulas instead of central differencing leads also
to an unconditionally stable scheme. “If A is lower-triangular with all diagonal
elements negative, the ADE scheme is unconditionally stable” is generally claimed
and proved in [3]. In the following we choose suitable differentiating approxima-
tions, we formulate theorems about stability properties and prove it.

Theorem 3.1. The ADE scheme applied to the reaction-diffusion PDE (1)
(with b = 0) is unconditionally stable.

Proof. Without loss of generality, we focus on the upward sweep

un+1
j − unj

k
= a

unj+1 − unj − u
n+1
j + un+1

j−1

h2
− c

un+1
j + unj

2
.

Let us denote the parabolic mesh ratio α := a k
h2 , γ := ck; where a, c are constants.

(17) un+1
j = unj + α

(
unj+1 − unj − un+1

j + un+1
j−1
)
− γ

2

(
un+1
j + unj

)
(

1 + α+
γ

2

)
un+1
j + (−α)un+1

j−1 =
(

1− α− γ

2

)
unj + αunj+1

We follow roughly the train of thoughts of Leung and Osher [3] and write the
upward sweep (17) with homogeneous BCs in matrix notation

Auu
n+1 = Buu

n, n ≥ 0,

with Au, Bu ∈ R(J−1)×(J−1) given by

Au =


1 + α+ γ

2 0 . . . 0

−α
. . .

...
...

. . .
. . . 0

0 . . . −α 1 + α+ γ
2

 = I +


α+ γ

2 0 . . . 0

−α
. . .

...
...

. . .
. . . 0

0 . . . −α α+ γ
2


Au =: I + E,
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Bu =


1− α− γ

2 α . . . 0

0
. . .

. . .
...

...
. . . α

0 . . . 0 1− α− γ
2

 = I −


α+ γ

2 −α . . . 0

0
. . .

. . .
...

...
. . . −α

0 . . . 0 α+ γ
2


Bu =: I − E>.

Next, we consider the matrices

A>u +Au = 2I +D,

where D := E + E> =


2α+ γ −α . . . 0

−α
. . .

. . .
...

...
. . . −α

0 . . . −α 2α+ γ

 .

The matrix D is positive definite and thus, we can define the induced D-norm as

‖C‖2D := sup
x 6=0

‖Cx‖2D
‖x‖2D

= sup
x 6=0

x>C>DCx

x>Dx
,

and the upward sweep can be written as

Un+1 = A−1u Bu U
n.

Next, we consider the D-norm for the upward sweep matrix A−1u Bu

‖A−1u Bu‖2D := sup
x 6=0

x>B>u A
−>
u DA−1u Bux

x>Dx

The numerator B>u A
−>
u DA−1u Bu can be easily rewritten after a few algebraic steps

as D − 2γ(A−1u D)>(A−1u D). From our notation Au = I +E and Bu = I −E>, it
follows

B>u A
−>
u DA−1u Bu = (I − E>)>A−>u DA−1u (I − E>),

where E> = D − E. An expression in terms of matrices Au and D gets the
following form

(A>u −D)>A−>u DA−1u (A>u −D)

= D −DA−1u D −D>A−>u D +DA−>u DA−1u D

= D −DA−>u A>uA
−1
u D −DA−>u AuA

−1
u D +DA−>u DA−1u D

= D +DA−>u
[
−A−>u −Au +D

]
A−1u D

= D − 2(A−1u D)>(A−1u D)

and hence, it follows

‖A−1u Bu‖2D = 1− 2 sup
x 6=0

‖A−1u Dx‖22
‖x‖2D

.
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Thus, the spectral radius of the upward sweep matrix A−1u Bu reads

ρ(A−1u Bu) ≤ ‖A−1u Bu‖D < 1,

and we can conclude that the upward sweep is unconditionally stable.
An analogous result holds for the downward step. In the corresponding equation

Add
n+1 = Bdd

n, n ≥ 0(18)

the matrices Ad and Bd are defined as Ad = A>u and Bd = B>u . The analysis
is done analogous: we can define a positive definite matrix and follow again the
steps from the previous proof. Consequently, also the combination as an arithmetic
average of these two sub steps is also unconditionally stable. �

The stability analysis using the matrix approach according to [3] worked for
reaction-diffusion equations with constant coefficients. However, this proof is not
transferable for the stability analysis of methods with non-symmetric terms, e.g.,
the difference quotients for the convection term proposed by Towler and Yang (eq.
11), or Roberts and Weiss (eq. 12), cf. Section 3.2.

As a remedy we can apply a modified upwind discretization of the convection
term. The resulting structure of the matrices Au, Bu is different, but we can do a
similar proof.

Theorem 3.2. ADE scheme, using upwind discretization in convection term,
applied to the reaction-diffusion-convection equation (1) is unconditionally stable
in the upward sweep and unconditionally stable in the downward one.

Proof. Again, without loss of generality, we focus on the upward sweep and
consider an upwind discretization for a left-going wave, i.e., b ≥ 0 (since later we
would like to extend this approach for Black-Scholes model, where b ≥ 0). In the
upward sweep we use difference quotients using values just from the old time level
(13)

un+1
j − unj

k
= a

unj+1 − unj − u
n+1
j + un+1

j−1

h2
+ b

unj+1 − unj
h

− c
un+1
j + unj

2
.

Using the abbreviations α := a k
h2 , β := b kh ≥ 0, γ := ck, we can write

− αun+1
j−1 +

(
1 + α+

γ

2

)
un+1
j =

(
1− α− β − γ

2

)
unj +

(
α+ β

)
unj+1.(19)

We follow again roughly the ideas of Leung and Osher [3] and consider the upward
sweep (19) with homogeneous BCs

Auu
n+1 = Buu

n, n ≥ 0,
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with the system matrices Au, Bu ∈ R(J−1)×(J−1) given by

Au =


1 + α+ γ

2 0 . . . 0

−α
. . .

...
...

. . .
. . . 0

0 . . . −α 1 + α+ γ
2



= I +


α+ γ

2 0 . . . 0

−α
. . .

...
...

. . .
. . . 0

0 . . . −α α+ γ
2

 =: I + E,

Bu =


1− α− β − γ

2 α+ β . . . 0

0
. . .

. . .
...

...
. . . α+ β

0 . . . 0 1− α− β − γ
2



= I −


α+ β + γ

2 −α− β . . . 0

0
. . .

. . .
...

...
. . . −α− β

0 . . . 0 α+ β + γ
2

 =: I − F,

where D := E + F =


2α+ β + γ −α− β . . . 0

−α
. . .

. . .
...

...
. . . −α− β

0 . . . −α 2α+ β + γ

 .

The matrix D is not symmetric but obviously positive definite.
In the sequel we have just outlined the steps which differ from the previous proof.

The numerator B>u A
−>
u DA−1u Bu can be easily rewritten after a few algebraic steps

as D − 2γ(A−1u D)>(A−1u D).
From our notation Au = I + E and Bu = I − F , it follows

B>u A
−>
u DA−1u Bu = (I − F )>A−>u DA−1u (I − F ),

where F := D−E. An expression in terms of matrices Au and D gets the following
form

(I + E −D)>A−>u DA−1u (I + E −D) = (Au −D)>A−>u DA−1u (Au −D)

and we proceed the same way as in previous proof.
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For the downward sweep, we have

dn+1
j − dnj

k
= a

dn+1
j+1 − d

n+1
j − dnj + dnj−1
h2

+ b
dnj+1 + dn+1

j+1 − dnj − d
n+1
j

2h
− c

dn+1
j + dnj

2
.

Using the abbreviations α := a k
h2 , β := b kh ≤ 0, γ := ck, we can write(

1 + α+
β

2
+
γ

2

)
dn+1
j +

(
−α− β

2

)
dn+1
j+1

= αdnj−1 +
(

1− α− β

2
− γ

2

)
dnj +

β

2
dnj+1

(20)

ADd
n+1 = BDd

n, n ≥ 0,

with AD, BD ∈ R(J−1)×(J−1) given by matrices AD, BD. The matrix AD is upper-
diagonal AD = diag(1 + α + β

2 + γ
2 ,−α −

β
2 ). The matrix BD is tridiagonal with

diagonal terms BD = diag(α, 1 − α − β
2 −

γ
2 ,

β
2 ). Likewise, we construct matrices

D = diag(−α, 2α + β + γ,−α − β) as a tridiagonal positive definite matrix. We
can follow the same way of proof, and thus we conclude the unconditional stability
of the downward sweep. �

3.2. Von Neumann stability analysis
for the convection-diffusion-reaction equation

Since analysis using matrix approach was suitable for upwind kind of approxi-
mation in convection term, here we investigate stability properties of the ADE
schemes, where discretization of convection term is provided according to [7] and
[6].

We consider the convection-diffusion-reaction equation (1) and focus on the
upward sweep of the ADE procedure in the sequel. An appropriate choice for the
approximation of the convection term is the one due to Roberts and Weiss [6] since
performing just a downward sweep leads to the unconditionally stable solution.

Theorem 3.3. The ADE scheme with the Roberts and Weiss approximation in
the convection term, applied to the PDE (1) is conditionally stable in the upward
sweep and unconditionally stable for the downward one.

Proof. Using Roberts and Weiss discretization in convection term, we get

un+1
j − unj

k
= a

unj+1 − unj − u
n+1
j + un+1

j−1

h2

+ b
unj+1 − unj + un+1

j − un+1
j−1

2h
− c

un+1
j + unj

2
.
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Let us denote the parabolic mesh ratio α := a k
h2 , the hyperbolic mesh ratio β := b kh

and γ := ck; where a, b, c are nonnegative constants.

un+1
j = unj + α

(
unj+1 − unj − un+1

j + un+1
j−1

)
+
β

2

(
unj+1 − unj + un+1

j − un+1
j−1

)
− γ

2

(
un+1
j + unj

)
.

Applying von Neumann Ansatz unj := enαk ei jλh amplification factor A1 reads

A1 =
A+B eiλh

C +D e− iλh

where A = 1−α−β/2−γ/2; B = α+β/2; C = 1+α−β/2+γ/2; D = −α+β/2.
For stability we require |A1|2 ≤ 1.

|A1|2 = A1A1 =

(
A+B eiλh

) (
A+B e− iλh

)
(C +D e− iλh) (C +D eiλh)

≤ 1

A2 +B2 + 2AB cos(λh) ≤ C2 +D2 + 2CD cos(λh)

2 (AB − CD) cos(λh) ≤ C2 +D2 −A2 −B2

(4α− 4αβ − βγ) cos(λh) ≤ 4α− 4αβ − βγ + 2γ.(21)

Here we can distinguish 2 cases with respect to the sign of (4α− 4αβ − βγ).
• Case 1: By substituing α, β, γ into (4α− 4αβ − βγ) > 0, we get the following

condition

α <
a

2Pe
− ck

4
.(22)

In this case, equation (21) can be rewritten as

cos(λh) ≤ 4α− 4αβ − βγ + 2γ

4α− 4αβ − βγ
(23)

1 ≤ 1 +
2γ

4α− 4αβ − βγ

0 ≤ 2γ

4α− 4αβ − βγ
.(24)

We can notice that condition (24) is satisfied for all the possible values of
parameters since γ > 0 and 4α− 4αβ − βγ > 0.

• Case 2: We consider (4α− 4αβ − βγ) < 0, what is equivalent to the condition

α >
a

2Pe
− ck

4
.(25)

In this case, equation (21) can be rewritten as

cos(λh) ≥ 4α− 4αβ − βγ + 2γ

4α− 4αβ − βγ
(26)

−1 ≥ 1 +
2γ

4α− 4αβ − βγ
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0 ≥ 8α− 8αβ − 2βγ + 2γ

4α− 4αβ − βγ
.(27)

Since (4α− 4αβ − βγ) < 0, then (8α−8αβ−2βγ+2γ) ≥ 0. After substituing
α, β, γ and after elementary algebraic steps, we get

α ≤ a

2Pe
− ck

4
+
ch

4b
.(28)

Case 2 leads to conditions (25) and (28) what means that

α ∈
(

a

2Pe
− ck

4
,
a

2Pe
− ck

4
+
ch

4b

]
(29)

To sum up case 1 and case 2, we can claim that conditions (22) and (29), and
also considering the situation where (4α− 4αβ − βγ) = 0, we get

α ≤ a

2Pe
− ck

4
+
ch

4b
,(30)

where Pe = bh
2 is the so-called Peclet number.

For the downward sweep, we get the following amplification factor

A2 =

[
1− α+ β

2 −
γ
2

]
+ [α− β

2 ] e− iλh[
1 + α+ β

2 + γ
2

]
+ [−α− β

2 ] eiλh
(31)

Stability condition |A2|2 ≤ 1 leads to the formula

cos(λh) ≤ 4α+ 4αβ + βγ + 2γ

4α+ 4αβ + βγ
.

Let us note that the last condition can be simplified to the condition

2γ

4α+ 4αβ + βγ
≥ 0.(32)

The coefficients α, β, γ are positive, i.e., the condition (32) is satisfied, and thus
we have the unconditional stability for the downward sweep using the Roberts and
Weiss approximation, which completes the proof. �

In case of the Roberts and Weiss approximation we propose to use only the
unconditional stable downward sweep.

Theorem 3.4. ADE scheme, using Towler and Yang approximation in the
convection term, applied to the PDE (1) is conditionally stable in both sweeps.

Proof. For the Towler and Yang approximation, the stability condition for the
upward sweep reads

(4α− 2αβ − βγ) cos(λh) ≤ 4α− 2αβ + 2γ,(33)

where again we can distinguish 2 cases with respect to the sign of left hand side
of the equation (33).
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• Case 1: If (4α− 2αβ − βγ) > 0, it means

α <
a

Pe
− ck

2
.(34)

In this case, equation (33) can be rewritten as

cos(λh) ≤ 4α− 4αβ − βγ + 2γ

4α− 2αβ − βγ
(35)

1 ≤ 1 +
γ(2 + β)

4α− 2αβ − βγ

0 ≤ γ(2 + β)

4α− 2αβ − βγ
.(36)

We can notice that condition (36) is satisfied for all the possible values of
parameters since γ ≥ 0 and (2 + β) > 0 and 4α− 2αβ − βγ > 0.

• Case 2: We consider (4α−2αβ−βγ) < 0, what is equivalent to the condition

α >
a

Pe
− ck

2
.(37)

In this case, equation (33) can be rewritten as

cos(λh) ≥ 4α− 4αβ − βγ + 2γ

4α− 2αβ − βγ
(38)

−2 ≥ γ(2 + β)

4α− 2αβ − βγ
After substituing α, β, γ and simplification, it leads to the condition

α ≤ a

Pe
− ck

2
+
ch

2b
+

1

2
.(39)

In case 2, we obtain two conditions (37) and (39), namely

α ∈
(

a

2Pe
− ck

2
,
a

Pe
− ck

2
+
ch

2b
+

1

2

]
(40)

From case 1, condition (34) and case 2 condition (40) in Towler and Yang case
and considering also possibility of (4α− 2αβ − βγ) = 0, we can sum up

α ≤ a

Pe
− ck

2
+
ch

2b
+

1

2
.(41)

For the downward sweep, the stability condition is

cos(λh) ≤ 4α+ 2αβ + 2γ

4α+ 2αβ + βγ
,

which leads to the condition
k

h2
≤ 1

Pe
(42)

Both sweeps in Towler and Yang discretization of convection term in reaction-
diffusion-convection equation are conditionally stable under the conditions (41)
and (42). �
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4. Consistency Analysis of the ADE methods

In this section, we provide a consistency analysis of the ADE methods for solving
the convection-diffusion-reaction equation (1) and for the BS model (2).

4.1. Consistency of the ADE scheme
for convection-diffusion-reaction equations

We study the consistency of the following ADE discretization

un+1
j − unj

k
= a

unj+1 − unj − u
n+1
j + un+1

j−1

h2

+ b
unj+1 − unj + un+1

j − un+1
j−1

2h
− c

un+1
j + unj

2

to the convection-diffusion-reaction equation (1). The local truncation error (LTE)
of the upward sweep is given by

LTEup = k
(
−1

2
vtt +

1

2
avxxt +

1

2
bvxt

)
+ k2

(
−1

6
vttt +

1

4
avxxtt +

1

4
bvxtt

)
+ h2

( 1

12
avxxxx

1

6
bvxxx

)
− kh

(1

6
avxxxt +

1

4
bvxxt

)
− k

h
avxt −

k2

h

(1

2
avxtt

)
− k3

h

(1

6
avxttt

)
,

and analogously, the LTE for the downward sweep reads

LTEdown = k
(
−1

2
vtt +

1

2
avxxt +

1

2
bvxt

)
+ k2

(
−1

6
vttt +

1

4
avxxtt +

1

4
bvxtt

)
+ h2

( 1

12
avxxxx

1

6
bvxxx

)
+ kh

(1

6
avxxxt +

1

4
bvxxt

)
+
k

h
avxt +

k2

h

(1

2
avxtt

)
+
k3

h

(1

6
avxttt

)
.

Thus, we end up for the LTE for the combined sweep

LTEADE = k
(
−1

2
vtt +

1

2
avxxt +

1

2
bvxt

)
+ k2

(
−1

6
vttt +

1

4
avxxtt +

1

4
bvxtt

)
+ h2

( 1

12
avxxxx

1

6
bvxxx

)
,

Assuming a constant parabolic mesh ratio k/h2, the first order term in k can be
written in the form O(k) = O(h2) and hence, we get

LTEADE = k2
(
−1

6
vttt +

1

4
avxxtt +

1

4
bvxtt

)
+ h2

( 1

12
avxxxx

1

6
bvxxx −

1

2
vtt +

1

2
avxxt +

1

2
bvxt

)
,

Hence, the order of consistency of the ADE method for the PDE (1) is O(k2 +h2).
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4.2. The Consistency of the ADE method for the linear BS model

As an extension of the PDE (1), we consider the linear BS equation (2).

Theorem 4.1. The order of consistency of the ADE method for the linear BS
equation is O(k2 + h2) in both sweeps and in the final combined solution.

Proof. The linear BS PDE is a special case of (1) with the space-dependent
coefficients a(S) = 1

2σ
2S2, b(S) = rS, c(S) = r. The LTE for the upward sweep

reads

LTEBS = k
(
−1

2
vtt +

1

2
avxxt +

1

2
bvxt

)
+ k2

(
−1

6
vttt +

1

4
avxxtt +

1

4
bvxtt

)
+ h2

( 1

12
avxxxx

1

6
bvxxx

)
+ kh

(
−1

6
avxxxt −

1

4
bvxxt

)
+
k

h

(
−avxt

)
+
k2

h

(
−1

2
avxtt

)
+
k3

h

(
−1

6
avxttt

)
.

If we assume a constant parabolic mesh ratio α = k/h2, then we get

LTE = k
(
−1

2
vtt

)
+ k2

(
−1

6
vttt

)
= αh2

(
−1

2
vtt

)
+ k2

(
−1

6
vttt

)
,

where we neglected higher order terms. A similar result holds for the downward
sweep. We have shown that consistency for the linear BS model is O(k2 + h2) in
downward, upward and hence, also in the combination. �

4.3. Application and numerical experiments with the linear model

We apply the ADE method and calculate a price for a vanilla European call option
in a classic linear BS model with constant coefficients. Choosing the following set
of parameters r = 0.03 (interest rate); q = 0 (continuous dividend yield); σ = 0.2
(volatility); T = 1 (maturity time in years); Smax = 90 (maximal stock price);
K = 30 (strike price); and defining a grid with N = 50 time steps; J = 200 space
steps, we get an option price, which is shown in Figure 3.

Figure 3. Option price. Figure 4. Solution at time t = 0 and t = T .

In this subsection, we analyze the computational and theoretical order of con-
vergence. In Table 1, there is recorded an error as a difference between numerical



324 Z. BUČKOVÁ, M. EHRHARDT AND M. GÜNTHER

solution using ADE method and the closed form BS formula for different meshes
with fixed mesh ratio 0.23. In Table 2, ratios of errors from the Table 1 are calcu-
lated. One can observe that using double space steps, ratio of errors converges to
the number 4, what confirms that the theoretical order of convergence is 2.

N J mesh ratio error

3 50 0.23 0.2458

12 100 0.23 0.0855

50 200 0.23 0.0208

200 400 0.23 0.0052

800 800 0.23 0.0013

Table 1. Error as a difference between

exact solution and approximation.

ratio of errors

error50/error100 2.87

error100/error200 4.11

error200/error400 4

error400/error800 4

Table 2. Ratio of errors.

Figures 5–9 show an error on different grids as a difference between numerical
solution and the exact one (from the BS formula). Table 1 records the maximum
value of the error from the time t = 0, it means that we observe the maximal
value of the errors whole calculation in the current time. At the beginning of
the calculation (nearby maturity time) we can observe the highest error, which is
caused by the non-smooth initial data. This error decreases during the calculation.
The finer the mesh, the faster the decrease of the error (5)–(9).

Figure 5. Error,N = 3,

J = 50.

Figure 6. Error,N = 12,

J = 100.

Figure 7. Error, N = 50,

J = 200.

Figure 8. Error, N = 200,
J = 400.

Figure 9. Error, N = 800,
J = 800.
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Conclusion and Outlook

We provided a numerical analysis for ADE methods solving linear convection-
diffusion-reaction equations. Stability was investigated by two different approaches.
The matrix approach yields unconditional stability in the downward sweep using
upwind discretization. The von-Neumann analysis yields unconditional stability
of the downward sweep using the Roberts and Weiss approximation.

It turned out that the order of consistency is O(k2 + h2 + k/h) for the upward
or downward sweeps, but its combination exhibits an increase order of consistency
O(k2 + h2). Next, for the BS model, as an application in computational finance,
we obtained an order of consistency O(k2 + h2) for both downward and upward
sweeps.

Our aim is to extend our numerical analysis, esp. the stability analysis, to
PDEs with non-constant space dependent coefficients and provide experiments
with the BS PDE. We will investigate the stability properties of ADE methods
for solving nonlinear BS models and provide illustrative numerical experiments.
Finally, extensions of the ADE method to higher dimensions will be considered.
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