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THE GENERALISED DOUBLE HAHN SEQUENCE SPACE Hd
ϑ

M. YEŞİLKAYAGİL SAVAŞCI* and F. BAŞAR

Abstract. Suppose that ϑ ∈ {bp, r}. In this study, we introduce the generalised

double Hahn sequence space Hd
ϑ as an extension of generalised Hahn sequence space

hd defined by Goes [J. Math. Anal. Appl. 39 (1972), 477–494]. We give some
topological properties of this space. Then, we characterize the classes

(
Hd
ϑ : W

)
of four dimensional infinite matrices, where W ∈

{
Cϑ,Mu,Lu, Hd

ϑ

}
. Finally, we

determine the α-dual of the space Hd
ϑ and β(bp)- and γ-duals of the space Hd

r .

1. Introduction

Let Ω denote the vector space of all double sequences with the co-ordinatewise
addition and scalar multiplication of double sequences. Vector subspaces of Ω are
called double sequence spaces. A double sequence x = (xkl) of complex numbers is
called bounded if ‖x‖∞ = supk,l∈N

∣∣xkl∣∣ <∞, where N denotes the set of positive
integers. The space of all bounded double sequences is denoted by Mu, which is
a Banach space with the norm ‖ · ‖∞. A double sequence x = (xkl) of complex
numbers is said to converge to the limit a in Pringsheim’s sense (shortly p-converge
to a) if for every ε > 0, there exists an N ∈ N such that

∣∣xkl−a∣∣ < ε for all k, l > N .
By Cp, we denote the space of all convergent double sequences in the Pringsheim’s
sense. Furthermore, we can consider the space Cbp of the double sequences which
are both convergent in the Pringsheim’s sense and bounded, i.e.,

Cbp :=

{
x = (xkl) ∈ Cp : ‖x‖∞ = sup

k,l∈N

∣∣xkl∣∣ <∞} = Cp ∩Mu.

The main drawback of the Pringsheim’s convergence is that a p-convergent double
sequence need not be bounded. Hardy [9] lacked this disadvantage by giving the
definition of regular convergence, as follows: A sequence in the space Cp is said
to be regularly convergent if it is an ordinary convergent sequence with respect to
each index and denote the space of all such sequences by Cr.
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For any notion of convergence ϑ ∈ {p, bp, r}, the space of all ϑ-convergent double
sequences will be denoted by Cϑ and the limit of a ϑ-convergent double sequence
x by ϑ−limk,l xkl. By Cϑ0, we denote the spaces of all double sequences which
ϑ-converge to 0. Móricz [12] proved that the spaces Cϑ and Cϑ0 are Banach spaces
with the norm ‖ · ‖∞, where ϑ ∈ {bp, r}. Also, by Lu and BV, we denote the space
of all absolutely convergent double series and the space of all double sequences of
bounded variation, respectively, that is,

Lu :=

{
x = (xkl) ∈ Ω :

∑
k,l

∣∣xkl∣∣ <∞},
BV :=

{
x = (xkl) ∈ Ω :

∑
k,l

∣∣xkl − xk+1,l − xk,l+1 + xk+1,l+1

∣∣ <∞}.
A double sequence x = (xkl) is called monotonically increasing if and only if
xk2,l2 ≥ xk1,l1 when k2 ≥ k1 and l2 ≥ l1 for all k, l ∈ N. Also, the double series∑
k,l akl of nonnegative real numbers is convergent if and only if (smn) is bounded

above, where smn =
∑m,n
k,l=1 akl (see [10]).

We write Φ = span
{
ekl : k, l ∈ N

}
, where the double sequence ekl =

(
ekl
ij

)
is

defined for all k, l, i, j ∈ N as follows:

ekl
ij :=

{
1, (k, l) = (i, j),

0, otherwise,

for all i, j, k, l ∈ N.
For a double sequence x = (xkl), its sections x[m,n] are defined by

x[m,n] =

m∑
k=1

n∑
l=1

xkle
kl,

which are the elements of Φ, the space of all finitely non-zero double sequences,
for each m,n ∈ N.

For a double sequence space V , its α-, β(ϑ)- and γ-duals V α, V β(ϑ) and V γ are
defined by

V α :=

{
(akl) ∈ Ω :

∑
k,l

∣∣aklxkl∣∣ <∞ for all
(
xkl
)
∈ V

}
,

V β(ϑ) :=

{(
akl
)
∈ Ω : ϑ−

∑
k,l

aklxkl exists for all
(
xkl
)
∈ V

}
,

V γ :=

{(
akl
)
∈ Ω : sup

m,n∈N

∣∣∣∣ m,n∑
k,l=0

aklxkl

∣∣∣∣ <∞ for all
(
xkl
)
∈ V

}
,

where ϑ denotes any kind of convergence for double sequences. It is easy to see for
any two spaces V and W of double sequences that Wα ⊂ V α whenever V ⊂ W
and V α ⊂ V γ , and it is known that the inclusion V α ⊂ V β(ϑ) holds.



THE GENERALISED DOUBLE HAHN SEQUENCE SPACE Hd
ϑ 103

A double sequence space V is said to be solid [2, p. 153] if and only if

Ṽ :=
{(
ukl
)
∈ Ω : ∃

(
xkl
)
∈ V such that

∣∣ukl∣∣ ≤ ∣∣xkl∣∣ for all k, l ∈ N
}
⊂ V.

A double sequence space V is said to be monotone if xu = (xklukl) ∈ V for every
x =

(
xkl
)
∈ V and u =

(
ukl
)
∈ {0, 1}N×N, where {0, 1}N×N denotes the set of all

double sequences of zeros and ones. If V is monotone, then V α = V β(ϑ) [19, p. 36]
and V is monotone whenever V is solid.

A locally convex double sequence space V is called a DK-space, if all of the
seminorms rkl : V → R, x =

(
xij
)
7→
∣∣xkl∣∣ for all k, l ∈ N, are continuous. A

DK-space with a Fréchet topology is called an FDK-space. A normed FDK-space
is called a BDK-space. Note that Mu, Cbp and Cr endowed with the norm ‖ · ‖∞
are BDK-spaces (see Zeltser [19, p. 37]).

Let (V, τV ) be a DK-space and ϑ be a convergence notion for double sequences.
Recall that V is supposed to contain Φ. We consider the distinguished subspace

S
(ϑ)
V :=

{
x =

(
xkl
)
∈ V : x = ϑ−

∑
k,l

xkl (V, τV )

}
of V . We say that an element x ∈ V has the AK(ϑ)-property in V if x ∈ S(ϑ)

V .
The space V is called an AK(ϑ)-space if every its element has AK(ϑ) in V , or

equivalently, V = S
(ϑ)
V , Zeltser [19].

Following Rao [13], we define the differentiated and integrated spaces of a dou-
ble sequence space V , respectively, as

dV :=

{(
xkl
)
∈ Ω :

(
1

kl
xkl

)
k,l∈N

∈ V
}
,∫

V :=
{(
xkl
)
∈ Ω :

(
klxkl

)
k,l∈N ∈ V

}
.

Let V and W be two double sequence spaces and A =
(
amnkl

)
be any four-

dimensional complex infinite matrix. Then, we say that A defines a matrix map-
ping from V into W and we write A : V →W if for every sequence x =

(
xkl
)
∈ V ,

the A-transform Ax =
{

(Ax)mn
}
m,n∈N of x exists and is in W , where

(Ax)mn = ϑ−
∑
k,l

amnnkxkl for each m,n ∈ N.

We define the ϑ-summability domain V
(ϑ)
A of A in a space V of double sequences

by

V
(ϑ)
A :=

{
x =

(
xkl
)
∈ Ω : Ax =

(
ϑ−

∑
k,l

amnklxkl

)
m,n∈N

exists and is in V

}
.

The reader may refer for some details of the double sequence spaces to Boos et al.
[5], Zeltser [19], and Başar and Yeşilkayagil Savaşcı [3].

Here and after, unless stated otherwise, we assume that ϑ denotes any of the
symbols bp or r.



104 M. YEŞİLKAYAGİL SAVAŞCI* and F. BAŞAR

The sequence space h defined by

h :=

{
x =

(
xk
)
∈ ω :

∞∑
k=1

k
∣∣∆xk∣∣ <∞}⋂ c0,

is called Hahn sequence space, named after its introducer Hahn [8], where ∆
denotes the forward difference operator, i.e., ∆xk = xk − xk+1 for all k ∈ N,
and c0 is the space of all null sequences. Rao [13] proved that the space h is a
BK-space with AK with respect to the norm

‖x‖h =

∞∑
k=1

k
∣∣∆xk∣∣ <∞ for all x =

(
xk
)
∈ h.

Goes [7] introduced the generalised Hahn space hd for arbitrary sequences d =
(dk) with dk 6= 0 for all k ∈ N by

hd :=

{
x =

(
xk
)
∈ ω :

∞∑
k=1

∣∣dk∣∣∣∣∆xk∣∣ <∞}⋂ c0.

Yeşilkayagil Savaşcı and Başar defined the double Hahn sequence space Hϑ in
[18]. Then, following them and Goes [7], we define the generalised double Hahn
sequence space Hd

ϑ as follows:

(1) Hd
ϑ :=

{
x =

(
xkl
)
∈ Lu :

∞∑
k,l=1

dkl
∣∣∆xkl∣∣ <∞ and ϑ− lim

k,l→∞
xkl = 0

}
,

where d =
(
dkl
)

is a monotonically increasing double sequence of positive real
numbers such that dkl 6= 0 for all k, l ∈ N and ∆xkl = xkl−xk+1,l−xk,l+1+xk+1,l+1

for all k, l ∈ N.

2. Main results

Theorem 2.1. The space Hd
ϑ is a linear space with the co-ordinatewise addition

and scalar multiplication of double sequences, and is a Banach space endowed with
the norm

(2) ‖x‖d =

∞∑
k,l=1

dkl
∣∣∆xkl∣∣ for all x =

(
xkl
)
∈ Hd

ϑ.

Proof. The first part of the theorem is a routine verification, and so, we omit
details.

We show that Hd
ϑ is a Banach space with the norm ‖ · ‖d defined by (2). Let(

x(m)
)
m∈N be any Cauchy sequence in the space Hd

ϑ, where x(m) =
{
x
(m)
kl

}
k,l∈N

for every fixed m ∈ N. Then, for a given ε > 0, there exists a positive integer
l0 ∈ N such that

(3)
∥∥x(m) − x(n)

∥∥
d

=

∞∑
k,l=1

dkl

∣∣∣∆(x(m)
kl − x

(n)
kl

)∣∣∣ < ε
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for all m,n > l0. Choosing ε = ε1/(dkl)
3 for all k, l ∈ N and using the relation (3),

we easily obtain that

(4)
∣∣∣∆(x(m)

kl − x
(n)
kl

)∣∣∣ < ε1
(dkl)3

< ε1

for each k, l ∈ N and for all m,n > l0, where ε1 > 0. This means that
(
x(m)

)
m∈N is

a Cauchy sequence in BV for every fixed k, l ∈ N. Since the space BV is complete
by [1, Theorem 2.8], it converges, say x(m) → x, as m→∞. Using these infinitely
many limits, we define the sequence x. Therefore, by letting n→∞ in (4), we get

(5)
∣∣∣∆(x(m)

kl − xkl
)∣∣∣ < ε1

(dkl)3

for all k, l ∈ N. Also, we have the relation

(6)
∣∣∆xkl∣∣ ≤ ∣∣∣∆x(m)

kl

∣∣∣+
∣∣∣∆(x(m)

kl − xkl
)∣∣∣

for all k, l ∈ N.
By the relation (5) and the definition of

(
dkl
)
, we obtain the inequality

∞∑
k,l=1

dkl

∣∣∣∆(x(m)
kl − xkl

)∣∣∣ < ∞∑
k,l=1

dkl
ε1

(dkl)3
<∞.

Since x(m) ∈ Hd
ϑ for each fixed m ∈ N,

∑∞
k,l=1 dkl

∣∣∣∆x(m)
kl

∣∣∣ < ∞. If we multiply

both sides of the inequality (6) by dkl and take sum over k, l ∈ N, we obtain

∞∑
k,l=1

dkl
∣∣∆xkl∣∣ ≤ ∞∑

k,l=1

dkl

{∣∣∣∆x(m)
kl

∣∣∣+
∣∣∣∆(x(m)

kl − xkl
)∣∣∣}

=

∞∑
k,l=1

dkl

∣∣∣∆x(m)
kl

∣∣∣+

∞∑
k,l=1

dkl

∣∣∣∆(x(m)
kl − xkl

)∣∣∣
<∞,

which shows that x ∈ Hd
ϑ. Since

(
x(m)

)
m∈N ∈ H

d
ϑ is an arbitrary Cauchy sequence,

the space Hd
ϑ is complete.

This step concludes the proof. �

Theorem 2.2. The space Hd
ϑ endowed with the norm ‖ · ‖d, defined by (2), is

a BDK-space.

Proof. Since every norm (normed space) is a seminorm (seminormed space), we
say that Hd

ϑ is a seminormed space with the seminorm (2). Also, we define new
seminorms rkl in the space Hd

ϑ by

rkl : Hd
ϑ −→ R

x = (xij) 7−→ rkl(x) =
∣∣xkl∣∣

for all k, l ∈ N. Now, we show that each one is continuous. To do this, we use the
theorem given by Boos [4, Theorem 6.3.12, p. 284], that is, we must find M > 0
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for all x ∈ Hd
ϑ such that

(7) rkl(x) =
∣∣xkl∣∣ ≤M‖x‖d

for all k, l ∈ N. Suppose that the relation (7) does not hold. So, there exist some
M > 0 and x ∈ Hd

ϑ such that

(8)
∣∣xkl∣∣ > M‖x‖d

for all k, l ∈ N. Keeping in mind x ∈ Lu, if we take sum over k, l ∈ N in the both
sides of the inequality (8), we get

∞ >

∞∑
k,l=1

∣∣xkl∣∣ > ∞∑
k,l=1

M‖x‖d = M‖x‖d
∞∑

k,l=1

1 =∞,

which is a contradiction. Thus, the relation (7) holds for all x ∈ Hd
ϑ, i.e., the

seminorms rkl’s are not continuous for all k, l ∈ N. Hence, the space Hd
ϑ is a DK-

space. Also since it is a Banach space by Theorem 2.1, it has Fréchet topology.
Therefore, it is a BDK-space with the norm (2).

The proof is completed. �

Note. Defining the generalised double Hahn sequence space Hd
ϑ, we cannot stay

connected to the definition of ordinary generalised Hahn sequence space hd. Let
us define the space Hd

ϑ for any arbitrary double sequence d =
(
dkl
)

with dkl 6= 0
for all k ∈ N as

(9) Hd
ϑ :=

{
x =

(
xkl
)
∈ Ω : ‖x‖d1 =

∞∑
k,l=1

∣∣dkl∣∣∣∣∆xkl∣∣ <∞ and ϑ− lim
k,l→∞

xkl = 0

}
.

Explanation 1. If we take the double sequences d =
(
dkl
)

as bounded with
dkl 6= 0 and for all k, l ∈ N, we have the space BV

⋂
Cϑ0 defined by Milovidov and

Povolotski [11]. Because of that, defining the space Hd
ϑ, we take d =

(
dkl
)

as an
increasing double sequence of positive real numbers.

Explanation 2. Take the sequence x =
(
xkl
)

defined by

(10) xkl :=

{
1, k = 1 and l ∈ N,
0, otherwise,

for all k, l ∈ N. Then it is trivial that x ∈ Cϑ0. Also,

‖x‖d1 =

∞∑
k,l=1

∣∣dkl∣∣∣∣∆xkl∣∣ =

∞∑
k,l=1

∣∣dkl∣∣∣∣xkl − xk+1,l − xk,l+1 + xk+1,l+1

∣∣
=

∞∑
l=1

∣∣d1l∣∣∣∣x1l − x2l − x1,l+1 + x2,l+1

∣∣
=

∞∑
l=1

∣∣d1l∣∣∣∣x1l − x1,l+1

∣∣ = 0 <∞,

that is, x ∈ Hd
ϑ.

If we take k, l = 1 in the relation (7), we must have the inequality

(11) r11(x) =
∣∣x11∣∣ ≤M‖x‖d1 .



THE GENERALISED DOUBLE HAHN SEQUENCE SPACE Hd
ϑ 107

But, if we put the sequence x defined in (10) into the inequality (11), we obtain
1 ≤ 0. Hence, Hd

ϑ is not a DK-space with the definition (9).
For this reason, we must get the additional condition in the definition of the

generalised double Hahn sequence space Hd
ϑ, as x ∈ Lu.

Theorem 2.3. The space Hd
ϑ is an AK(ϑ)-space.

Proof. We derive for a sequence x =
(
xkl
)
∈ Hd

ϑ that∥∥x− x[mn]∥∥
d

=

m,∞∑
k,l=1,n+1

dkl
∣∣∆xkl∣∣+

∞,n∑
k,l=m+1,1

dkl
∣∣∆xkl∣∣+

∞∑
k,l=m+1,n+1

dkl
∣∣∆xkl∣∣

for all m,n ∈ N. Then, the conclusion

(12) ϑ− lim
m,n→∞

∞∑
k,l=m+1,n+1

dkl
∣∣∆xkl∣∣ = 0

is obvious. Define the double sequence ζ =
(
ζml
)

by ζml =
∑m
k=1 dkl

∣∣∆xkl∣∣ for all
m, l ∈ N. Therefore, one can immediately see that

(13)

m∑
k=1

∞∑
l=n+1

dkl
∣∣∆xkl∣∣ =

∞∑
l=n+1

m∑
k=1

dkl
∣∣∆xkl∣∣ =

∞∑
l=n+1

ζml.

Since
∑
k,lkl

∣∣∆xkl∣∣ is convergent, from (13), it is the same for the series
∑∞
l=n+1 ζml.

So, the general term of this series tends to 0 as m,n→∞. Hence,

ϑ− lim
m,n→∞

m∑
k=1

∞∑
l=n+1

dkl
∣∣∆xkl∣∣ = ϑ− lim

m,n→∞

∞∑
l=n+1

ζml = 0.

Let ηkn =
∑n
l=1 dkl

∣∣∆xkl∣∣ for all k, n ∈ N. In a similar way, we obtain

(14) ϑ− lim
m,n→∞

∞∑
k=m+1

n∑
l=1

dkl
∣∣∆xkl∣∣ = ϑ− lim

m,n→∞

n∑
l=1

∞∑
k=m+1

ηkn = 0.

By (12)–(14), we see that

ϑ− lim
m,n→∞

∥∥x− x[mn]∥∥
d

= 0,

i.e., the space Hd
ϑ is an AK(ϑ)-space. �

Theorem 2.4. The inclusion Hd
ϑ ⊂ Lu strictly holds.

Proof. From the definition of the set Hd
ϑ, the inclusion Hd

ϑ ⊂ Lu is obvious.
Now, define the sequence y =

(
ykl
)

by

ykl :=

{
(−1)l/l2, k = 1 and l ∈ N,
0, otherwise,

(15)

for all k, l ∈ N. Then, it is trivial that x ∈ Cϑ0 and
∞∑

k,l=1

∣∣ykl∣∣ =

∞∑
l=1

∣∣y1l∣∣ =

∞∑
l=1

1

l2
<∞,
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that is, y ∈ Lu.
Since dkl > dk,l−1 > · · · > dk1 for all k, l ∈ N, we have the inequality

∞∑
k,l=1

dkl
∣∣∆ykl∣∣ =

∞∑
l=1

d1l
∣∣y1l − y2l − y1,l+1 + y2,l+1

∣∣(16)

=

∞∑
l=1

d1l
∣∣y1l − y1,l+1

∣∣
=

∞∑
l=1

d1l

∣∣∣∣ (−1)l

l2
− (−1)l+1

(l + 1)2

∣∣∣∣
=

∞∑
l=1

d1l
2l2 + 2l + 1

l3 + 2l2 + l

> d11

∞∑
l=1

2l2 + 2l + 1

l3 + 2l2 + l
.

Since 1
l <

2l2+2l+1
l3+2l2+l by the comparison test for positive series, we obtain the series

in the left hand side of the relation (16) is not convergent. Hence, y ∈ Lu \Hd
ϑ. �

Theorem 2.5. Neither of the spaces
∫
BV and Hd

ϑ includes the other one.

Proof. Let us consider the double sequences x ∈ Hd
ϑ and y /∈ Hd

ϑ given in (10)
and (15), respectively. Then,

∞∑
k,l=1

∣∣∆(klxkl)
∣∣ =

∞∑
k,l=1

∣∣klxkl−(k+1)lxk+1,l−k(l+1)xk,l+1+(k+1)(l + 1)xk+1,l+1

∣∣
=

∞∑
l=1

∣∣lx1l − 2lx2l − (l + 1)x1,l+1 + 2(l + 1)x2,l+1

∣∣
=

∞∑
l=1

∣∣lx1l − (l + 1)x1,l+1

∣∣
=

∞∑
l=1

∣∣l − (l + 1)
∣∣

=

∞∑
l=1

1 =∞,

that is, x /∈
∫
BV and

∞∑
k,l=1

∣∣∆(klykl)
∣∣ =

∞∑
k,l=1

∣∣klykl−(k+1)lyk+1,l−k(l + 1)yk,l+1+(k+1)(l+1)yk+1,l+1

∣∣
=

∞∑
l=1

∣∣ly1l − 2ly2l − (l + 1)y1,l+1 + 2(l + 1)y2,l+1

∣∣
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=

∞∑
l=1

∣∣ly1l − (l + 1)y1,l+1

∣∣
=

∞∑
l=1

∣∣∣∣ l(−1)l

l2
− (l + 1)(−1)l+1

(l + 1)2

∣∣∣∣
=

∞∑
l=1

1

l(l + 1)
<∞,

i.e., y ∈
∫
BV. This completes the proof. �

Theorem 2.6. The space Hd
ϑ is not solid.

Proof. Define the sequence u =
(
ukl
)

as follows:

(17) ukl :=

{
1, k = 1 and l is odd,

0, otherwise,

for all k, l ∈ N, and take the sequence x =
(
xkl
)
∈ Hd

ϑ as in (10). Then, obviously∣∣ukl∣∣ ≤ ∣∣xkl∣∣ for all k, l ∈ N. Since dkl > dk1 for all k, l ∈ N, we have

∞∑
k,l=1

dkl
∣∣∆ukl∣∣ =

∞∑
l=1

d1l
∣∣u1l − u1,l+1

∣∣
=

∞∑
l=1

d1l(4l − 1)
∣∣u1,2l∣∣

=

∞∑
l=1

d1l(4l − 1)

> d11

∞∑
l=1

(4l − 1) =∞,

that is, u /∈ Hd
ϑ. Thus, the proof is completed. �

Remark. Take the sequences x and u as in Theorem 2.6. Also, u is in {0, 1}N×N.
Then, we have

∣∣xklukl∣∣ =
∣∣ukl∣∣ for each k, l ∈ N. Hence, the space Hd

ϑ is not
monotone.

Definition 2.7. Let V be a BDK-space. A subset E of Φ is called a deter-
mining set for V if D(V ) is the absolutely convex hull of E, where D = D(V ) ={
x ∈ Φ : ‖x‖V ≤ 1

}
.

Theorem 2.8. Assume that skld = 1
dkl

∑k,l
i,j=1 eij for k, l ∈ N. Consider the set

E =
{
skld : k, l ∈ N

}
.

Then, E is the determining set for the space Hd
ϑ.
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Proof. Suppose that K denotes the absolutely convex hull of E and let x ∈
D(Hd

ϑ). Then, x ∈ Φ and ‖x‖d ≤ 1. Consequently,

x =

m,n∑
k,l=1

xkle
kl =

m,n∑
k,l=1

tkls
kl
d ,

where tkl = dkl∆xkl for k, l ∈ N. Also,
∑m,n
k,l=1

∣∣tkl∣∣ ≤ ‖x‖d ≤ 1. Thus, x ∈ K.

Therefore, the inclusion D(Hd
ϑ) ⊂ K holds.

Conversely, assume that x ∈ K. Then, we can write

(18) x =

m,n∑
k,l=1

tkls
kl
d

with
∑m,n
k,l=1

∣∣tkl∣∣ ≤ 1. By the relation (18), we observe that

x11 =

m∑
k=1

n∑
l=1

tkl
dkl

, x12 =

m∑
k=1

n∑
l=2

tkl
dkl

, . . . , x1n =

m∑
k=1

tkn
dkn

;

x21 =

m∑
k=2

n∑
l=1

tkl
dkl

, x22 =

m∑
k=2

n∑
l=2

tkl
dkl

, . . . , x2n =

m∑
k=1

tkn
dkn

;

...

xm1 =

n∑
l=1

tkl
dkl

, xm2 =

n∑
l=2

tkl
dkl

, . . . , xmn =
tmn
dmn

;

xkl = 0 for k > m or l > n or both.

After straightforward calculation, we obtain

‖x‖d =

∞∑
k,l=1

dkl
∣∣∆xkl∣∣ =

m,n∑
k,l=1

∣∣tkl∣∣ ≤ 1.

So, x ∈ D(Hd
ϑ). Thus, we see that the inclusion K ⊂ D(Hd

ϑ) holds.
Therefore, we conclude the fact that K = D(Hd

ϑ). This completes the proof. �

Corollary 2.9. Take the sequence skld ∈ E for k, l ∈ N. Then, we have

(
Askld

)
mn

=

∞∑
i,j=1

amnij
1

dkl

k,l∑
i,j=1

eij =
1

dkl

k,l∑
i,j=1

amnij

for all m,n ∈ N. Thus, we obtain that

A[E] =

{
1

dkl

k,l∑
i,j=1

amnij : m,n ∈ N
}

for each k, l ∈ N.

Referring Wilansky [15, Theorem 8.3.4.], we can give the following lemma with-
out proof which is a corrected version of Lemma 2.1 given in [14].
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Lemma 2.10. Let V be a BDK-space and E is determining set for V . Let
W be an FDK-space and A =

(
amnkl

)
be a four dimensional infinite matrix for

m,n, k, l ∈ N. Suppose that either V has AK(ϑ) or
(
amnkl

)
k,l∈N ∈ Φ for all

m,n ∈ N. Then A ∈ (V : W ) if and only if

(i)
(
amnkl

)
m,n∈N ∈W for all k, l ∈ N,

(ii) A[E] is a bounded set of W .

Theorem 2.11. A =
(
amnkl

)
∈
(
Hd
ϑ : Cϑ

)
if and only if the following condi-

tions hold:

ϑ− lim
m,n→∞

amnkl exists for all k, l ∈ N,(19)

sup
m,n,k,l∈N

1

dkl

∣∣∣∣ k,l∑
i,j=1

amnij

∣∣∣∣ <∞.(20)

Proof. By Theorems 2.2 and 2.3, we have that the space Hd
ϑ is a BDK-space

with AK(ϑ). Therefore, we conclude by Lemma 2.10 and Corollary 2.9 that A ∈(
Hd
ϑ : Cϑ

)
if and only if

(
amnkl

)
m,n∈N in Cϑ for all k, l ∈ N, and A[E] is a bounded

subset of Cϑ, that is, A ∈
(
Hd
ϑ : Cϑ

)
if and only if the conditions (19) and (20)

hold. This establishes the result. �

Let us keep in mind that the spacesMu and Lu are BDK-spaces, in [19, p. 37]
and [17, Theorem 2.1], respectively. So, combining Corollary 2.9 and Lemma 2.10
and omitting the proofs, we formulate the following results.

Theorem 2.12. A =
(
amnkl

)
∈
(
Hd
ϑ :Mu

)
if and only if

(21) sup
m,n,k,l∈N

∣∣amnkl∣∣ <∞.
Theorem 2.13. A =

(
amnkl

)
∈
(
Hd
ϑ : Lu

)
if and only if

∞∑
m,n=1

∣∣amnkl∣∣ <∞ for all k, l ∈ N,(22)

sup
k,l∈N

1

dkl

∞∑
m,n=1

∣∣∣∣ k,l∑
i,j=1

amnij

∣∣∣∣ <∞.
Theorem 2.14. A =

(
amnkl

)
∈
(
Hd
ϑ : Hd

ϑ

)
if and only if the condition (22)

holds and

ϑ− lim
m,n→∞

amnkl = 0 for all k, l ∈ N,
∞∑

m,n=1

dmn
∣∣∆mn

11 amnkl
∣∣ <∞ for all k, l ∈ N,

sup
k,l∈N

1

dkl

∞∑
m,n=1

dmn

∣∣∣∣ k,l∑
i,j=1

∆mn
11 amnij

∣∣∣∣ <∞,
where ∆mn

11 amnkl = amnkl − am,n+1,kl − am+1,nkl + am+1,n+1,kl for m,n, k, l ∈ N.
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Theorem 2.15. The α-dual of the space Hd
ϑ is the space Mu.

Proof. Since Hd
ϑ ⊂ Lu and Lαu =Mu, we have that Mu ⊂

{
Hd
ϑ

}α
.

Conversely, suppose that a = (akl) ∈
{
Hd
ϑ

}α \Mu. Then,
∑
k,l

∣∣aklykl∣∣ < ∞
for all y = (ykl) ∈ Hd

ϑ and supk,l∈N
∣∣akl∣∣ = ∞. Choose the sequence a as akl > l3

for all k, l ∈ N and take y ∈ Hd
ϑ as in (15). Then, we easily see that

∑
k,l

∣∣aklykl∣∣ =∑
l

∣∣a1ly1l∣∣ >∑l l =∞, that is, a /∈
{
Hd
ϑ

}α
, a contradiction.

Therefore, the proof is completed. �

Lemma 2.16 ([16, Theorem 4.3(i)]). A ∈ (Lu :Mu) if and only if

(23) sup
m,n,k,l∈N

∣∣amnkl∣∣ <∞.
Lemma 2.17 ([16, Theorem 4.1(i)]). A ∈

(
Lu : Cbp

)
if and only if the condition

in (23) holds and

bp− lim
m,n→∞

amnkl exists for all k, l ∈ N.

Theorem 2.18. Define the sets d1 and d2 as follows:

d1 =

{
a =

(
akl
)
∈ Ω : sup

k,l∈N

1

dkl

∣∣∣∣ k,l∑
i,j=1

aij

∣∣∣∣ <∞},
d2 =

{
a =

(
akl
)
∈ Ω : bp− lim

k,l→∞

1

dkl

k,l∑
i,j=1

aij exists

}
.

Then
{
Hd
r

}β(bp)
= d1 ∩ d2.

Proof. Let a =
(
akl
)
∈ Ω be an arbitrary sequence and take x =

(
xkl
)
∈ Hd

r .
Also, put dkl∆xkl = ηkl for all k, l ∈ N and define the four-dimensional matrix
B =

(
bmnkl

)
as follows:

bmnkl :=


1

dkl

∑k,l
i,j=1 aij , 1 ≤ k ≤ m and 1 ≤ l ≤ n,

0, otherwise,

for all m,n, k, l ∈ N. Since x ∈ Hd
r , η ∈ Lu. With some straightforward calcula-

tion, we have
m,n∑
k,l=1

aklxkl =

m,n∑
k,l=1

∆xkl

k,l∑
i,j=1

akl+

m,n∑
k,l=1

aklxm+1,l+

m,n∑
k,l=1

aklxk,n+1−
m,n∑
k,l=1

aklxm+1,n+1(24)

=

m,n∑
k,l=1

dkl∆xkl
1

dkl

k,l∑
i,j=1

aij +

m,n∑
k,l=1

aklxm+1,l +

m,n∑
k,l=1

aklxk,n+1 −
m,n∑
k,l=1

aklxm+1,n+1

=

m,n∑
k,l=1

ηkl
1

dkl

k,l∑
i,j=1

aij +

m,n∑
k,l=1

aklxm+1,l +

m,n∑
k,l=1

aklxk,n+1 −
m,n∑
k,l=1

aklxm+1,n+1

= (Bη)mn +

m,n∑
k,l=1

aklxm+1,l +

m,n∑
k,l=1

aklxk,n+1 −
m,n∑
k,l=1

aklxm+1,n+1.
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If the limit bp− lim
m,n→∞

∑m,n
k,l=1 aklxkl exists, then the limits

bp− lim
m,n→∞

m,n∑
k,l=1

aklxm+1,l,

bp− lim
m,n→∞

m,n∑
k,l=1

aklxk,n+1,

lim
m,n→∞

m,n∑
k,l=1

aklxm+1,n+1

also exist. Therefore, we observe by the relation (24) that a ∈
{
Hd
r

}β(bp)
if and

only if

bp− lim
m,n→∞

m,n∑
k,l=1

ηkl
1

kl

k,l∑
i,j=1

aij = bp− lim
m,n→∞

(Bη)mn

exists, that is, a ∈
{
Hd
r

}β(bp)
if and only if B ∈

(
Lu : Cbp

)
. Hence, a ∈

{
Hd
r

}β(bp)
if and only if the conditions

sup
k,l∈N

∣∣∣∣ 1

dkl

k,l∑
i,j=1

aij

∣∣∣∣ <∞,
bp− lim

k,l→∞

1

dkl

k,l∑
i,j=1

aij

hold from Lemma 2.17. Therefore,
{
Hd
r

}β(bp)
= d1 ∩ d2. �

Theorem 2.19. The γ-dual of the space Hd
r is the set d1.

Proof. This is easily obtained by proceeding as in the proof of Theorem 2.18
above, by using Lemma 2.16 instead of Lemma 2.17. So, we omit details. �

3. Conclusion

In [18], Yeşilkayagil Savaşcı and Başar recently introduced the double Hahn se-
quence space Hϑ as an extension of Hahn sequence space h defined by Hahn [8],
where ϑ ∈ {bp, r}. They gave some topological properties of the space Hϑ and
characterized the classes (Hϑ : W ) of four dimensional matrix transformations,
where W ∈ {Cϑ,Mu,Lu, Hϑ}. Finally, they determined the α- and dual of the
space Hϑ and β(bp)-dual of the space Hr.

In this present paper, as a continuation of Yeşilkayagil Savaşcı and Başar [18],
we have studied the generalised double Hahn sequence space Hd

ϑ as an extension
of generalised Hahn sequence space hd defined by Goes [7], where ϑ ∈ {bp, r}.
We have emphasized some topological properties of the space Hd

ϑ and charac-
terizations of the classes

(
Hd
ϑ : W

)
of four dimensional infinite matrices, where

W ∈
{
Cϑ,Mu,Lu, Hd

ϑ

}
. Also, we have found the α-dual of the space Hd

ϑ and

β(bp)- and γ-duals of the space Hd
r .
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8. Hahn H., Über folgen linearer operationen, Monatsh. Math. Phys. 32 (1922), 3–88.
9. Hardy G. H., On the convergence of certain multiple series, Proc. Cambridge Philos. Soc.

19 (1916–1919), 86–95.

10. Limaye B. V. and Zeltser M., On the Pringsheim convergence of double series, Proc. Est.
Acad. Sci. 58 (2009), 108–121.

11. Milovidov S. P. and Povolotski A. I., Dual spaces of conditional Köthe spaces of double
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12. Móricz F., Extensions of the spaces c and c0 from single to double sequences, Acta Math.

Hungar. 57 (1991), 129–136.
13. Rao W. C., The Hahn sequence spaces, Bull. Calcutta Math. Soc. 82 (1990), 72–78.

14. Subramanian N. and Misra U. K., The Matrix transformations on double sequence space of

χ2
π , Math. Morav. 14(1) (2010), 121–127.

15. Wilansky A., Summability Through Functional Analysis, Mathematics Studies, North Hol-

land, Amsterdam, 1984.
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