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GORENSTEIN INJECTIVE MODULES

AND ENOCHS’ CONJECTURE

A. IACOB

Abstract. We prove that the class of Gorenstein injective modules, GI, is special

precovering if and only if it is covering if and only if it is closed under direct limits.
This adds to the list of examples that support Enochs’ conjecture:

“Every covering class of modules is closed under direct limits”.

We also give a characterization of the rings for which GI is covering: the class of

Gorenstein injective left R-modules is covering if and only if R is left noetherian, and

such that character modules of Gorenstein injective left R-modules are Gorenstein
flat.

1. Introduction

Precovers and preenvelopes are fundamental concepts in relative homological al-
gebra and they are important in many areas of mathematics. The importance of
precovers comes from the fact that their existence allows constructing resolutions
with respect to a class of modules C. The existence of C-covers allows constructing
minimal such resolutions (which are unique up to isomorphisms).

In this paper, we are interested in Gorenstein injective precovers and covers.
The existence of the Gorenstein injective envelopes over arbitrary rings was re-
cently proved in [16]. But the question “Over which rings is the class of Gorenstein
injective modules (pre)covering?” is still open. It is known that the existence of
the Gorenstein injective covers implies that the ring is noetherian ([4]). We prove
that the class of Gorenstein injective left R-modules is covering if and only if it is
special precovering if and only if the ring R is left noetherian and such that the
character modules of left Gorenstein injective modules are Gorenstein flat right
R-modules.

We also prove that the class of Gorenstein injective left R-modules is covering
if and only if it is closed under direct limits. This result supports Enochs’ con-
jecture. Enochs proved that a precovering class of modules C which is also closed
under direct limits, is, in fact, a covering class ([7, Corollary 5.2.7]). He also
conjectured that “Every covering class of modules is closed under direct limits”.
The conjecture has been verified for various type of classes. We now add the class
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of Gorenstein injective modules, GI, to the list of classes of modules satisfying
Enochs’ conjecture.

We start by showing (Proposition 2) that the class of Gorenstein injective left
R-modules, GI, being closed under direct limits, implies that it is a covering class.
In [13, Proposition 2], we proved that if GI is closed under direct limits, then the
ring R is left noetherian and such that character modules of Gorenstein injectives
are Gorenstein flat. We also proved ([13, Lemma 2]) that over such rings, GI is
the left half of a duality pair. Therefore, by [12, Theorem 3.1], GI being closed
under direct limits implies that GI is a covering class.

Then we prove (Theorem 2) that if the class of Gorenstein injective modules is
special precovering, then it is closed under direct limits. In particular, this is the
case when GI is covering. The proof uses Proposition 3: “Let W be a class of left
R-modules that is closed under direct summands, under taking cokernels of pure
monomorphisms, and under pure transfinite extensions. Then W is closed under
direct limits”. Proposition 4 and Lemma 4 verify that if GI is special precovering,
then all these hypotheses are met.

We obtain a characterization of the rings over which GI is special precovering
(Theorem 3). The following statements are equivalent:

(1) The class of Gorenstein injective left R-modules is covering.
(2) The class of Gorenstein injective left R-modules is special precovering.
(3) The class of Gorenstein injective left R-modules is closed under direct limits.
(4) The ring R is left noetherian and such that the character modules of Goren-

stein injective left R-modules are Gorenstein flat right R-modules.

Theorem 4 extends the result to complexes by showing that the class of Goren-
stein injective complexes is special precovering if and only if it is covering if and
only if it is closed under direct limits.

2. Preliminaries

Throughout the paper, R denotes an associative ring with unity. Unless otherwise
specified, by module we mean a left R-module. R-Mod denotes the category of
left R-modules.

We recall the definition of Gorenstein injective modules. We will use GI to
denote this class of modules.

Definition 1 ([6]). A module M is called Gorenstein injective if there is an
exact complex of injective modules

E = . . .→ E1 → E0 → E−1 → . . .

such that M=Z0E and the complex Hom(I,E) is exact for any injective module I.

Since we use Gorenstein flat modules as well, we recall that they are the cycles
of the exact complexes of flat modules that remain exact when tensored with
any injective module. We use GF to denote the class of Gorenstein flat right
R-modules.

We also recall the definitions for Gorenstein injective precovers, covers, and
special precovers.
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Definition 2. A homomorphism φ : G→M is a Gorenstein injective precover
of M if G is Gorenstein injective and if for any Gorenstein injective module G′

and any φ′ ∈ Hom(G′,M) there exists u ∈ Hom(G′, G) such that φ′ = φu.
A Gorenstein injective precover φ is said to be a cover if any v ∈ EndR(G) such

that φv = φ is an automorphism of G.
A Gorenstein injective precover φ is said to be special if kerφ is in the right

orthogonal class of that of Gorenstein injective modules GI⊥ (where GI⊥ =
{M |Ext1(G,M) = 0 for all Gorenstein injective modules G}).

As mentioned, the importance of the Gorenstein injective (pre)covers comes
from the fact that they allow defining the Gorenstein injective resolutions: if the
ring R is such that every R-module M has a Gorenstein injective precover, then
for every M there exists a Hom(GI,−) exact complex . . .→ G1 → G0 →M → 0
with all Gi Gorenstein injective modules. This is equivalent to G0 →M , and each
Gi → Ker(Gi−1 → Gi−2) being Gorenstein injective precovers. Such a complex is
called a Gorenstein injective resolution of M ; it is unique up to homotopy, so it
can be used to compute right derived functors of Hom.

If GI is a covering class, then working with a GI-cover at every step, one
can construct a minimal Gorenstein injective resolution of M (such a minimal
resolution is unique up to an isomorphism).

We will also use duality pairs, so we recall their definition.

Definition 3 ([12]). A duality pair over R is a pair (M, C), where M is a
class of left R-modules and C is a class of right R-modules, satisfying the following
conditions:

1. M ∈ M if and only if M+ ∈ C (where M+ is the character module of M ,
M+ = HomZ(M,Q/Z)).

2. C is closed under direct summands and finite direct sums.

A duality pair (M, C) is called (co)product closed if the classM is closed under
(co)products in the category R-Mod.

Theorem 1 ([12, Theorem 3.1]). Let (M, C) be a duality pair. Then the fol-
lowing hold:

1. M is closed under pure submodules, pure quotients, and pure extensions.
2. If (M, C) is coproduct-closed, then M is covering.

3. Results

We start by showing that GI being closed under direct limits implies that it is
a covering class. The result follows from Theorem 1, [13, Lemma 2] and [13,
Proposition 2].

Proposition 1 ([13, Proposition 2]). If the class of Gorenstein injective left
R-modules is closed under direct limits, then the ring R is left noetherian and the
character module of every Gorenstein injective left R-module is a Gorenstein flat
right R-module.
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Lemma 1 ([13, Lemma 2]). Let R be a left noetherian ring such that the
character module of every Gorenstein injective left R-module is a Gorenstein flat
right R-module. Then (GI,GF) is a duality pair.

Proposition 2. If the class of Gorenstein injective left R-modules is closed
under direct limits, then GI is a covering class.

Proof. By [13, Lemma 2] and [13, Proposition 2], GI is the left half of a duality
pair. Since GI is also closed under direct sums, it follows that it is a covering class
(by Theorem 1). �

We prove that if the class of Gorenstein injective modules is special precovering,
then it is closed under direct limits. In particular, this is the case when GI is
covering (since by Wakamatsu’s Lemma [7, Corollary 7.2.3], a covering class that
is closed under extensions is special precovering) . We use the following result ([2,
Lemma 2.8]).

We recall that a monomorphism f : A → B is called pure if the short exact

sequence 0→ A
f−→ B → Coker(f)→ 0 is pure (i.e., it stays exact when tensoring

with any module). In particular, a submodule N of a module M is pure if the
incluson monomorphism i : N →M is pure.

We also recall the definition of a filtration. Let W be a class of modules. A
module M is said to have a W-filtration if there is an increasing chain of submod-
ules M = (Mα, α ≤ λ) such that M0 = 0, Mλ = M , Mα = ∪β<αMβ for each
limit ordinal α ≤ λ and Mα+1/Mα ' Cα for some Cα ∈ W.

A W-filtration (Mα, α ≤ λ) is said to be pure if for each α, Mα is a pure
submodule of Mα+1.

Lemma 2 ([2, Lemma 2.8]). Let κ be an infinite regular cardinal and N =
(Nα, gαβ : Nβ → Nα, β < α < κ) be a well-ordered κ-continuous directed system
of modules. Assume that N0 = 0. Put C = lim−→N and N = ⊕α<κNα. Then the

canonical (κ-pure) presentation of C

ε : 0→ K
⊆−→ N

f−→ C → 0

is the direct limit of the κ-continuous well-ordered directed system of pure short
exact sequences

εα : 0→ Kα
⊆−→ ⊕β<αNβ

fα−→ Nα′ → 0, α < κ,

where we set α′ = α if α is limit (including zero), and α′ = α − 1 if α is a
successor ordinal. Furthermore, fα|Nβ = gα′β for each β < α. Finally, for
β < α, the connecting morphisms between εβ and εα comprise (from left to right)
of inclusion, canonical split inclusion and gα′β′ . (We put gγγ = idNγ for each
γ < κ.)

In particular, setting Kκ = K, we get a pure filtration K = (Kα, α ≤ κ) of K.

Proposition 3. Let W be a class of modules that is closed under direct sum-
mands, under taking cokernels of pure monomorphisms, and under pure transfinite
extensions. Then W is closed under direct limits.
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Proof. Let κ be an infinite regular cardinal and N = (Nα, gαβ : Nβ → Nα, β <
α < κ) be a well-ordered κ-continuous directed system of modules, with N0 = 0.

There is a pure exact sequence 0 → K
⊆−→ N

f−→ C → 0, where C = lim−→N and

N = ⊕α<κNα. As in Lemma 2, there is a pure filtration of K = Ker(f), K =
(Kα, α ≤ κ) . Since the right connecting map between the short exact sequences
εα and εα+1 is IdNα

(when α is limit), we have that Kα+1/Kα ' Nα ∈ W.
If α is a successor, then the exact sequence

εα : 0→ Kα
⊆−→ ⊕β<αNβ

fα−→ Nα−1 → 0

is split exact. Therefore, Kα is a direct summand of ⊕β<αNβ ∈ W, so Kα ∈ W.
The pure exact sequence 0 → Kα → Kα+1 → Kα+1/Kα → 0 with both Kα and
Kα+1 in W gives that Kα+1/Kα is also in W.

So (Kα)α is a pure W-filtration, and therefore, K ∈ W.
Since N is also inW, andW is closed under cokernels of pure monomorphisms,

it follows that C ∈ W. �

Our main application of Proposition 4 is proving that the class of Gorenstein
injective modules, GI, is special precovering if and only if it is closed under direct
limits.

First, we give some quick remarks.

Lemma 3. If GI is special precovering, then R is a left noetherian ring.

Proof. Let (Ai)i∈I be a family of injective left R-modules. By hypothesis,
⊕i∈IAi ∈ GI. Since for each i, Ai ∈ ⊥GI and ⊥GI is closed under direct sums
(as the left half of a cotorsion pair), we have that ⊕i∈IAi ∈ ⊥GI. So ⊕i∈IAi ∈
⊥GI ∩ GI = Inj. Since the class of injective left R-modules is closed under direct
sums, R is left noetherian. �

Lemma 4. The class of Gorenstein injective modules is closed under direct
summands and under cokernels of monomorphisms.

Proof. Since GI is the right half of a hereditary cotorsion pair (by [16]), it
follows that GI is closed under cokernels of monomorphisms. Also, as the right
half of a cotorsion pair, GI is closed under direct summands. �

In order to prove that GI being a special precovering covering class implies that
it is closed under direct limits, we will also use the following result (this is basically
[8, Proposition 2] with a new proof).

Proposition 4 ([8, Proposition 2]). If every R-module has a special Gorenstein
injective precover, then the class of Gorenstein injective modules is closed under
transfinite extensions.

Proof. Let (Gα, α ≤ λ) be a direct system of monomorphisms with each Gα ∈
GI, and let G = lim−→Gα. Since for each α, we have that Gα ∈⊥ (GI⊥), it follows

that G = lim−→Gα ∈⊥ (GI⊥) by Eklof Lemma ([5, Theorem 1.2]).
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The class GI is precovering and closed under direct summands, so GI is closed
under direct sums ([17, Lemma 9.14]). Thus ⊕α≤λGα ∈ GI.

Since there is a short exact sequence 0 → K → ⊕α≤λGα → G → 0 with
⊕α≤λGα Gorenstein injective, it follows that any Gorenstein injective precover of
G has to be surjective.

The class GI is special precovering, so there is an exact sequence 0 → A →
G → G → 0 with A ∈ GI⊥ and G Gorenstein injective. But G ∈⊥ (GI⊥), so
we have that Ext1(G,A) = 0. Thus G is a direct summand of G, therefore G is
Gorenstein injective. �

Corollary 1. If the class of Gorenstein injective modules is covering, then it
closed under transfinite extensions.

Proof. By [7, Corollary 7.2.3], any Gorenstein injective cover is a special pre-
cover, so the result follows from Proposition 4. �

Theorem 2. The class of Gorenstein injective modules is special precovering
if and only if it is closed under direct limits.

Proof. By Proposition 2, if GI is closed under direct limits, then it is a covering
class. Since GI is also closed under extensions, it is special precovering.

It is known that a precovering class of modules that is closed under direct sum-
mands is also closed under direct sums. Since GI is closed under direct summands,
direct sums, cokernels of monomorphisms, and transfinite extensions, it follows (by
Proposition 3) that GI is closed under direct limits. �

In [13], we gave a characterization of the rings for which the class of Goren-
stein injective modules is closed under direct limits. Using [13, Theorem 2], and
Theorem 2 above, we obtain the following theorem.

Theorem 3. The following statements are equivalent:

(1) The class of Gorenstein injective modules is covering.
(2) The class of Gorenstein injective modules is special precovering.
(3) The class of Gorenstein injective modules is closed under direct limits.
(4) The ring R is left noetherian and such that the character modules of Goren-

stein injectives are Gorenstein flat right R-modules.

Proof. (1) ⇒ (2) is immediate since a covering class closed under extensions is
special precovering ([7, Corollary 7.2.3]).

(2) ⇒ (3) by Theorem 2 above.
(3) ⇒ (1) by Proposition 2.
(3) ⇔ (4) by [13, Theorem 2]. �

The following theorem shows that the result extends to the category of com-
plexes of left R-modules Ch(R).

Theorem 4. The following are equivalent:

(1) The class of Gorenstein injective left R-modules, GI, is closed under direct
limits.
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(2) The class of Gorenstein injective left R-modules is covering in R-Mod.
(3) The class of Gorenstein injective complexes is closed under direct limits.
(4) The class of Gorenstein injective complexes is covering in Ch(R).
(5) The class of Gorenstein injective complexes is special precovering.

Proof. (1) ⇔ (2) by Theorem 3.
(1)⇒ (3) Since GI is covering in this case, R is a left noetherian ring (Lemma 3).

By [14, Theorem 8], a complex is Gorenstein injective if and only if it is a complex
of Gorenstein injective modules. Since GI is closed under direct limits, it follows
that the class of Gorenstein injective complexes is also closed under direct limits.

(3) ⇒ (1) Let (Gi)i∈I be a family of Gorenstein injective modules. For each
i ∈ I, consider the complex S0(Gi) = 0 → Gi → 0 with Gi in the zeroth place.
By hypothesis, lim−→S0(Gi) is a Gorenstein injective complex. By [14, Theorem 8],

lim−→Gi ∈ GI.

(2) ⇒ (4) By [9, Theorem 1], if C is a covering class of modules such that C is
closed under direct limits and extensions, then the class of complexes of modules
from C, dwC, is covering in Ch(R). So if GI is covering (hence closed under direct
limits), then the class of Gorenstein injective complexes, dwGI, is covering in
Ch(R).

(4) ⇒ (5) is immediate, since a covering class that is closed under extensions,
is special precovering.

(5) ⇒ (2) Let M be a left R-module and consider the complex S0(M) = 0 →
M → 0 with M in the zeroth place. Let G → S0(M) be a special Gorenstein
injective precover with kernel A.

Let G′ ∈ GI. We have that Dn(G′) = 0 → G′ = G′ → 0 with G′ in places n
and n + 1, is a Gorenstein injective complex, so Ext1Ch(R)(D

n(G′), A) = 0. But

Ext1Ch(R)(D
n(G′), A) ' Ext1R(G′, An) for each n. So An ∈ GI⊥ for each n. In

particular, A0 ∈ GI⊥. By hypothesis, the sequence

0→ HomCh(R)(D
n(G′), A)→ HomCh(R)(D

n(G′), G)

→ HomCh(R)(D
n(G′), S0(M))→ 0

is exact. But HomCh(R)(D
n(G′), A) ' Hom(G′, A0), HomCh(R)(D

n(G′), G) '
Hom(G′, G0), and HomCh(R)(D

n(G′), S0(M)) ' Hom(G′,M). So

0→ Hom(G′, A0)→ Hom(G′, G0)→ Hom(G′,M)→ 0

is exact. Thus G0 →M is a special Gorenstein injective precover.
Since GI is special precovering, it is a covering class (by Theorem 3). �
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