THE GENERALISED DOUBLE HAHN SEQUENCE SPACE H_{ϑ}^d

M. YEŞİLKAYAGİL SAVAŞCI* AND F. BAŞAR

ABSTRACT. Suppose that $\vartheta \in \{bp, r\}$. In this study, we introduce the generalised double Hahn sequence space H_{ϑ}^d as an extension of generalised Hahn sequence space h_d defined by Goes [J. Math. Anal. Appl. **39** (1972), 477–494]. We give some topological properties of this space. Then, we characterize the classes $(H_{\vartheta}^d : W)$ of four dimensional infinite matrices, where $W \in \{\mathcal{C}_{\vartheta}, \mathcal{M}_u, \mathcal{L}_u, H_{\vartheta}^d\}$. Finally, we determine the α -dual of the space H_{ϑ}^d and $\beta(bp)$ - and γ -duals of the space H_r^d .

1. INTRODUCTION

Let Ω denote the vector space of all double sequences with the co-ordinatewise addition and scalar multiplication of double sequences. Vector subspaces of Ω are called double sequence spaces. A double sequence $x = (x_{kl})$ of complex numbers is called *bounded* if $||x||_{\infty} = \sup_{k,l \in \mathbb{N}} |x_{kl}| < \infty$, where N denotes the set of positive integers. The space of all bounded double sequences is denoted by \mathcal{M}_u , which is a Banach space with the norm $|| \cdot ||_{\infty}$. A double sequence $x = (x_{kl})$ of complex numbers is said to converge to the limit a in Pringsheim's sense (shortly p-converge to a) if for every $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that $|x_{kl}-a| < \varepsilon$ for all k, l > N. By \mathcal{C}_p , we denote the space of all convergent double sequences in the Pringsheim's sense. Furthermore, we can consider the space \mathcal{C}_{bp} of the double sequences which are both convergent in the Pringsheim's sense and bounded, i.e.,

$$\mathcal{C}_{bp} := \left\{ x = (x_{kl}) \in \mathcal{C}_p : \|x\|_{\infty} = \sup_{k,l \in \mathbb{N}} |x_{kl}| < \infty \right\} = \mathcal{C}_p \cap \mathcal{M}_u.$$

The main drawback of the Pringsheim's convergence is that a *p*-convergent double sequence need not be bounded. Hardy [9] lacked this disadvantage by giving the definition of regular convergence, as follows: A sequence in the space C_p is said to be *regularly convergent* if it is an ordinary convergent sequence with respect to each index and denote the space of all such sequences by C_r .

Received March 22, 2024; revised May 12, 2024.

²⁰²⁰ Mathematics Subject Classification. Primary 46A45, 40C05.

Key words and phrases. Sequence space; matrix domain; α -, β - and γ -duals and matrix mappings.

^{*}Corresponding author.

For any notion of convergence $\vartheta \in \{p, bp, r\}$, the space of all ϑ -convergent double sequences will be denoted by C_{ϑ} and the limit of a ϑ -convergent double sequence x by ϑ -lim_{$k,l} <math>x_{kl}$. By $C_{\vartheta 0}$, we denote the spaces of all double sequences which ϑ -converge to 0. Móricz [12] proved that the spaces C_{ϑ} and $C_{\vartheta 0}$ are Banach spaces with the norm $\|\cdot\|_{\infty}$, where $\vartheta \in \{bp, r\}$. Also, by \mathcal{L}_u and \mathcal{BV} , we denote the space of all absolutely convergent double series and the space of all double sequences of bounded variation, respectively, that is,</sub>

$$\mathcal{L}_{u} := \left\{ x = (x_{kl}) \in \Omega : \sum_{k,l} |x_{kl}| < \infty \right\},\$$
$$\mathcal{BV} := \left\{ x = (x_{kl}) \in \Omega : \sum_{k,l} |x_{kl} - x_{k+1,l} - x_{k,l+1} + x_{k+1,l+1}| < \infty \right\}.$$

A double sequence $x = (x_{kl})$ is called monotonically increasing if and only if $x_{k_2,l_2} \ge x_{k_1,l_1}$ when $k_2 \ge k_1$ and $l_2 \ge l_1$ for all $k, l \in \mathbb{N}$. Also, the double series $\sum_{k,l} a_{kl}$ of nonnegative real numbers is convergent if and only if (s_{mn}) is bounded above, where $s_{mn} = \sum_{k,l=1}^{m,n} a_{kl}$ (see [10]).

We write $\Phi = \text{span} \{ \mathbf{e}^{\mathbf{k}\mathbf{l}} : k, l \in \mathbb{N} \}$, where the double sequence $\mathbf{e}^{\mathbf{k}\mathbf{l}} = (\mathbf{e}_{ij}^{\mathbf{k}\mathbf{l}})$ is defined for all $k, l, i, j \in \mathbb{N}$ as follows:

$$\mathbf{e}_{ij}^{\mathbf{kl}} := \begin{cases} 1, & (k,l) = (i,j), \\ 0, & \text{otherwise,} \end{cases}$$

for all $i, j, k, l \in \mathbb{N}$.

For a double sequence $x = (x_{kl})$, its sections $x^{[m,n]}$ are defined by

$$x^{[m,n]} = \sum_{k=1}^{m} \sum_{l=1}^{n} x_{kl} \mathbf{e}^{\mathbf{k}l},$$

which are the elements of Φ , the space of all finitely non-zero double sequences, for each $m, n \in \mathbb{N}$.

For a double sequence space V, its α -, $\beta(\vartheta)$ - and γ -duals V^{α} , $V^{\beta(\vartheta)}$ and V^{γ} are defined by

$$V^{\alpha} := \left\{ (a_{kl}) \in \Omega : \sum_{k,l} |a_{kl}x_{kl}| < \infty \text{ for all } (x_{kl}) \in V \right\},$$
$$V^{\beta(\vartheta)} := \left\{ (a_{kl}) \in \Omega : \vartheta - \sum_{k,l} a_{kl}x_{kl} \text{ exists for all } (x_{kl}) \in V \right\},$$
$$V^{\gamma} := \left\{ (a_{kl}) \in \Omega : \sup_{m,n \in \mathbb{N}} \left| \sum_{k,l=0}^{m,n} a_{kl}x_{kl} \right| < \infty \text{ for all } (x_{kl}) \in V \right\},$$

where ϑ denotes any kind of convergence for double sequences. It is easy to see for any two spaces V and W of double sequences that $W^{\alpha} \subset V^{\alpha}$ whenever $V \subset W$ and $V^{\alpha} \subset V^{\gamma}$, and it is known that the inclusion $V^{\alpha} \subset V^{\beta(\vartheta)}$ holds.

THE GENERALISED DOUBLE HAHN SEQUENCE SPACE $H^d_{\mathfrak{A}}$

A double sequence space V is said to be *solid* [2, p. 153] if and only if

$$\widetilde{V} := \left\{ \left(u_{kl} \right) \in \Omega : \exists \left(x_{kl} \right) \in V \text{ such that } |u_{kl}| \le |x_{kl}| \text{ for all } k, l \in \mathbb{N} \right\} \subset V.$$

A double sequence space V is said to be monotone if $xu = (x_{kl}u_{kl}) \in V$ for every $x = (x_{kl}) \in V$ and $u = (u_{kl}) \in \{0, 1\}^{\mathbb{N} \times \mathbb{N}}$, where $\{0, 1\}^{\mathbb{N} \times \mathbb{N}}$ denotes the set of all double sequences of zeros and ones. If V is monotone, then $V^{\alpha} = V^{\beta(\vartheta)}$ [19, p. 36] and V is monotone whenever V is solid.

A locally convex double sequence space V is called a *DK-space*, if all of the seminorms $r_{kl} \colon V \to \mathbb{R}, x = (x_{ij}) \mapsto |x_{kl}|$ for all $k, l \in \mathbb{N}$, are continuous. A DK-space with a Fréchet topology is called an *FDK-space*. A normed FDK-space is called a *BDK-space*. Note that $\mathcal{M}_u, \mathcal{C}_{bp}$ and \mathcal{C}_r endowed with the norm $\|\cdot\|_{\infty}$ are BDK-space (see Zeltser [19, p. 37]).

Let (V, τ_V) be a DK-space and ϑ be a convergence notion for double sequences. Recall that V is supposed to contain Φ . We consider the distinguished subspace

$$S_V^{(\vartheta)} := \left\{ x = \left(x_{kl} \right) \in V : x = \vartheta - \sum_{k,l} x_{kl} \quad (V, \tau_V) \right\}$$

of V. We say that an element $x \in V$ has the $AK(\vartheta)$ -property in V if $x \in S_V^{(\vartheta)}$. The space V is called an $AK(\vartheta)$ -space if every its element has $AK(\vartheta)$ in V, or equivalently, $V = S_V^{(\vartheta)}$, Zeltser [19].

Following Rao [13], we define the differentiated and integrated spaces of a double sequence space V, respectively, as

$$dV := \left\{ \left(x_{kl} \right) \in \Omega : \left(\frac{1}{kl} x_{kl} \right)_{k,l \in \mathbb{N}} \in V \right\}$$
$$\int V := \left\{ \left(x_{kl} \right) \in \Omega : \left(kl x_{kl} \right)_{k,l \in \mathbb{N}} \in V \right\}.$$

Let V and W be two double sequence spaces and $A = (a_{mnkl})$ be any fourdimensional complex infinite matrix. Then, we say that A defines a matrix mapping from V into W and we write $A: V \to W$ if for every sequence $x = (x_{kl}) \in V$, the A-transform $Ax = \{(Ax)_{mn}\}_{m,n\in\mathbb{N}}$ of x exists and is in W, where

$$(Ax)_{mn} = \vartheta - \sum_{k,l} a_{mnnk} x_{kl}$$
 for each $m, n \in \mathbb{N}$.

We define the ϑ -summability domain $V_A^{(\vartheta)}$ of A in a space V of double sequences by

$$V_A^{(\vartheta)} := \bigg\{ x = \big(x_{kl} \big) \in \Omega : Ax = \Big(\vartheta - \sum_{k,l} a_{mnkl} x_{kl} \Big)_{m,n \in \mathbb{N}} \text{ exists and is in } V \bigg\}.$$

The reader may refer for some details of the double sequence spaces to Boos et al. [5], Zeltser [19], and Başar and Yeşilkayagil Savaşcı [3].

Here and after, unless stated otherwise, we assume that ϑ denotes any of the symbols bp or r.

M. YEŞİLKAYAGİL SAVAŞCI* AND F. BAŞAR

The sequence space h defined by

$$h := \left\{ x = (x_k) \in \omega : \sum_{k=1}^{\infty} k |\Delta x_k| < \infty \right\} \bigcap c_0,$$

is called Hahn sequence space, named after its introducer Hahn [8], where Δ denotes the forward difference operator, i.e., $\Delta x_k = x_k - x_{k+1}$ for all $k \in \mathbb{N}$, and c_0 is the space of all null sequences. Rate [13] proved that the space h is a BK-space with AK with respect to the norm

$$||x||_h = \sum_{k=1}^{\infty} k |\Delta x_k| < \infty \text{ for all } x = (x_k) \in h.$$

Goes [7] introduced the generalised Hahn space h_d for arbitrary sequences $d = (d_k)$ with $d_k \neq 0$ for all $k \in \mathbb{N}$ by

$$h_d := \left\{ x = (x_k) \in \omega : \sum_{k=1}^{\infty} |d_k| |\Delta x_k| < \infty \right\} \bigcap c_0.$$

Yeşilkayagil Savaşcı and Başar defined the double Hahn sequence space H_{ϑ} in [18]. Then, following them and Goes [7], we define the generalised double Hahn sequence space H_{ϑ}^d as follows:

(1)
$$H_{\vartheta}^{d} := \left\{ x = \left(x_{kl} \right) \in \mathcal{L}_{u} : \sum_{k,l=1}^{\infty} d_{kl} \left| \Delta x_{kl} \right| < \infty \text{ and } \vartheta - \lim_{k,l \to \infty} x_{kl} = 0 \right\},$$

where $d = (d_{kl})$ is a monotonically increasing double sequence of positive real numbers such that $d_{kl} \neq 0$ for all $k, l \in \mathbb{N}$ and $\Delta x_{kl} = x_{kl} - x_{k+1,l} - x_{k,l+1} + x_{k+1,l+1}$ for all $k, l \in \mathbb{N}$.

2. Main results

Theorem 2.1. The space H^d_{ϑ} is a linear space with the co-ordinatewise addition and scalar multiplication of double sequences, and is a Banach space endowed with the norm

(2)
$$||x||_d = \sum_{k,l=1}^{\infty} d_{kl} \left| \Delta x_{kl} \right| \text{ for all } x = (x_{kl}) \in H^d_{\vartheta}.$$

Proof. The first part of the theorem is a routine verification, and so, we omit details.

We show that H^d_{ϑ} is a Banach space with the norm $\|\cdot\|_d$ defined by (2). Let $(x^{(m)})_{m\in\mathbb{N}}$ be any Cauchy sequence in the space H^d_{ϑ} , where $x^{(m)} = \left\{x^{(m)}_{kl}\right\}_{k,l\in\mathbb{N}}$ for every fixed $m \in \mathbb{N}$. Then, for a given $\varepsilon > 0$, there exists a positive integer $l_0 \in \mathbb{N}$ such that

(3)
$$||x^{(m)} - x^{(n)}||_d = \sum_{k,l=1}^{\infty} d_{kl} \left| \Delta \left(x_{kl}^{(m)} - x_{kl}^{(n)} \right) \right| < \varepsilon$$

for all $m, n > l_0$. Choosing $\varepsilon = \varepsilon_1/(d_{kl})^3$ for all $k, l \in \mathbb{N}$ and using the relation (3), we easily obtain that

(4)
$$\left|\Delta\left(x_{kl}^{(m)} - x_{kl}^{(n)}\right)\right| < \frac{\varepsilon_1}{(d_{kl})^3} < \varepsilon_1$$

for each $k, l \in \mathbb{N}$ and for all $m, n > l_0$, where $\varepsilon_1 > 0$. This means that $(x^{(m)})_{m \in \mathbb{N}}$ is a Cauchy sequence in \mathcal{BV} for every fixed $k, l \in \mathbb{N}$. Since the space \mathcal{BV} is complete by [1, Theorem 2.8], it converges, say $x^{(m)} \to x$, as $m \to \infty$. Using these infinitely many limits, we define the sequence x. Therefore, by letting $n \to \infty$ in (4), we get

(5)
$$\left|\Delta\left(x_{kl}^{(m)} - x_{kl}\right)\right| < \frac{\varepsilon_1}{(d_{kl})^3}$$

for all $k, l \in \mathbb{N}$. Also, we have the relation

(6)
$$\left|\Delta x_{kl}\right| \le \left|\Delta x_{kl}^{(m)}\right| + \left|\Delta \left(x_{kl}^{(m)} - x_{kl}\right)\right|$$

for all $k, l \in \mathbb{N}$.

By the relation (5) and the definition of (d_{kl}) , we obtain the inequality

$$\sum_{k,l=1}^{\infty} d_{kl} \left| \Delta \left(x_{kl}^{(m)} - x_{kl} \right) \right| < \sum_{k,l=1}^{\infty} d_{kl} \frac{\varepsilon_1}{(d_{kl})^3} < \infty.$$

Since $x^{(m)} \in H^d_{\vartheta}$ for each fixed $m \in \mathbb{N}$, $\sum_{k,l=1}^{\infty} d_{kl} \left| \Delta x_{kl}^{(m)} \right| < \infty$. If we multiply both sides of the inequality (6) by d_{kl} and take sum over $k, l \in \mathbb{N}$, we obtain

$$\sum_{k,l=1}^{\infty} d_{kl} \left| \Delta x_{kl} \right| \leq \sum_{k,l=1}^{\infty} d_{kl} \left\{ \left| \Delta x_{kl}^{(m)} \right| + \left| \Delta \left(x_{kl}^{(m)} - x_{kl} \right) \right| \right\}$$
$$= \sum_{k,l=1}^{\infty} d_{kl} \left| \Delta x_{kl}^{(m)} \right| + \sum_{k,l=1}^{\infty} d_{kl} \left| \Delta \left(x_{kl}^{(m)} - x_{kl} \right) \right|$$
$$< \infty,$$

which shows that $x \in H^d_{\vartheta}$. Since $(x^{(m)})_{m \in \mathbb{N}} \in H^d_{\vartheta}$ is an arbitrary Cauchy sequence, the space H^d_{ϑ} is complete.

This step concludes the proof.

105

Theorem 2.2. The space H^d_{ϑ} endowed with the norm $\|\cdot\|_d$, defined by (2), is a BDK-space.

Proof. Since every norm (normed space) is a seminorm (seminormed space), we say that H^d_{ϑ} is a seminormed space with the seminorm (2). Also, we define new seminorms r_{kl} in the space H^d_{ϑ} by

$$\begin{array}{cccc} r_{kl} & : & H^d_\vartheta & \longrightarrow & \mathbb{R} \\ & & x = (x_{ij}) & \longmapsto & r_{kl}(x) = \left| x_{kl} \right| \end{array}$$

for all $k, l \in \mathbb{N}$. Now, we show that each one is continuous. To do this, we use the theorem given by Boos [4, Theorem 6.3.12, p. 284], that is, we must find M > 0

for all $x \in H^d_{\vartheta}$ such that

(7)
$$r_{kl}(x) = \left| x_{kl} \right| \le M \|x\|_d$$

for all $k, l \in \mathbb{N}$. Suppose that the relation (7) does not hold. So, there exist some M > 0 and $x \in H^d_{\vartheta}$ such that

$$(8) |x_{kl}| > M ||x||_d$$

for all $k, l \in \mathbb{N}$. Keeping in mind $x \in \mathcal{L}_u$, if we take sum over $k, l \in \mathbb{N}$ in the both sides of the inequality (8), we get

$$\infty > \sum_{k,l=1}^{\infty} |x_{kl}| > \sum_{k,l=1}^{\infty} M ||x||_d = M ||x||_d \sum_{k,l=1}^{\infty} 1 = \infty,$$

which is a contradiction. Thus, the relation (7) holds for all $x \in H^d_{\vartheta}$, i.e., the seminorms r_{kl} 's are not continuous for all $k, l \in \mathbb{N}$. Hence, the space H^d_{ϑ} is a DK-space. Also since it is a Banach space by Theorem 2.1, it has Fréchet topology. Therefore, it is a BDK-space with the norm (2).

The proof is completed.

Note. Defining the generalised double Hahn sequence space H_{ϑ}^d , we cannot stay connected to the definition of ordinary generalised Hahn sequence space h_d . Let us define the space H_{ϑ}^d for any arbitrary double sequence $d = (d_{kl})$ with $d_{kl} \neq 0$ for all $k \in \mathbb{N}$ as

(9)
$$H^d_{\vartheta} := \left\{ x = (x_{kl}) \in \Omega : \|x\|_{d_1} = \sum_{k,l=1}^{\infty} \left| d_{kl} \right| \left| \Delta x_{kl} \right| < \infty \text{ and } \vartheta - \lim_{k,l \to \infty} x_{kl} = 0 \right\}.$$

Explanation 1. If we take the double sequences $d = (d_{kl})$ as bounded with $d_{kl} \neq 0$ and for all $k, l \in \mathbb{N}$, we have the space $\mathcal{BV} \cap \mathcal{C}_{\partial 0}$ defined by Milovidov and Povolotski [11]. Because of that, defining the space H^d_{ϑ} , we take $d = (d_{kl})$ as an increasing double sequence of positive real numbers.

Explanation 2. Take the sequence $x = (x_{kl})$ defined by

(10)
$$x_{kl} := \begin{cases} 1, & k = 1 \text{ and } l \in \mathbb{N}, \\ 0, & \text{otherwise,} \end{cases}$$

for all $k, l \in \mathbb{N}$. Then it is trivial that $x \in \mathcal{C}_{\vartheta 0}$. Also,

$$||x||_{d_1} = \sum_{k,l=1}^{\infty} |d_{kl}| |\Delta x_{kl}| = \sum_{k,l=1}^{\infty} |d_{kl}| |x_{kl} - x_{k+1,l} - x_{k,l+1} + x_{k+1,l+1}|$$
$$= \sum_{l=1}^{\infty} |d_{1l}| |x_{1l} - x_{2l} - x_{1,l+1} + x_{2,l+1}|$$
$$= \sum_{l=1}^{\infty} |d_{1l}| |x_{1l} - x_{1,l+1}| = 0 < \infty,$$

that is, $x \in H^d_{\vartheta}$.

If we take k, l = 1 in the relation (7), we must have the inequality (11) $r_{11}(x) = |x_{11}| \le M ||x||_{d_1}.$

But, if we put the sequence x defined in (10) into the inequality (11), we obtain $1 \leq 0$. Hence, H_{ϑ}^d is not a *DK*-space with the definition (9).

For this reason, we must get the additional condition in the definition of the generalised double Hahn sequence space H^d_{ϑ} , as $x \in \mathcal{L}_u$.

Theorem 2.3. The space H^d_{ϑ} is an $AK(\vartheta)$ -space.

Proof. We derive for a sequence $x = (x_{kl}) \in H^d_{\vartheta}$ that

$$\left\|x - x^{[mn]}\right\|_{d} = \sum_{k,l=1,n+1}^{m,\infty} d_{kl} \left|\Delta x_{kl}\right| + \sum_{k,l=m+1,1}^{\infty,n} d_{kl} \left|\Delta x_{kl}\right| + \sum_{k,l=m+1,n+1}^{\infty} d_{kl} \left|\Delta x_{kl}\right|$$

for all $m, n \in \mathbb{N}$. Then, the conclusion

(12)
$$\vartheta - \lim_{m,n \to \infty} \sum_{k,l=m+1,n+1}^{\infty} d_{kl} |\Delta x_{kl}| = 0$$

is obvious. Define the double sequence $\zeta = (\zeta_{ml})$ by $\zeta_{ml} = \sum_{k=1}^{m} d_{kl} |\Delta x_{kl}|$ for all $m, l \in \mathbb{N}$. Therefore, one can immediately see that

(13)
$$\sum_{k=1}^{m} \sum_{l=n+1}^{\infty} d_{kl} |\Delta x_{kl}| = \sum_{l=n+1}^{\infty} \sum_{k=1}^{m} d_{kl} |\Delta x_{kl}| = \sum_{l=n+1}^{\infty} \zeta_{ml}$$

Since $\sum_{k,l} kl |\Delta x_{kl}|$ is convergent, from (13), it is the same for the series $\sum_{l=n+1}^{\infty} \zeta_{ml}$. So, the general term of this series tends to 0 as $m, n \to \infty$. Hence,

$$\vartheta - \lim_{m,n \to \infty} \sum_{k=1}^{m} \sum_{l=n+1}^{\infty} d_{kl} |\Delta x_{kl}| = \vartheta - \lim_{m,n \to \infty} \sum_{l=n+1}^{\infty} \zeta_{ml} = 0.$$

Let $\eta_{kn} = \sum_{l=1}^{n} d_{kl} |\Delta x_{kl}|$ for all $k, n \in \mathbb{N}$. In a similar way, we obtain

(14)
$$\vartheta - \lim_{m,n\to\infty} \sum_{k=m+1}^{\infty} \sum_{l=1}^{n} d_{kl} |\Delta x_{kl}| = \vartheta - \lim_{m,n\to\infty} \sum_{l=1}^{n} \sum_{k=m+1}^{\infty} \eta_{kn} = 0.$$

By (12)–(14), we see that

$$\vartheta - \lim_{m,n \to \infty} \left\| x - x^{[mn]} \right\|_d = 0,$$

i.e., the space H^d_ϑ is an $AK(\vartheta)\text{-space.}$

Theorem 2.4. The inclusion $H^d_{\vartheta} \subset \mathcal{L}_u$ strictly holds.

Proof. From the definition of the set H^d_{ϑ} , the inclusion $H^d_{\vartheta} \subset \mathcal{L}_u$ is obvious. Now, define the sequence $y = (y_{kl})$ by

(15)
$$y_{kl} := \begin{cases} (-1)^l / l^2, & k = 1 \text{ and } l \in \mathbb{N}, \\ 0, & \text{otherwise,} \end{cases}$$

for all $k, l \in \mathbb{N}$. Then, it is trivial that $x \in C_{\vartheta 0}$ and

$$\sum_{k,l=1}^{\infty} |y_{kl}| = \sum_{l=1}^{\infty} |y_{1l}| = \sum_{l=1}^{\infty} \frac{1}{l^2} < \infty,$$

that is, $y \in \mathcal{L}_u$. Since $d_{kl} > d_{k,l-1} > \cdots > d_{k1}$ for all $k, l \in \mathbb{N}$, we have the inequality

(16)
$$\sum_{k,l=1}^{\infty} d_{kl} |\Delta y_{kl}| = \sum_{l=1}^{\infty} d_{1l} |y_{1l} - y_{2l} - y_{1,l+1} + y_{2,l+1}|$$
$$= \sum_{l=1}^{\infty} d_{1l} |y_{1l} - y_{1,l+1}|$$
$$= \sum_{l=1}^{\infty} d_{1l} \left| \frac{(-1)^l}{l^2} - \frac{(-1)^{l+1}}{(l+1)^2} \right|$$
$$= \sum_{l=1}^{\infty} d_{1l} \frac{2l^2 + 2l + 1}{l^3 + 2l^2 + l}$$
$$> d_{11} \sum_{l=1}^{\infty} \frac{2l^2 + 2l + 1}{l^3 + 2l^2 + l}.$$

Since $\frac{1}{l} < \frac{2l^2 + 2l + 1}{l^3 + 2l^2 + l}$ by the comparison test for positive series, we obtain the series in the left hand side of the relation (16) is not convergent. Hence, $y \in \mathcal{L}_u \setminus H_{\vartheta}^d$. \Box

Theorem 2.5. Neither of the spaces $\int \mathcal{BV}$ and H^d_{ϑ} includes the other one.

Proof. Let us consider the double sequences $x \in H^d_{\vartheta}$ and $y \notin H^d_{\vartheta}$ given in (10) and (15), respectively. Then,

$$\begin{split} \sum_{k,l=1}^{\infty} \left| \Delta(klx_{kl}) \right| &= \sum_{k,l=1}^{\infty} \left| klx_{kl} - (k+1)lx_{k+1,l} - k(l+1)x_{k,l+1} + (k+1)(l+1)x_{k+1,l+1} \right| \\ &= \sum_{l=1}^{\infty} \left| lx_{1l} - 2lx_{2l} - (l+1)x_{1,l+1} + 2(l+1)x_{2,l+1} \right| \\ &= \sum_{l=1}^{\infty} \left| lx_{1l} - (l+1)x_{1,l+1} \right| \\ &= \sum_{l=1}^{\infty} \left| l - (l+1) \right| \\ &= \sum_{l=1}^{\infty} 1 = \infty, \end{split}$$

that is, $x \notin \int \mathcal{BV}$ and

$$\sum_{k,l=1}^{\infty} \left| \Delta(kly_{kl}) \right| = \sum_{k,l=1}^{\infty} \left| kly_{kl} - (k+1)ly_{k+1,l} - k(l+1)y_{k,l+1} + (k+1)(l+1)y_{k+1,l+1} \right|$$
$$= \sum_{l=1}^{\infty} \left| ly_{1l} - 2ly_{2l} - (l+1)y_{1,l+1} + 2(l+1)y_{2,l+1} \right|$$

$$= \sum_{l=1}^{\infty} \left| ly_{1l} - (l+1)y_{1,l+1} \right|$$
$$= \sum_{l=1}^{\infty} \left| \frac{l(-1)^l}{l^2} - \frac{(l+1)(-1)^{l+1}}{(l+1)^2} \right|$$
$$= \sum_{l=1}^{\infty} \frac{1}{l(l+1)} < \infty,$$

i.e., $y \in \int \mathcal{BV}$. This completes the proof.

Theorem 2.6. The space H^d_{ϑ} is not solid.

Proof. Define the sequence $u = (u_{kl})$ as follows:

(17)
$$u_{kl} := \begin{cases} 1, & k = 1 \text{ and } l \text{ is odd,} \\ 0, & \text{otherwise,} \end{cases}$$

for all $k, l \in \mathbb{N}$, and take the sequence $x = (x_{kl}) \in H^d_{\vartheta}$ as in (10). Then, obviously $|u_{kl}| \leq |x_{kl}|$ for all $k, l \in \mathbb{N}$. Since $d_{kl} > d_{k1}$ for all $k, l \in \mathbb{N}$, we have

$$\sum_{k,l=1}^{\infty} d_{kl} |\Delta u_{kl}| = \sum_{l=1}^{\infty} d_{1l} |u_{1l} - u_{1,l+1}|$$
$$= \sum_{l=1}^{\infty} d_{1l} (4l-1) |u_{1,2l}|$$
$$= \sum_{l=1}^{\infty} d_{1l} (4l-1)$$
$$> d_{11} \sum_{l=1}^{\infty} (4l-1) = \infty,$$

that is, $u \notin H^d_{\vartheta}$. Thus, the proof is completed.

Remark. Take the sequences x and u as in Theorem 2.6. Also, u is in $\{0, 1\}^{\mathbb{N}\times\mathbb{N}}$. Then, we have $|x_{kl}u_{kl}| = |u_{kl}|$ for each $k, l \in \mathbb{N}$. Hence, the space H_{ϑ}^d is not monotone.

Definition 2.7. Let V be a *BDK*-space. A subset E of Φ is called a determining set for V if D(V) is the absolutely convex hull of E, where $D = D(V) = \{x \in \Phi : ||x||_V \le 1\}$.

Theorem 2.8. Assume that $s_d^{\mathbf{k}\mathbf{l}} = \frac{1}{d_{kl}} \sum_{i,j=1}^{k,l} \mathbf{e}^{\mathbf{ij}}$ for $k, l \in \mathbb{N}$. Consider the set $E = \{s_d^{\mathbf{kl}} : k, l \in \mathbb{N}\}.$

Then, E is the determining set for the space H^d_{ϑ} .

Proof. Suppose that K denotes the absolutely convex hull of E and let $x \in D(H^d_{\vartheta})$. Then, $x \in \Phi$ and $||x||_d \leq 1$. Consequently,

$$x = \sum_{k,l=1}^{m,n} x_{kl} \mathbf{e}^{\mathbf{kl}} = \sum_{k,l=1}^{m,n} t_{kl} s_d^{\mathbf{kl}},$$

where $t_{kl} = d_{kl}\Delta x_{kl}$ for $k, l \in \mathbb{N}$. Also, $\sum_{k,l=1}^{m,n} |t_{kl}| \leq ||x||_d \leq 1$. Thus, $x \in K$. Therefore, the inclusion $D(H_{\vartheta}^d) \subset K$ holds.

Conversely, assume that $x \in K$. Then, we can write

(18)
$$x = \sum_{k,l=1}^{m,n} t_{kl} s_d^{\mathbf{kl}}$$

with $\sum_{k,l=1}^{m,n} |t_{kl}| \leq 1$. By the relation (18), we observe that

$$x_{11} = \sum_{k=1}^{m} \sum_{l=1}^{n} \frac{t_{kl}}{d_{kl}}, \quad x_{12} = \sum_{k=1}^{m} \sum_{l=2}^{n} \frac{t_{kl}}{d_{kl}}, \quad \dots, \quad x_{1n} = \sum_{k=1}^{m} \frac{t_{kn}}{d_{kn}};$$
$$x_{21} = \sum_{k=2}^{m} \sum_{l=1}^{n} \frac{t_{kl}}{d_{kl}}, \quad x_{22} = \sum_{k=2}^{m} \sum_{l=2}^{n} \frac{t_{kl}}{d_{kl}}, \quad \dots, \quad x_{2n} = \sum_{k=1}^{m} \frac{t_{kn}}{d_{kn}};$$
$$\vdots$$
$$x_{m1} = \sum_{l=1}^{n} \frac{t_{kl}}{d_{kl}}, \quad x_{m2} = \sum_{l=2}^{n} \frac{t_{kl}}{d_{kl}}, \quad \dots, \quad x_{mn} = \frac{t_{mn}}{d_{mn}};$$
$$x_{kl} = 0 \text{ for } k > m \text{ or } l > n \text{ or both.}$$

After straightforward calculation, we obtain

$$||x||_d = \sum_{k,l=1}^{\infty} d_{kl} |\Delta x_{kl}| = \sum_{k,l=1}^{m,n} |t_{kl}| \le 1.$$

So, $x \in D(H^d_{\vartheta})$. Thus, we see that the inclusion $K \subset D(H^d_{\vartheta})$ holds. Therefore, we conclude the fact that $K = D(H^d_{\vartheta})$. This completes the proof. \Box

Corollary 2.9. Take the sequence $s_d^{\mathbf{kl}} \in E$ for $k, l \in \mathbb{N}$. Then, we have

$$\left(As_{d}^{\mathbf{kl}}\right)_{mn} = \sum_{i,j=1}^{\infty} a_{mnij} \frac{1}{d_{kl}} \sum_{i,j=1}^{k,l} \mathbf{e}^{\mathbf{ij}} = \frac{1}{d_{kl}} \sum_{i,j=1}^{k,l} a_{mnij}$$

for all $m, n \in \mathbb{N}$. Thus, we obtain that

$$A[E] = \left\{ \frac{1}{d_{kl}} \sum_{i,j=1}^{\kappa, \iota} a_{mnij} : m, n \in \mathbb{N} \right\}$$

1. 1

for each $k, l \in \mathbb{N}$.

Referring Wilansky [15, Theorem 8.3.4.], we can give the following lemma without proof which is a corrected version of Lemma 2.1 given in [14]. **Lemma 2.10.** Let V be a BDK-space and E is determining set for V. Let W be an FDK-space and $A = (a_{mnkl})$ be a four dimensional infinite matrix for $m, n, k, l \in \mathbb{N}$. Suppose that either V has $AK(\vartheta)$ or $(a_{mnkl})_{k,l\in\mathbb{N}} \in \Phi$ for all $m, n \in \mathbb{N}$. Then $A \in (V : W)$ if and only if

- (i) $(a_{mnkl})_{m,n\in\mathbb{N}} \in W$ for all $k, l \in \mathbb{N}$,
- (ii) A[E] is a bounded set of W.

Theorem 2.11. $A = (a_{mnkl}) \in (H^d_{\vartheta} : C_{\vartheta})$ if and only if the following conditions hold:

(19)
$$\vartheta - \lim_{m,n \to \infty} a_{mnkl} \text{ exists for all } k, l \in \mathbb{N},$$

(20)
$$\sup_{m,n,k,l\in\mathbb{N}} \frac{1}{d_{kl}} \left| \sum_{i,j=1}^{k,l} a_{mnij} \right| < \infty$$

Proof. By Theorems 2.2 and 2.3, we have that the space H_{ϑ}^d is a BDK-space with $AK(\vartheta)$. Therefore, we conclude by Lemma 2.10 and Corollary 2.9 that $A \in (H_{\vartheta}^d : C_{\vartheta})$ if and only if $(a_{mnkl})_{m,n\in\mathbb{N}}$ in C_{ϑ} for all $k, l \in \mathbb{N}$, and A[E] is a bounded subset of C_{ϑ} , that is, $A \in (H_{\vartheta}^d : C_{\vartheta})$ if and only if the conditions (19) and (20) hold. This establishes the result.

Let us keep in mind that the spaces \mathcal{M}_u and \mathcal{L}_u are BDK-spaces, in [19, p. 37] and [17, Theorem 2.1], respectively. So, combining Corollary 2.9 and Lemma 2.10 and omitting the proofs, we formulate the following results.

Theorem 2.12.
$$A = (a_{mnkl}) \in (H^d_{\vartheta} : \mathcal{M}_u)$$
 if and only if
(21)
$$\sup_{m,n,k,l \in \mathbb{N}} |a_{mnkl}| < \infty.$$

Theorem 2.13. $A = (a_{mnkl}) \in (H^d_{\vartheta} : \mathcal{L}_u)$ if and only if

(22)
$$\sum_{m,n=1}^{\infty} |a_{mnkl}| < \infty \text{ for all } k, l \in \mathbb{N},$$
$$\sup_{k,l \in \mathbb{N}} \frac{1}{d_{kl}} \sum_{m,n=1}^{\infty} \left| \sum_{i,j=1}^{k,l} a_{mnij} \right| < \infty.$$

Theorem 2.14. $A = (a_{mnkl}) \in (H^d_{\vartheta} : H^d_{\vartheta})$ if and only if the condition (22) holds and

$$\vartheta - \lim_{m,n \to \infty} a_{mnkl} = 0 \quad \text{for all } k, l \in \mathbb{N},$$
$$\sum_{m,n=1}^{\infty} d_{mn} \left| \Delta_{11}^{mn} a_{mnkl} \right| < \infty \quad \text{for all } k, l \in \mathbb{N}$$
$$\sup_{k,l \in \mathbb{N}} \frac{1}{d_{kl}} \sum_{m,n=1}^{\infty} d_{mn} \left| \sum_{i,j=1}^{k,l} \Delta_{11}^{mn} a_{mnij} \right| < \infty,$$

where $\Delta_{11}^{mn} a_{mnkl} = a_{mnkl} - a_{m,n+1,kl} - a_{m+1,nkl} + a_{m+1,n+1,kl}$ for $m, n, k, l \in \mathbb{N}$.

M. YEŞİLKAYAGİL SAVAŞCI* AND F. BAŞAR

Theorem 2.15. The α -dual of the space H^d_{ϑ} is the space \mathcal{M}_u .

Proof. Since $H^d_{\vartheta} \subset \mathcal{L}_u$ and $\mathcal{L}^{\alpha}_u = \mathcal{M}_u$, we have that $\mathcal{M}_u \subset \{H^d_{\vartheta}\}^{\alpha}$.

Conversely, suppose that $a = (a_{kl}) \in \{H_{\vartheta}^d\}^{\alpha} \setminus \mathcal{M}_u$. Then, $\sum_{k,l} |a_{kl}y_{kl}| < \infty$ for all $y = (y_{kl}) \in H_{\vartheta}^d$ and $\sup_{k,l \in \mathbb{N}} |a_{kl}| = \infty$. Choose the sequence a as $a_{kl} > l^3$ for all $k, l \in \mathbb{N}$ and take $y \in H_{\vartheta}^d$ as in (15). Then, we easily see that $\sum_{k,l} |a_{kl}y_{kl}| = \sum_l |a_{1l}y_{1l}| > \sum_l l = \infty$, that is, $a \notin \{H_{\vartheta}^d\}^{\alpha}$, a contradiction. Therefore, the proof is completed.

Lemma 2.16 ([16, Theorem 4.3(i)]). $A \in (\mathcal{L}_u : \mathcal{M}_u)$ if and only if (23) $\sup_{m,n,k,l \in \mathbb{N}} |a_{mnkl}| < \infty.$

Lemma 2.17 ([16, Theorem 4.1(i)]). $A \in (\mathcal{L}_u : \mathcal{C}_{bp})$ if and only if the condition in (23) holds and

 $bp - \lim_{m,n \to \infty} a_{mnkl}$ exists for all $k, l \in \mathbb{N}$.

Theorem 2.18. Define the sets d_1 and d_2 as follows:

$$d_1 = \left\{ a = \left(a_{kl}\right) \in \Omega : \sup_{k,l \in \mathbb{N}} \frac{1}{d_{kl}} \left| \sum_{i,j=1}^{k,l} a_{ij} \right| < \infty \right\},$$
$$d_2 = \left\{ a = \left(a_{kl}\right) \in \Omega : bp - \lim_{k,l \to \infty} \frac{1}{d_{kl}} \sum_{i,j=1}^{k,l} a_{ij} \text{ exists} \right\}.$$

Then $\left\{H_r^d\right\}^{\beta(bp)} = d_1 \cap d_2.$

Proof. Let $a = (a_{kl}) \in \Omega$ be an arbitrary sequence and take $x = (x_{kl}) \in H_r^d$. Also, put $d_{kl}\Delta x_{kl} = \eta_{kl}$ for all $k, l \in \mathbb{N}$ and define the four-dimensional matrix $B = (b_{mnkl})$ as follows:

$$b_{mnkl} := \begin{cases} \frac{1}{d_{kl}} \sum_{i,j=1}^{k,l} a_{ij}, & 1 \le k \le m \text{ and } 1 \le l \le n, \\ 0, & \text{otherwise,} \end{cases}$$

for all $m, n, k, l \in \mathbb{N}$. Since $x \in H_r^d$, $\eta \in \mathcal{L}_u$. With some straightforward calculation, we have

$$(24) \sum_{k,l=1}^{m,n} a_{kl} x_{kl} = \sum_{k,l=1}^{m,n} \Delta x_{kl} \sum_{i,j=1}^{k,l} a_{kl} + \sum_{k,l=1}^{m,n} a_{kl} x_{m+1,l} + \sum_{k,l=1}^{m,n} a_{kl} x_{k,n+1} - \sum_{k,l=1}^{m,n} a_{kl} x_{m+1,n+1} \\ = \sum_{k,l=1}^{m,n} d_{kl} \Delta x_{kl} \frac{1}{d_{kl}} \sum_{i,j=1}^{k,l} a_{ij} + \sum_{k,l=1}^{m,n} a_{kl} x_{m+1,l} + \sum_{k,l=1}^{m,n} a_{kl} x_{k,n+1} - \sum_{k,l=1}^{m,n} a_{kl} x_{m+1,n+1} \\ = \sum_{k,l=1}^{m,n} \eta_{kl} \frac{1}{d_{kl}} \sum_{i,j=1}^{k,l} a_{ij} + \sum_{k,l=1}^{m,n} a_{kl} x_{m+1,l} + \sum_{k,l=1}^{m,n} a_{kl} x_{k,n+1} - \sum_{k,l=1}^{m,n} a_{kl} x_{m+1,n+1} \\ = (B\eta)_{mn} + \sum_{k,l=1}^{m,n} a_{kl} x_{m+1,l} + \sum_{k,l=1}^{m,n} a_{kl} x_{k,n+1} - \sum_{k,l=1}^{m,n} a_{kl} x_{m+1,n+1}.$$

113

If the limit $bp - \lim_{m,n \to \infty} \sum_{k,l=1}^{m,n} a_{kl} x_{kl}$ exists, then the limits

$$bp-\lim_{m,n\to\infty}\sum_{k,l=1}^{m,n}a_{kl}x_{m+1,l},$$
$$bp-\lim_{m,n\to\infty}\sum_{k,l=1}^{m,n}a_{kl}x_{k,n+1},$$
$$\lim_{m,n\to\infty}\sum_{k,l=1}^{m,n}a_{kl}x_{m+1,n+1}$$

also exist. Therefore, we observe by the relation (24) that $a \in \{H_r^d\}^{\beta(bp)}$ if and only if

$$bp - \lim_{m,n \to \infty} \sum_{k,l=1}^{m,n} \eta_{kl} \frac{1}{kl} \sum_{i,j=1}^{k,l} a_{ij} = bp - \lim_{m,n \to \infty} (B\eta)_{mn}$$

exists, that is, $a \in \{H_r^d\}^{\beta(bp)}$ if and only if $B \in (\mathcal{L}_u : \mathcal{C}_{bp})$. Hence, $a \in \{H_r^d\}^{\beta(bp)}$ if and only if the conditions

$$\sup_{k,l\in\mathbb{N}} \left| \frac{1}{d_{kl}} \sum_{i,j=1}^{k,l} a_{ij} \right| < \infty,$$
$$bp - \lim_{k,l\to\infty} \frac{1}{d_{kl}} \sum_{i,j=1}^{k,l} a_{ij}$$

hold from Lemma 2.17. Therefore, $\{H_r^d\}^{\beta(bp)} = d_1 \cap d_2$.

Theorem 2.19. The γ -dual of the space H_r^d is the set d_1 .

Proof. This is easily obtained by proceeding as in the proof of Theorem 2.18 above, by using Lemma 2.16 instead of Lemma 2.17. So, we omit details. \Box

3. CONCLUSION

In [18], Yeşilkayagil Savaşcı and Başar recently introduced the double Hahn sequence space H_{ϑ} as an extension of Hahn sequence space h defined by Hahn [8], where $\vartheta \in \{bp, r\}$. They gave some topological properties of the space H_{ϑ} and characterized the classes $(H_{\vartheta} : W)$ of four dimensional matrix transformations, where $W \in \{C_{\vartheta}, \mathcal{M}_u, \mathcal{L}_u, H_{\vartheta}\}$. Finally, they determined the α - and dual of the space H_{ϑ} and $\beta(bp)$ -dual of the space H_r .

In this present paper, as a continuation of Yeşilkayagil Savaşcı and Başar [18], we have studied the generalised double Hahn sequence space H^d_{ϑ} as an extension of generalised Hahn sequence space h_d defined by Goes [7], where $\vartheta \in \{bp, r\}$. We have emphasized some topological properties of the space H^d_{ϑ} and characterizations of the classes $(H^d_{\vartheta}: W)$ of four dimensional infinite matrices, where $W \in \{\mathcal{C}_{\vartheta}, \mathcal{M}_u, \mathcal{L}_u, H^d_{\vartheta}\}$. Also, we have found the α -dual of the space H^d_{ϑ} and $\beta(bp)$ - and γ -duals of the space H^d_r .

M. YEŞİLKAYAGİL SAVAŞCI* AND F. BAŞAR

Acknowledgment. The authors are very grateful to the anonymous referee for many helpful suggestions and his/her constructive report about the earlier version of this paper which led to some improvements.

References

- Altay B. and Başar F., Some new spaces of double sequences, J. Math. Anal. Appl. 309 (2005), 70–90.
- Başar F. and Sever Y., The space L_q of double sequences, Math. J. Okayama Univ. 51 (2009), 149–157.
- Başar F. and Yeşilkayagil Savaşcı M., Double Sequence Spaces and Four-Dimensional Matrices, CRC Press/Taylor & Francis Group, Boca Raton • London • New York, 2022.
- Boos J., Classical and Modern Methods in Summability, Oxford University Press Inc., New York, 2000.
- Boos J., Leiger T. and Zeller K., Consistency theory for SM methods, Acta Math. Hungar. 76 (1997), 83–116.
- Goes G., Sequences of bounded variation and sequences of Fourier coefficients. I., Math. Z. 118 (1970), 93–102.
- Goes G., Sequences of bounded variation and sequences of Fourier coefficients. II., J. Math. Anal. Appl. 39 (1972), 477–494.
- 8. Hahn H., Über folgen linearer operationen, Monatsh. Math. Phys. 32 (1922), 3-88.
- Hardy G. H., On the convergence of certain multiple series, Proc. Cambridge Philos. Soc. 19 (1916–1919), 86–95.
- Limaye B. V. and Zeltser M., On the Pringsheim convergence of double series, Proc. Est. Acad. Sci. 58 (2009), 108–121.
- Milovidov S. P. and Povolotski A. I., Dual spaces of conditional Köthe spaces of double number sequences, Izvestija Vyssh. Ucheb. Zav., Matem. 2 (1991), 90–91 (in Russian).
- Móricz F., Extensions of the spaces c and c₀ from single to double sequences, Acta Math. Hungar. 57 (1991), 129–136.
- 13. Rao W. C., The Hahn sequence spaces, Bull. Calcutta Math. Soc. 82 (1990), 72-78.
- 14. Subramanian N. and Misra U. K., The Matrix transformations on double sequence space of χ²_π, Math. Morav. 14(1) (2010), 121–127.
- Wilansky A., Summability Through Functional Analysis, Mathematics Studies, North Holland, Amsterdam, 1984.
- Yeşilkayagil M. and Başar F., On the domain of Riesz mean in the space L_s, Filomat 31(4) (2017), 925–940.
- Yeşilkayagil M. and Başar F., AK(v)-property of double series spaces, Bull. Malays. Math. Sci. Soc. 44(2) (2021), 881–889.
- 18. Yeşilkayagil Savaşcı M. and Başar F., The double Hahn sequence space H_{ϑ} , under communication.
- Zeltser M., Investigation of Double Sequence Spaces by Soft and Hard Analytical Methods, Dissertationes Mathematicae Universitaties Tartuensis, Vol. 25, Tartu University Press, Tartu, 2001.

M. Yeşilkayagil Savaşcı*, Faculty of Applied Sciences, Uşak University, 1 Eylül Campus, 64200 - Uşak, Türkiye,

e-mail: medine.yesilkayagil@usak.edu.tr

F. Başar, Department of Primary Mathematics Teacher Education, İnönü University, 44280 – Malatya, Türkiye, Current address: Dumlupinar Mah. Hızırbey Cad. Binyil Apt. No: 179-181, D:1, 34730 – Kadıköy/İstanbul, Türkiye,

e-mail: feyzi.basar@inonu.edu.tr, feyzibasar@gmail.com