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THE GENERALISED DOUBLE HAHN SEQUENCE SPACE H¢

M. YESILKAYAGIL SAVASCI* anp F. BASAR

ABSTRACT. Suppose that 9 € {bp,r}. In this study, we introduce the generalised
double Hahn sequence space H, g as an extension of generalised Hahn sequence space
hq defined by Goes [J. Math. Anal. Appl. 39 (1972), 477-494]. We give some
topological properties of this space. Then, we characterize the classes (Hg : W)
of four dimensional infinite matrices, where W € {Cg,Mu,Lu,Hg}. Finally, we
determine the a-dual of the space H g and B(bp)- and v-duals of the space HZ.

1. INTRODUCTION

Let € denote the vector space of all double sequences with the co-ordinatewise
addition and scalar multiplication of double sequences. Vector subspaces of ) are
called double sequence spaces. A double sequence x = (x;) of complex numbers is
called bounded if ||z]|lo = supy, ;e |2ki1| < 00, where N denotes the set of positive
integers. The space of all bounded double sequences is denoted by M,,, which is
a Banach space with the norm || - ||oo. A double sequence x = (zy;) of complex
numbers is said to converge to the limit a in Pringsheim’s sense (shortly p-converge
to a) if for every € > 0, there exists an N € N such that |mklfa| < egforallk,l > N.
By Cp, we denote the space of all convergent double sequences in the Pringsheim’s
sense. Furthermore, we can consider the space Cp, of the double sequences which
are both convergent in the Pringsheim’s sense and bounded, i.e.,

Cop := {x = (zr1) € Cp t ||7]|oc = sup |am| < oo} =CpNM,.
k,lEN
The main drawback of the Pringsheim’s convergence is that a p-convergent double
sequence need not be bounded. Hardy [9] lacked this disadvantage by giving the
definition of regular convergence, as follows: A sequence in the space C, is said
to be regularly convergent if it is an ordinary convergent sequence with respect to
each index and denote the space of all such sequences by C,..
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For any notion of convergence ¢ € {p, bp, r}, the space of all ¥-convergent double
sequences will be denoted by Cy and the limit of a ¥-convergent double sequence
x by ¥9-limy; xx;. By Cyo, we denote the spaces of all double sequences which
¥-converge to 0. Moéricz [12] proved that the spaces Cy and Cyo are Banach spaces
with the norm || - || oo, where ¢ € {bp,r}. Also, by £, and BY, we denote the space
of all absolutely convergent double series and the space of all double sequences of
bounded variation, respectively, that is,

L, = {:c = (zr) €Q: Y Jaw| < oo},

k,l

BY = {I = (-%'kl) eQ: Z ’xkl — Tg41,] — T+l T Jik+1,l+1’ < OO}
k,l

A double sequence x = (z;) is called monotonically increasing if and only if
Thy,ly = Ty, When kg > ky and [ > [y for all &k, € N. Also, the double series
>k @t of nonnegative real numbers is convergent if and only if (s,,,,) is bounded
above, where s, = 32" ari (see [10]).

We write & = span {ekl 2k, € N}, where the double sequence eX¥! = (ei‘jl) is
defined for all k,1,4, 7 € N as follows:
Kl . { L, (k7l) = (iaj);

€;; = .
0, otherwise,
for all 7,5, k,1 € N.

For a double sequence = = (x1;), its sections z[™" are defined by

m n
x[m,n] — § § xklekl,

k=11=1

which are the elements of ®, the space of all finitely non-zero double sequences,
for each m,n € N.

For a double sequence space V, its a-, 5(19)- and y-duals V<, V@) and V7 are
defined by

Ve .— {(akl) eN: Z ‘akla:kl| < oo for all (mkl) € V},

k,l
VAW .= {(akl) e - Zakl:pkl exists for all (xkl) € V},
k,l
V7= {(akl) eQ: sup Z apTr| < oo for all (wkl) S V},
m,neN k,i=0

where 1 denotes any kind of convergence for double sequences. It is easy to see for
any two spaces V and W of double sequences that W C V* whenever V.C W
and V* C V7, and it is known that the inclusion V' ¢ V¥ holds.
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A double sequence space V is said to be solid [2, p. 153] if and only if
V= {(ukl) cQ: El(ackl) € V such that |ukl’ < ’xm for all k,1 € N} cV.

A double sequence space V is said to be monotone if xu = (xpuy) € V for every
= (zr) €V and u = (ug) € {0, 11N, where {0, 1}"*N denotes the set of all
double sequences of zeros and ones. If V is monotone, then V* = VA1) [19, p. 36]
and V is monotone whenever V is solid.

A locally convex double sequence space V is called a DK-space, if all of the
seminorms 75;: V — R, & = (x”) — |xkl| for all k,] € N, are continuous. A
DK-space with a Fréchet topology is called an FDK-space. A normed FDK-space
is called a BDK-space. Note that M,,, Cy, and C, endowed with the norm || - ||oo
are BDK-spaces (see Zeltser [19, p. 37]).

Let (V,7y) be a DK-space and ¢ be a convergence notion for double sequences.
Recall that V' is supposed to contain ®. We consider the distinguished subspace

S‘(/ﬁ) = {x = (xkl) S V . x :19*2»?1@1 (V,Tv)}

k,l

of V. We say that an element z € V has the AK(¢)-property in V if = € S‘(}9).
The space V is called an AK(¢)-space if every its element has AK(J) in V, or
equivalently, V = S‘(;? ), Zeltser [19].

Following Rao [13], we define the differentiated and integrated spaces of a dou-
ble sequence space V', respectively, as

dV := {(zkl) e (1Ikz> € V}7
kl k,leN
/V = {(xkl) c€0: (klxkl)k,leN S V} .

Let V and W be two double sequence spaces and A = (amnkl) be any four-
dimensional complex infinite matrix. Then, we say that A defines a matriz map-
ping from V into W and we write A: V — W if for every sequence x = (mkl) eV,
the A-transform Ax = {(Am)mn}m,neN of x exists and is in W, where

(Ax)ppn =9 — Z QmnnkTr for each m,n € N.
k.l

We define the ¥-summability domain Vf(‘ﬁ) of A in a space V' of double sequences
by

Vf(xﬂ) = {LC = (xkl) eQ: Az = (’19 — Zamnkmkl)
Kl

The reader may refer for some details of the double sequence spaces to Boos et al.
[5], Zeltser [19], and Basar and Yesilkayagil Savasc1 [3].

Here and after, unless stated otherwise, we assume that ¢ denotes any of the
symbols bp or r.

exists and is in V}.

m,neN
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The sequence space h defined by

o0
h:= {3: = (ka) Ew: Zk|Azk} < oo} ﬂco,
k=1
is called Hahn sequence space, named after its introducer Hahn [8], where A
denotes the forward difference operator, i.e., Axy = xp — x4 for all k € N,
and ¢g is the space of all null sequences. Rao [13] proved that the space h is a
BK-space with AK with respect to the norm

llz]|n = Zk|Amk| < oo forall z=(x) € h.
k=1

Goes [7] introduced the generalised Hahn space hg for arbitrary sequences d =

(dy;) with dj, # 0 for all k € N by
hg = {x = (:ck) cw: Z ‘dk||Amk| < oo} ﬂco.
k=1

Yesilkayagil Savagct and Bagar defined the double Hahn sequence space Hy in
[18]. Then, following them and Goes [7], we define the generalised double Hahn
sequence space Hg as follows:

(1) HY = {JS = (-Tkl) €Ly : kg;l dkl|Aa¢kz| < oo and 19_k,lligloo Tpl = 0},
where d = (dkl) is a monotonically increasing double sequence of positive real

numbers such that dy; # 0 forall k,l € Nand Azy; = Tp—Thp1,0— Tk 141+ Tht1,14+1
for all k,1 € N.

2. MAIN RESULTS

Theorem 2.1. The space Hg s a linear space with the co-ordinatewise addition
and scalar multiplication of double sequences, and is a Banach space endowed with
the norm

(2) ”de = Z dkl|A$kl| fOT all r = (xkl) S Hg
k=1

Proof. The first part of the theorem is a routine verification, and so, we omit
details.
We show that HY is a Banach space with the norm || - |4 defined by (2). Let

(x(m))meN be any Cauchy sequence in the space Hg, where z(") = {x(m)}k len

for every fixed m € N. Then, for a given € > 0, there exists a positive integer
lop € N such that

(oo}
3) o) =2t = 37 du|A (o 2 )| <€
k,l=1
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for all m,n > ly. Choosing € = &1/(dy;)? for all k,I € N and using the relation (3),
we easily obtain that

m n €1
(4) ‘A (xl(cl)_‘rgcl))‘ <W<51

for each k,! € N and for all m,n > [y, where £; > 0. This means that (a?(m))meN is
a Cauchy sequence in BY for every fixed k,l € N. Since the space BV is complete
by [1, Theorem 2.8], it converges, say ("™ — z, as m — oo. Using these infinitely
many limits, we define the sequence x. Therefore, by letting n — oo in (4), we get

(5) ‘A (l‘,(;ln) — xkl)‘ < @;;7?)3

for all k,1 € N. Also, we have the relation

(6) |A$kl‘ < )Axg?) + ’A (.%‘gzq) — .’L‘kl)‘

for all k,1 € N.
By the relation (5) and the definition of (dkl), we obtain the inequality

i di ‘A (:vffl”) - xkl)’ Z dkl

k=1 k=1

Since 2™ ¢ Hg for each fixed m € N, Zz?lzl dpi ‘Ax,(!ln)} < oo. If we multiply
both sides of the inequality (6) by dy; and take sum over k,l € N, we obtain

Z dit| Az | < Z di {‘Axkl )‘ + ‘A( _xkl)‘}

k,l=1 k,l=1
= Z dii ’AIM ‘ + dkl ‘ (I,(;ln) — zkl)‘
k,l=1 k,l=1
< 00,

which shows that x € HS. Since (a:(m))m en €H 4 is an arbitrary Cauchy sequence,
the space Hg is complete.
This step concludes the proof. 1

Theorem 2.2. The space HY endowed with the norm || - |4, defined by (2), is
a BDK-space.

Proof. Since every norm (normed space) is a seminorm (seminormed space), we
say that Hg is a seminormed space with the seminorm (2). Also, we define new
seminorms r; in the space Hg by

TRl HY — R
z = (xy) — r(z)= ‘Uﬁkl’
for all k,1 € N. Now, we show that each one is continuous. To do this, we use the
theorem given by Boos [4, Theorem 6.3.12, p. 284], that is, we must find M > 0
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for all z € Hg such that
(7) ri(x) = |zn| < M|zllq

for all k,1 € N. Suppose that the relation (7) does not hold. So, there exist some
M >0and z € Hg such that

(8) |zwi| > M||z]|a

for all k,l € N. Keeping in mind x € L,, if we take sum over k,! € N in the both
sides of the inequality (8), we get

o0 o0 o0
00> Y o] > Y Mllzlla=Mlala Y 1= o0,
k,l=1 k,l=1 k,l=1

which is a contradiction. Thus, the relation (7) holds for all € HY, i.e., the
seminorms rx;’s are not continuous for all k,1 € N. Hence, the space Hg is a DK-
space. Also since it is a Banach space by Theorem 2.1, it has Fréchet topology.
Therefore, it is a BDK-space with the norm (2).

The proof is completed. i

Note. Defining the generalised double Hahn sequence space H, g, we cannot stay
connected to the definition of ordinary generalised Hahn sequence space hy. Let
us define the space Hg for any arbitrary double sequence d = (dkl) with dg; # 0
for all k € N as

9) HY = {55 = (Jikz) €Q:|zlq, = k;l |dkl||Axkl‘ < oo and ﬁ_k,lligloo Tpl = O}.

Ezplanation 1. If we take the double sequences d = (dj;) as bounded with
dik; # 0 and for all k,l € N, we have the space BV () Cyo defined by Milovidov and
Povolotski [11]. Because of that, defining the space HY, we take d = (dkl) as an
increasing double sequence of positive real numbers.

FExplanation 2. Take the sequence x = (ackl) defined by
1, k=1and [ €N,
(10) Tkl { 0, otherwise,

for all k,1 € N. Then it is trivial that x € Cgg. Also,

o0

o0
zlla, = Z |dleA9Ckl| = Z |dkl‘|xkl — Tky1,0 — Thyi41 + $k+1,l+1|
k=1 k=1

o0
Z |du||w1 — @21 — 21041 + 22,041
=1

o

|dy| |1 — 21,041 | = 0 < o0,

=1
that is, z € Hf,l.
If we take k,I =1 in the relation (7), we must have the inequality

(11) ri(z) = o1 | < Mg,
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But, if we put the sequence z defined in (10) into the inequality (11), we obtain
1 < 0. Hence, H is not a DK-space with the definition (9).

For this reason, we must get the additional condition in the definition of the
generalised double Hahn sequence space Hg, as x € L,,.

Theorem 2.3. The space H} is an AK (9)-space.

Proof. We derive for a sequence z = () € HJ that

lz=at™ = >0 dulAwa[+ D0 duldwal+ Y0 du|Azy]
k=1,n+1 kl=m+1,1 kl=m+1,n+1
for all m,n € N. Then, the conclusion
(12) Y— lim Z dkl|AIkl| =0

m,n— 00
k,l=m+1,n+1

is obvious. Define the double sequence ( = (le) by (i = 2211 di ’Aaﬁkl| for all
m,l € N. Therefore, one can immediately see that

(13) SN duldzy|= >0 du|dru| = D G
k=1l=n+1 l=n+1 k=1 l=n+1

Since Y, kl| Az is convergent, from (13), it is the same for the series Y2 1 Gt
So, the general term of this series tends to 0 as m,n — co. Hence,

m oo jo%s)
ﬂ_m,lrlLIEoo Z Z dkl|Azkl| = ﬂ—m,l'rlzgoo Z le =0.
k=1l=n+1 It
Let Nkn = Dy dkl‘Axkl’ for all k,n € N. In a similar way, we obtain

(14) 9— Mm S du|Azy| = ﬁ*m}gglooz > Men =0.

k=m+1 1=1 =1 k=m+1
By (12)—(14), we see that

0= lim_ o= 2™, =0,

i.e., the space H{ is an AK (J)-space. O
Theorem 2.4. The inclusion H} C L,, strictly holds.

Proof. From the definition of the set Hg, the inclusion Hg C L, is obvious.
Now, define the sequence y = (ykz) by

{ (—1)1/12, k=1land [ €N,
Ykl =

15
(15) 0, otherwise,

for all k,1 € N. Then, it is trivial that x € Cyo and

o0 o0 o0 1
Z }ykl’ = Z ’yu‘ = Zﬁ < 00,
=1 1=1

k=1
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that is, y € L.
Since dy; > di;—1 > -+ > dj for all k,l € N, we have the inequality

oo oo
(16) Z it | Ayt | = Zdu’yu = Yor — Y1041 T Y2,141
k=1 =1

oo

= dulyu — yrin]
=1
oo

= '
=1

oo

202 +20+1
=Y duon g
=1

_ (_1)l+1
2 (1+1)2

B4+202 41
212+21+1
>d112

Since 1 7 < % g%ﬁ by the comparison test for positive series, we obtain the series

in the left hand side of the relation (16) is not convergent. Hence, y € £,\ H. O

Theorem 2.5. Neither of the spaces [ BV and Hg includes the other one.

Proof. Let us consider the double sequences x € HY and y ¢ HJ given in (10)
and (15), respectively. Then,

> ALz :ZWW (k+D)l@psr— k(D) zp g1+ (k1) (14 1)Zpp 41|

F%g Ir

|Z£L'1[ — 2z — (l + 1)(E1J+1 + 2(l -+ 1)1’27[+1|

N
Il
.

|ll‘1[ — (l + 1)171714_1{

o

N
Il
.

—(1+1)

-~
Il
—

I
M8
i

3

N
Il
—

that is, z ¢ [ BY and

Z | A(klyr)| = Z |klyr — (k+ D)y, — k(U + Dyiasr + (k1) (14 Dyt
k,l=1 k,l=1

= Z |ty = 2lyor — (L + D)yn41 + 200+ Dy, 141
=1
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M8

[y — (L + Dy

Il
—

(=1' (4D

M

2 2
—~| I (I+1)
DI
— (14+1)
ie., y € [ BY. This completes the proof. O

Theorem 2.6. The space Hg is not solid.
Proof. Define the sequence u = (ukl) as follows:

1, k=1and [isodd,
(17) Ukl = .
0, otherwise,

for all k,1 € N, and take the sequence x = («Tkl) € HY as in (10). Then, obviously
|Ukz| < |xkl‘ for all k,I € N. Since dg; > di for all k,] € N, we have

Z dit| Aug| = Zdu}uu — U4
=1

k=1

= Zdll(4l — 1)|’UJ1’21|
=1

= dy(4l—1)
=1

> dq Z(4l — 1) = 00,

=1

that is, u ¢ Hg. Thus, the proof is completed. O

Remark. Take the sequences z and u as in Theorem 2.6. Also, u is in {0, 1}N<N.
Then, we have ’xklukl| = |Ukl’ for each k,I € N. Hence, the space Hg is not
monotone.

Definition 2.7. Let V be a BDK-space. A subset E of ® is called a deter-
mining set for V if D(V') is the absolutely convex hull of E, where D = D(V) =
{zed: ||y <1}

Theorem 2.8. Assume that sX! = d%’ Zf;zl el for k,1 € N. Consider the set

E={s§':k,leN}.

Then, E is the determining set for the space H3.
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Proof. Suppose that K denotes the absolutely convex hull of E and let x €

D(HY). Then, z € ® and ||z||4 < 1. Consequently,

m,n m,n
kl kl
xr = E T = E thiSy

k=1 k=1

where t; = d Az for k,1 € N. Also, Zkl 1 ’tkl’ < |lzl|la £ 1. Thus, z € K.

Therefore, the inclusion D(HY) C K holds.
Conversely, assume that € K. Then, we can write

m,n

(18) T = Z tklsgl

k=1

with 37", |tk < 1. By the relation (18), we observe that

SR DI AT B SR

k=11=1 k=11=2
m n
. tr . tr . tlm_
21—5 g 22—5 E Sy e zn—g
diy d
k=2 =1 K k=2 1= "kl kn’
n
Z 123 _ 123 b
Tml = Tm2 = R ey Tmn = 9
dr’ = drl dmn

a:klfofork>morl>norboth.
After straightforward calculation, we obtain
) m,n
2]l = Z di| Azgy| = Z |t | < 1.
k=1 k=1

So, z € D(HY). Thus, we see that the inclusion K C D(HY) holds.

Therefore, we conclude the fact that K = D(HY). This completes the proof.

Corollary 2.9. Take the sequence s¥! € E for k,1 € N. Then, we have

Z &mnzjd Z dkl Z Amnij

4,j=1 3,j=1 5,j=1
for all m,n € N. Thus, we obtain that

A[E]—{ L iamw mnGN}

dri ij=1
for each k,1l € N.

O

Referring Wilansky [15, Theorem 8.3.4.], we can give the following lemma with-

out proof which is a corrected version of Lemma 2.1 given in [14].
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Lemma 2.10. Let V be a BDK-space and E is determining set for V. Let
W be an FDK-space and A = (amnkl) be a four dimensional infinite matriz for
m,n,k,l € N. Suppose that either V has AK(J) or (am”kl)k,leN e @ for all
m,n € N. Then A€ (V : W) if and only if

(1) (am"kl)m,nGN e W forall k,1 € N,

(ii) A[E] is a bounded set of W.

Theorem 2.11. A = (amnkl) € (Hg : Cﬁ) if and only if the following condi-
tions hold:

(19) Y— lim @i exists for all k,1 € N,

m,n—co

k.l

E Amnij

=1

(20) sup < 0.

momkten dil

Proof. By Theorems 2.2 and 2.3, we have that the space Hg is a BDK-space
with AK(9). Therefore, we conclude by Lemma 2.10 and Corollary 2.9 that A €
(Hg : (319) if and only if (amnkl)m nen i Cy for all k,1 € N, and A[E] is a bounded
subset of Cy, that is, A € (H§ : Cy) if and only if the conditions (19) and (20)
hold. This establishes the result. O

Let us keep in mind that the spaces M, and £, are BDK-spaces, in [19, p. 37]
and [17, Theorem 2.1], respectively. So, combining Corollary 2.9 and Lemma 2.10
and omitting the proofs, we formulate the following results.

Theorem 2.12. A = (amnkl) € (Hg : Mu) if and only if

(21) sup ‘amnkl| < 0.
m,n,k,lEN

Theorem 2.13. A = (amnkl) S (Hg : EU) if and only if

oo

(22) Z |@mnki| < 00 for all k,l €N,
m,n=1
1 (o'} k,l
sup d Z CLmnij < o0.
k,leN k] mo=l =1

Theorem 2.14. A = (amnkl) S (Hg : Hg) if and only if the condition (22)
holds and

99— lim ampr =0 forall k1eN,

m,n—

Z dmn|A71ninamnkl| < 0 fOT all k,l eN,

m,n=1
sup —— d § dmn § A11 Amnij o,
k,leN Ukl mon—=1 =1

where Ai’inamnkl = Qmnkl — Omn+1,kl — Am+1,nkl + Am+1,n+1,kl fO’f' m,n, k,l e N.
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Theorem 2.15. The a-dual of the space Hl‘; is the space M,,.

Proof. Since Hg C L, and L = M,,, we have that M,, C {Hg}a.

Conversely, suppose that a = (ag;) € {Hg}a \ M. Then, Zk)l |aklykl| < 00
for all y = (yr) € HY and sup,, ;e |aki| = co. Choose the sequence a as aj > I3
for all k,1 € N and take y € Hg as in (15). Then, we easily see that Zk’l ‘aklykl’ =
S lauyn| > 35,1 = oo, that is, a ¢ {HJ}", a contradiction.

Therefore, the proof is completed.

Lemma 2.16 ([16, Theorem 4.3(i)]). A € (L, : My,) if and only if

(23) sup ‘amnkl| < 0.
m,n,k,lEN

Lemma 2.17 ([16, Theorem 4.1(i)]). A € (Ly : Cyp) if and only if the condition
in (23) holds and
bp— lim  amng exists for all k,l € N.

m,n— oo

O

Theorem 2.18. Define the sets di and do as follows:

k,l
dl{a (akl) €Q: sup — Z a;j <oo},
kleN ki | S

k,l
. 1 < .
dy = {a = (aw) € Q:bp— k:,llgnoo i Z aij emsts}.
Then {HP = d, N dy.

Proof. Let a = (akl) € Q be an arbitrary sequence and take r = (xkl) € Hﬁ.
Also, put dygAxy; = ng for all k,I € N and define the four-dimensional matrix
B = (bmnkl) as follows:

1
Zk’l 1<k<mand1l<I[<n,

R
=1 %55
bmnkl = dkl b
0, otherwise,

for all m,n,k,l € N. Since z € HZ, n € £,. With some straightforward calcula-
tion, we have

m,n m,n k,l m,n m,n m,n
(24) E akll'klzg Axklg CLkH—E aklxm+1,l+§ aklxk,n+1_g AklTm+1,n+1

k=1 k=1 i,j=1 k=1 k=1 k=1
m,n 1 k,l m,n m,n m,n

= E dklAmle E aij + E ARl Tm+1, + E ARl Th,nt1 — E AR Tm41,n41
k=1 kl =1 k=1 k=1 k=1
m,n 1 k,l m,n m,n m,n

= g Mkt 7 g aij + E klTm+1,0 + g ARl Tk, nt1 — E ARITm+1,n+1
k=1 kL G=1 k=1 k=1 k=1

m,n m,n

m,n
= (Bn)mn + E Akl Tm+1,0 + E AkITE,n+1 — E Akl Tm+1,n+1-

k=1 k=1 k=1



THE GENERALISED DOUBLE HAHN SEQUENCE SPACE Hg 113

If the limit bp— lim >}"", amay exists, then the limits
m,n—o0 ’
m,n

bp— lim Z ARlTm+1,1

m,n— 0o
k,=1

m,n
bp— lim E ARIT ke n41,
m,n—co
k=1
m,n
lim E Akl Tm+1,n+1

m,n— 0o
k=1

also exist. Therefore, we observe by the relation (24) that a € {Hﬁl}ﬂ(bm if and
only if

m,n k,l
bpfm}rlgookl g _Zl aij = bp= Tim_ (B1)mn
= 1,J=

exists, that is, a € {H;f}ﬁ(bp) if and only if B € (Eu : Cbp). Hence, a € {Hﬁ}ﬁ(bp)

if and only if the conditions
k,l

1
T 2 %

,j=1

sup
k,leN

< o0,

. 1
bp_k,lllgloo dikl Z]Z: @ij
hold from Lemma 2.17. Therefore, {Hf}ﬁ(bp) =di Nds. U

Theorem 2.19. The y-dual of the space H? is the set dy.

Proof. This is easily obtained by proceeding as in the proof of Theorem 2.18
above, by using Lemma 2.16 instead of Lemma 2.17. So, we omit details. O

3. CONCLUSION

In [18], Yesilkayagil Savasct and Bagar recently introduced the double Hahn se-
quence space Hy as an extension of Hahn sequence space h defined by Hahn [8],
where ¢ € {bp,r}. They gave some topological properties of the space Hy and
characterized the classes (Hy : W) of four dimensional matrix transformations,
where W € {Cy, My, L., Hy}. Finally, they determined the a- and dual of the
space Hy and 3(bp)-dual of the space H,..

In this present paper, as a continuation of Yesilkayagil Savagci and Basar [18],
we have studied the generalised double Hahn sequence space Hg as an extension
of generalised Hahn sequence space hy defined by Goes [7], where ¢ € {bp,r}.
We have emphasized some topological properties of the space Hg and charac-
terizations of the classes (Hg : W) of four dimensional infinite matrices, where
W e {C@,MU,EM,HI‘}}. Also, we have found the a-dual of the space Hs and
B(bp)- and v-duals of the space HY.
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