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(α, β)-TYPE ALMOST η-RICCI–YAMABE SOLITONS

IN PERFECT FLUID SPACETIME

S. PANDEY, T. MERT and M. ATÇEKEN

Abstract. In this paper, we consider perfect fluid spacetime admitting (α, β)-
type almost η-Ricci–Yamabe solitons by means of some curvature tensors. Ricci

pseudosymmetry concepts of perfect fluid spacetime admitting (α, β)-type almost

η-Ricci–Yamabe soliton are introduced according to the choice of some special cur-
vature tensors such as Riemann, concircular and projective curvature tensor. After

then, according to choosing of the curvature tensors, necessary conditions are given

for perfect fluid spacetime admitting (α, β)-type almost η-Ricci–Yamabe soliton
to be Ricci semisymmetric. Then, some important characterizations are given for

Ricci, Yamabe, Einstein and η-Einstein solitons on perfect fluid spacetime.

1. Introduction

Geometric flows are crucial in scrutinizing the geometric configurations within
Riemannian geometry. In 1982, Hamilton presented the idea of Ricci flow in
[7, 8], which is defined as follows:

(1)
∂

∂t
g (t) = −2S (t) , t ≥ 0, g (0) = g,

where g is the Riemannian metric, S denotes the (0, 2)-symmetric Ricci tensor.
Solitons are waves that propagate with minimal energy loss, maintaining their
shape and speed even after colliding with another wave of similar nature. Solitons
play a crucial role in the analytical treatment of initial-value problems related
to nonlinear partial differential equations that describe the propagation of waves.
Indeed, solitons have been instrumental in explaining the recurrence phenomena
observed in the Fermi–Pasta–Ulam system.

A Ricci soliton arises as the endpoint of the evolution of a soliton under Ricci
flow when it moves solely through a one-parameter group of diffeomorphism and
scaling. A Riemannian manifold (Mn, g) is said to be a Ricci soliton if there exist
a vector field V and a constant λ such that

(2) LV g + 2S = 2λg,
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where LV denotes the Lie derivative of V. Different type of Ricci solitons for
different structures were studied in [11, 12, 13]. To address the Yamabe problem
of discovering a metric on a specified compact Riemannian manifold (Mn, g) that
conforms to g while possessing a constant scalar curvature r, Hamilton introduced
the concept of Yamabe flow, which is defined as follows [8],

(3)
∂

∂t
g (t) = −rg (t) , t ≥ 0, g (0) = g.

Similar to Ricci soliton, a Yamabe soliton is a self-similar solution to the Yamabe
flow and is defined as follows:

(4)
1

2
LV g = (λ− r) g.

In two-dimensional analysis, the Ricci soliton and Yamabe soliton coincide, but
in higher dimensions, the Yamabe soliton maintains the metric’s conformal class
while the Ricci soliton doesn’t consistently do so. Over the past two decades,
geometric flow theories like Ricci flow and Yamabe flow, along with their solitons,
have captivated numerous geometers.

Recently, Guler and Crasmareanu introduced a novel geometric flow, termed
the Ricci–Yamabe map, which is a scalar amalgamation of Ricci flow and Yamabe
flow [6]. The Ricci–Yamabe flow of type (α, β) is defined as follows.

Definition 1. The map RY (α,β,g) : I → T s2 (M) given by

RY (α,β,g) =
∂g

∂t
(t) + 2αS (t) + βr (t) g (t) ,

is called the (α, β)-Ricci–Yamabe map of the Riemannian manifold (M, g) [6]. If

RY (α,β,g) ≡ 0,

then g is called an (α, β)-Ricci–Yamabe flow.

The Ricci–Yamabe flow’s nature can vary, encompassing Riemannian, semi-
Riemannian, or singular Riemannian flows contingent upon the signs of the two
scalars α and β. This versatility in offering multiple choices proves beneficial when
exploring geometry or when addressing the physical models inherent in relativistic
theories. The concept of an (α, β)-Ricci–Yamabe soliton, or simply the Ricci–
Yamabe soliton, is defined in the following manner.

Definition 2. A Riemannian or pseudo-Riemannian manifold (Mn, g) is said
to be a Ricci–Yamabe soliton (g, V, λ, α, β) if

(5) LV g + 2αS = (2λ− βr) g.
If λ > 0, λ < 0 or λ = 0, then the Ricci–Yamabe soliton is expanding, shrinking
or steady, respectively [5].

A gradient Ricci–Yamabe soliton is characterized by the existence of a smooth
function f : M → R such that V = Df , where D represents the gradient operator
relative to metric g on the manifold. The Ricci–Yamabe soliton indeed serves as
a broader, generalized form encompassing both Ricci and Yamabe solitons within
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its scope. The Ricci–Yamabe soliton of (1,−1)-type is commonly known as an
Einstein soliton [3, 17]. Therefore, it is worthwhile to study Ricci–Yamabe soliton
as it generalizes a large group of solitons.

Cho and Kimura in [4], expanded on the concept of Ricci solitons by introduc-
ing the η-Ricci soliton, which emerges from modifying equation (2) through the
addition of a multiple of a specific (0, 2)-tensor field η ⊗ η [2]. Sıddıqi and Akyol
achieved a broader extension by generalizing the concept further in [15], called
such soliton as η-Ricci–Yamabe soliton of type (α, β) which is defined as:

(6) LV g + 2αS + (2λ− βr) g + 2µη ⊗ η = 0.

It is worth remarking that η-Ricci soliton [15] and η-Yamabe soliton of type
(1, 0) and (0, 2), respectively [1]. If µ = 0 in (6), then it reduces to Ricci–Yamabe
soliton.

In recent years, extensive research has focused on η-Ricci and η-Yamabe solitons
within the realm of Riemannian geometry. Notably, there has been a significant
initiation of geometric flow studies applied to cosmological models, specifically
perfect fluid spacetimes. In [1] and [2], Blaga developed the investigation of η-
Ricci and η-Einstein solitons within perfect fluid spacetime, deriving the Poisson
equation from the solitons equation under conditions where the potential vector
field ξ follows a gradient type.

Kimura and Venkatesha in [17] and [18], conducted an analysis on Ricci solitons
in perfect fluid spacetime employing a torse-forming vector field. Additionally,
research on Conformal Ricci solitons in perfect fluid spacetime is documented in
[16].

Moreover, Praveena et al. examined solitons in Kahlerian spacetime manifolds.
Given that Ricci–Yamabe solitons represent a scalar amalgamation of Ricci and
Yamabe solitons, exploring it within the framework of perfect fluid spacetime
seems promising, offering a platform to generalize and expand upon the existing
findings in this context.

2. Preliminaries

Absolutely, in Einstein’s field equations, the energy-momentum tensor serves as a
fundamental component. It characterizes the curvature of spacetime within the
framework of general relativity. The spacetime in general relativity is concep-
tualized as a connected four-dimensional semi-Riemannian manifold, denoted as(
M4, g

)
, where M4 represents the manifold and g denotes the Lorentzian metric.

This metric g conforms to the signature (−,+,+,+) which reflects the spacetime’s
Lorentzian or pseudo-Riemannian nature, indicating one negative and three posi-
tive eigenvalues associated with its curvature. If the Ricci tensor follows a specific
structure as

(7) S = ag + bη ⊗ η,

a spacetime is classified as a perfect fluid spacetime, where a, b are scalars and η
is non-zero 1-form.



174 S. PANDEY, T. MERT and M. ATÇEKEN

The general form of energy-momentum tensor T for a perfect fluid is

(8) T (X,Y ) = ρg (X,Y ) + (σ + ρ) η (X) η (Y )

for any X,Y ∈ χ (M) , where σ is the energy density, ρ is the isotropic pressure, g is
the metric tensor of Minkowski spacetime, η (X) = −g (X, ξ) is 1-form, equivalent
to unit vector ξ and g (ξ, ξ) = −1 [9]. If ρ = ρ (σ), then perfect fluid spacetime is
called isentropic and if σ = 3ρ, then it is a radiation fluid [10].

The Einstein’s field equation governing the perfect fluid motion is defined as:

(9) S (X,Y ) +
(
ω − r

2

)
g (X,Y ) = kT (X,Y )

for any X,Y ∈ χ (M) , where ω is the cosmological constant, k is the gravitational
constant.

Combining (8) and (9), we obtain

(10) S (X,Y ) = −
(
ω − r

2
+ kρ

)
g (X,Y ) + k (σ + ρ) η (X) η (Y ) .

Taking trace of (10), the scalar curvature becomes r = 4ω + k (σ − 3ρ) , using in
(10), we infer

(11) S (X,Y ) = ag (X,Y ) + bη (X) η (Y ) ,

where

a = ω +
k (σ − ρ)

2
and b = k (σ + ρ) .

Definition 3. A vector field ξ is called torse-forming if it satisfies

(12) ∇Xξ = X + η (X) ξ

for any X ∈ χ (M) [9].

Lemma 1. In perfect fluid spacetime with torse-forming vector field ξ, the
following relations hold:

η (∇ξξ) = 0,∇ξξ = 0,(13)

(∇Xη)Y = g (X,Y ) + η (X) η (Y ) ,(14)

(Lξg) (X,Y ) = 2 [g (X,Y ) + η (X) η (Y )] ,(15)

R (X,Y ) ξ = η (Y )X − η (X)Y,(16)

η (R (X,Y )Z) = g (η (X)Y − η (Y )X,Z) ,(17)

S (X, ξ) =
−1

2
[2ω + k (3σ + ρ)] η (X) .(18)

3. (α, β)-type almost η-Ricci–Yamabe solitons in perfect fluid
spacetime with torse-forming vector field

Let (g, ξ, λ, µ, α, β) be (α, β)-type almost η-Ricci–Yamabe soliton in perfect fluid
spacetime. Thus, in a perfect fluid spacetime, from (6) and (15), we have

(19) 2αS (X,Y ) + (2λ− βr + 2) g (X,Y ) + 2 (µ+ 1) η (X) η (Y ) = 0.
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For Y = ξ in (19), this implies that

(20) 2αS (ξ,X) = (2λ− βr + 2µ+ 4) η (X) .

Taking into account (18) and (20), we conclude that

(21) α [2ω + k (3σ + ρ)] = βr − 2 (λ+ µ+ 2) .

Definition 4. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field. If R · S and Q (g, S) are linearly dependent, then the Mn is
said to be Ricci pseudosymmetric.

In this case, there exists a function H1 on Mn such that

R · S = H1Q (g, S) .

In particular, if H1 = 0, the M is said to be Ricci semisymmetric.

Theorem 1. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, α, β) be (α, β)-type almost η-Ricci–Yamabe soli-
ton on Mn. If Mn is Ricci pseudosymmetric, then we get

H1 =
2ω + k (3σ + ρ) + βr − 2 (λ+ 1)

2ω + k (3σ + ρ)− βr + 2 (λ+ 1)
,

provided 2ω + k (3σ + ρ) 6= βr − 2 (λ+ 1) .

Proof. Let us assume that perfect fluid spacetime with torse-forming vector
field Mn is Ricci pseudosymmetric and (g, ξ, λ, µ, α, β) is (α, β)-type almost η-
Ricci–Yamabe soliton on Mn. That means,

(R (X,Y ) · S) (U, V ) = H1Q (g, S) (U, V ;X,Y )

for all X,Y, U, V ∈ Γ (TMn). From the last equation, we can easily write

(22)
S (R (X,Y )U, V ) + S (U,R (X,Y )V )

= H1 {S ((X ∧g Y )U, V ) + S (U, (X ∧g Y )V )} .
Setting V = ξ in (22) and using (16), (18), we get

(23)
S (U, η (Y )X − η (X)Y ) + Fη (R (X,Y )U)

= H1 {Fg (η (X)Y − η (Y )X,U) + S (U, η (X)Y − η (Y )X)} ,

where F = −1
2 [2ω + k (3σ + ρ)] . By using (17) in (23), we get

(24)
Fg (η (X)Y − η (Y )X,U) + S (η (Y )X − η (X)Y,U)

= H1 {Fg (η (X)Y − η (Y )X,U) + S (U, η (X)Y − η (Y )X)} .
If we use (19) in (24), we can write

(25)

{
1

2
[2ω + k (3σ + ρ)] +

1

2α
[βr − 2 (λ+ 1)]

−H1

[1

2
[2ω + k (3σ + ρ)] +

1

2α
[βr − 2 (λ+ 1)]

]}
× g (η (Y )X − η (X)Y, U) = 0.

This completes the proof of theorem. �
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Corollary 1. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, α, β) be (α, β)-type almost η-Ricci–Yamabe soli-
ton on Mn. If Mn is Ricci semisymmetric, then we observe the following situa-
tions:

i) Mn is expanding if α [2ω + k (3σ + ρ)] + βr > 2,

ii) Mn is steady if α [2ω + k (3σ + ρ)] + βr = 2,

iii) Mn is shrinking if α [2ω + k (3σ + ρ)] + βr < 2.

Theorem 2. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 1, 0) be almost Ricci soliton on Mn. If Mn is
Ricci pseudosymmetric, then we get

H1 =
2ω + k (3σ + ρ)− 2 (λ+ 1)

2ω + k (3σ + ρ) + 2 (λ+ 1)
,

provided 2ω + k (3σ + ρ) 6= −2 (λ+ 1) .

Corollary 2. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 1, 0) be almost Ricci soliton on Mn. If Mn is
Ricci semisymmetric, then we observe the following situations:

i) Mn is expanding if 2ω + k (3σ + ρ) > 2,

ii) Mn is steady if 2ω + k (3σ + ρ) = 2,

iii) Mn is shrinking if 2ω + k (3σ + ρ) < 2.

Theorem 3. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 0, 1) be almost Yamabe soliton on Mn. If Mn

is Ricci pseudosymmetric, then we get H1 = −1.

Corollary 3. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 0, 1) be almost Yamabe soliton on Mn. If Mn

is Ricci semisymmetric, then we observe the following situations:

i) Mn is expanding if r > 2,

ii) Mn is steady if r = 2,

iii) Mn is shrinking if r < 2.

Theorem 4. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 1, 1) be almost Einstein soliton on Mn. If Mn

is Ricci pseudosymmetric, then we get

H1 =
2ω + k (3σ + ρ) + r − 2 (λ+ 1)

2ω + k (3σ + ρ)− r + 2 (λ+ 1)
,

provided 2ω + k (3σ + ρ) 6= r − 2 (λ+ 1) .

Corollary 4. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 1, 1) be almost Einstein soliton on Mn. If Mn

is Ricci semisymmetric, then we observe the following situations:

i) Mn is expanding if 2ω + k (3σ + ρ) + r > 2,

ii) Mn is steady if 2ω + k (3σ + ρ) + r = 2,
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iii) Mn is shrinking if 2ω + k (3σ + ρ) + r < 2.

Theorem 5. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 1, 1) be almost η-Einstein soliton on Mn. If Mn

is Ricci pseudosymmetric, then we get

H1 =
2ω + k (3σ + ρ)− 2r2 − 2 (λ+ 1)

2ω + k (3σ + ρ) + 2r2 + 2 (λ+ 1)
,

provided 2ω + k (3σ + ρ) 6= −2r2 − 2 (λ+ 1) .

Corollary 5. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 1, 1) be almost η-Einstein soliton on Mn. If Mn

is Ricci semisymmetric, then we observe the following situations:

i) Mn is expanding if 2ω + k (3σ + ρ)− 2r2 > 2,

ii) Mn is steady if 2ω + k (3σ + ρ)− 2r2 = 2,

iii) Mn is shrinking if 2ω + k (3σ + ρ)− 2r2 < 2.

For an n-dimensional semi-Riemann manifold M , the concircular curvature ten-
sor is defined as

(26) C (X,Y )Z = R (X,Y )Z − r

n (n− 1)
[g (Y,Z)X − g (X,Z)Y ] .

For an n-dimensional perfect fluid spacetime with torse-forming vector field, if we
choose Z = ξ in (26), we can write

(27) C (X,Y ) ξ =
n (n− 1) + r

n (n− 1)
[η (Y )X − η (X)Y ] ,

and similarly if we take the inner product of both sides of (26) by ξ, we get

(28) η (C (X,Y )Z) =
n (n− 1) + r

n (n− 1)
g (η (X)Y − η (Y )X,Z) .

Theorem 6. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, α, β) be (α, β)-type almost η-Ricci–Yamabe soli-
ton on Mn. If Mn is concircular Ricci pseudosymmetric, then

H2 =
[n (n− 1) + r] [−α (2ω + k (3σ + ρ)) + (2λ− βr + 2)]

n (n− 1) [−α (2ω + k (3σ + ρ))− (2λ− βr + 2)]
,

provided − (2λ− βr + 2) 6= −α (2ω + k (3σ + ρ)) .

Proof. Let us assume that perfect fluid spacetime with torse-forming vector
field Mn is concircular Ricci pseudosymmetric and (g, ξ, λ, µ, α, β) is (α, β)-type
almost η-Ricci–Yamabe soliton on Mn. That means,

(C (X,Y ) · S) (U, V ) = H2Q (g, S) (U, V ;X,Y )

for all X,Y, U, V ∈ Γ (TMn). From the last equation, we can easily write

(29)
S (C (X,Y )U, V ) + S (U,C (X,Y )V )

= H2 {S ((X ∧g Y )U, V ) + S (U, (X ∧g Y )V )} .



178 S. PANDEY, T. MERT and M. ATÇEKEN

If we choose V = ξ in (29), and use (18), (27), then we get

(30)
F1η (C (X,Y )U) + F2S (U, η (Y )X − η (X)Y )

= H2 {F1g (η (X)Y − η (Y )X,U) + S (U, η (X)Y − η (Y )X,U)} ,

where F1 = −1
2 [2ω + k (3σ + ρ)] and F2 = n(n−1)+r

n(n−1) . Substituting (28) into (30),

we have

(31)
F1F2g (η (X)Y − η (Y )X,U) + F2S (η (Y )X − η (X)Y,U)

= H2 {F1g (η (X)Y − η (Y )X,U) + S (η (X)Y − η (Y )X,U)} .
If we use (19) in (31), we can write[
F1F2 +

F2 (2λ− βr + 2)

2α
−H2

(
F1 −

2λ− βr + 2

2α

)]
g (η (X)Y − η (Y )X,U) = 0.

This completes the proof of theorem. �

Corollary 6. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, α, β) be (α, β)-type almost η-Ricci–Yamabe soli-
ton on Mn. If Mn is concircular Ricci semisymmetric, then Mn has either con-
stant scalar curvature r = −n (n− 1) or we observe the following situations:

i) Mn is expanding if α [2ω + k (3σ + ρ)] + βr > 2,

ii) Mn is steady if α [2ω + k (3σ + ρ)] + βr = 2,

iii) Mn is shrinking if α [2ω + k (3σ + ρ)] + βr < 2.

Theorem 7. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 1, 0) be almost Ricci soliton on Mn. If Mn is
concircular Ricci pseudosymmetric, then Mn has either constant scalar curvature
r = −n (n− 1) or

H2 = − [n (n− 1) + r] [2 (λ+ 1)− (2ω + k (3σ + ρ))]

n (n− 1) [2 (λ+ 1) + (2ω + k (3σ + ρ))]
,

provided 2ω + k (3σ + ρ) 6= −2 (λ+ 1) .

Corollary 7. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 1, 0) be almost Ricci soliton on Mn. If Mn is
concircular Ricci semisymmetric, then Mn has either constant scalar curvature
r = −n (n− 1) or we observe the following situations:

i) Mn is expanding if 2ω + k (3σ + ρ) > 2,

ii) Mn is steady if 2ω + k (3σ + ρ) = 2,

iii) Mn is shrinking if 2ω + k (3σ + ρ) < 2.

Theorem 8. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 0, 1) be almost Yamabe soliton on Mn. If Mn is
concircular Ricci pseudosymmetric, then Mn has either constant scalar curvature
r = −n (n− 1) or

H2 =
[n (n− 1) + r] (2λ− r + 2)

n (n− 1) (r − 2λ− 2)
,

provided r 6= 2 (λ+ 1) .
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Corollary 8. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 0, 1) be almost Yamabe soliton on Mn. If Mn

is concircular Ricci semisymmetric, then Mn has either constant scalar curvature
r = −n (n− 1) or we observe the following situations:

i) Mn is expanding if r > 2,

ii) Mn is steady if r = 2,

iii) Mn is shrinking if r < 2.

Theorem 9. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 1, 1) be almost Einstein soliton on Mn. If Mn is
concircular Ricci pseudosymmetric, then Mn has either constant scalar curvature
r = −n (n− 1) or

H2 = − [n (n− 1) + r] [(2λ− r + 2)− (2ω + k (3σ + ρ))]

n (n− 1) [(2λ− r + 2) + (2ω + k (3σ + ρ))]
,

provided 2ω + k (3σ + ρ) 6= r − 2 (λ+ 1) .

Corollary 9. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 1, 1) be almost Einstein soliton on Mn. If Mn

is concircular Ricci semisymmetric, then Mn has either constant scalar curvature
r = −n (n− 1) or we observe the following situations:

i) Mn is expanding if 2ω + k (3σ + ρ) + r > 2,

ii) Mn is steady if 2ω + k (3σ + ρ) + r = 2,

iii) Mn is shrinking if 2ω + k (3σ + ρ) + r < 2.

Theorem 10. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 1, 1) be almost η-Einstein soliton on Mn. If Mn

is concircular Ricci pseudosymmetric, then we get

H2 = −
[n (n− 1) + r]

[
2
(
λ+ r2 + 1

)
− (2ω + k (3σ + ρ)) +

]
n (n− 1) [(2ω + k (3σ + ρ)) + 2 (λ+ r2 + 1)]

,

provided 2ω + k (3σ + ρ) 6= −2r2 − 2 (λ+ 1) .

Corollary 10. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 1, 1) be almost η-Einstein soliton on Mn. If Mn

is concircular Ricci semisymmetric, then Mn has either constant scalar curvature
r = −n (n− 1) or we observe the following situations:

i) Mn is expanding if 2ω + k (3σ + ρ)− 2r2 > 2,

ii) Mn is steady if 2ω + k (3σ + ρ)− 2r2 = 2,

iii) Mn is shrinking if 2ω + k (3σ + ρ)− 2r2 < 2.

For an n-dimensional semi-Riemann manifold M , the projective curvature ten-
sor is defined as

(32) P (X,Y )Z = R (X,Y )Z − 1

n− 1
[S (Y,Z)X − S (X,Z)Y ] .
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For an n-dimensional perfect fluid spacetime with torse-forming vector field, if
we choose Z = ξ in (32), we can write

(33) P (X,Y ) ξ =

[
2ω + k (3σ + ρ) + 2 (n− 1)

2 (n− 1)

]
[η (Y )X − η (X)Y ] ,

and similarly, if we take the inner product of both sides of (32) by ξ, we get

(34) η (P (X,Y )Z) =

[
2ω + k (3σ + ρ) + 2 (n− 1)

2 (n− 1)

]
g (η (X)Y − η (Y )X) .

Theorem 11. Let Mn be a perfect fluid spacetime with torse-forming vector
field and (g, ξ, λ, µ, α, β) be (α, β)-type almost η-Ricci–Yamabe soliton on Mn. If
Mn is projective Ricci pseudosymmetric, then we have

H3 =
α (n− 1) [2ω + k (3σ + ρ)]

2 − [2ω + k (3σ + ρ) + 2 (n− 1)] (2λ− βr + 2)

2 (n− 1) [2λ− βr + 2− α (2ω + k (3σ + ρ))]
,

provided 2λ− βr + 2 6= α [2ω + k (3σ + ρ)] .

Proof. Let’s assume that perfect fluid spacetime with torse-forming vector field
Mn is projective Ricci pseudosymmetric and (g, ξ, λ, µ, α, β) is (α, β)-type almost
η-Ricci–Yamabe soliton on Mn. That means,

(P (X,Y ) · S) (U, V ) = H3Q (g, S) (U, V ;X,Y )

for all X,Y, U, V ∈ Γ (TMn) . From the last equation, we can easily write

(35)
S (P (X,Y )U, V ) + S (U,P (X,Y )V )

= H3 {S ((X ∧g Y )U, V ) + S (U, (X ∧g Y )V )} .

If we choose V = ξ in (35), and use (18), (33), we get

(36)
F1η (P (X,Y )U) + F2S (η (Y )X − η (X)Y )

= H3 {F1g (η (X)Y − η (Y )X,U) + S (η (X)Y − η (Y )X,U)} ,

where F1 = −1
2 [2ω + k (3σ + ρ)] and F2 = 2ω+k(3σ+ρ)+2(n−1)

2(n−1) . If we use (34) in

(36), we get

(37)
F2

1 g (η (X)Y − η (Y )X,U) + F2S (η (Y )X − η (X)Y )

= H3 {F1g (η (X)Y − η (Y )X,U) + S (η (X)Y − η (Y )X,U)} .

If we use (19) in (37), we can write[
F2

1 −
F2 (2λ− βr + 2)

2α
−H3

(
F1 +

2λ− βr + 2

2α

)]
g (η (X)Y −η (Y )X,U)=0.

This completes the proof of theorem. �

Corollary 11. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, α, β) be (α, β)-type almost η-Ricci–Yamabe soli-
ton on Mn. If Mn is projective Ricci semisymmetric, then we observe the following
situations:

i) Mn is expanding if α(n−1)
4ω+2k(3σ+ρ)+2(n−1) + βr > 2,
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ii) Mn is steady if α(n−1)
4ω+2k(3σ+ρ)+2(n−1) + βr = 2,

iii) Mn is shrinking if α(n−1)
4ω+2k(3σ+ρ)+2(n−1) + βr < 2.

Theorem 12. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 1, 0) be almost Ricci soliton on Mn. If Mn is
projective Ricci pseudosymmetric, then we get

H3 =
(n− 1) [2ω + k (3σ + ρ)]

2 − [2ω + k (3σ + ρ) + 2 (n− 1)] (2λ+ 2)

2 (n− 1) [2λ+ 2− (2ω + k (3σ + ρ))]
,

provided 2ω + k (3σ + ρ) 6= 2 (λ+ 1) .

Corollary 12. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 1, 0) be almost Ricci soliton on Mn. If Mn is
projective Ricci semisymmetric, then we observe the following situations:

i) Mn is expanding if (n−1)
4ω+2k(3σ+ρ)+2(n−1) > 2,

ii) Mn is steady if (n−1)
4ω+2k(3σ+ρ)+2(n−1) = 2,

iii) Mn is shrinking if (n−1)
4ω+2k(3σ+ρ)+2(n−1) < 2.

Theorem 13. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 0, 1) be almost Yamabe soliton on Mn. If Mn

is projective Ricci pseudosymmetric, then we get

H3 =
[2ω + k (3σ + ρ) + 2 (n− 1)] (−2λ+ r − 2)

2 (n− 1) (2λ− r + 2)
,

provided 2λ 6= r − 2.

Corollary 13. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 0, 1) be almost Yamabe soliton on Mn. If Mn

is projective Ricci semisymmetric, then we observe the following situations:

i) Mn is expanding if r > 2,

ii) Mn is steady if r = 2,

iii) Mn is shrinking if r < 2.

Theorem 14. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 1, 1) be almost Einstein soliton on Mn. If Mn

is projective Ricci pseudosymmetric, then we get

H3 =
(n− 1) [2ω + k (3σ + ρ)]

2 − [2ω + k (3σ + ρ) + 2 (n− 1)] (2λ− r + 2)

2 (n− 1) [2λ− r + 2− (2ω + k (3σ + ρ))]
,

provided 2ω + k (3σ + ρ) 6= r − 2 (λ+ 1) .

Corollary 14. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 1, 1) be almost Einstein soliton on Mn. If Mn

is projective Ricci semisymmetric, then we observe the following situations:

i) Mn is expanding if (n−1)
4ω+2k(3σ+ρ)+2(n−1) + r > 2,
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ii) Mn is steady if (n−1)
4ω+2k(3σ+ρ)+2(n−1) + r = 2,

iii) Mn is shrinking if (n−1)
4ω+2k(3σ+ρ)+2(n−1) + r < 2.

Theorem 15. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 1, 1) be almost η-Einstein soliton on Mn. If Mn

is projective Ricci pseudosymmetric, then we get

H3 =
(n− 1) [2ω + k (3σ + ρ)]

2 − [2ω + k (3σ + ρ) + 2 (n− 1)]
(
2λ+ 2r2 + 2

)
2 (n− 1) [2λ+ 2r2 + 2− (2ω + k (3σ + ρ))]

,

provided 2ω + k (3σ + ρ) 6= −2
(
r2 + λ+ 1

)
.

Corollary 15. Let Mn be an n-dimensional perfect fluid spacetime with torse-
forming vector field and (g, ξ, λ, µ, 1, 1) be almost η-Einstein soliton on Mn. If Mn

is a projective Ricci semisymmetric, then we observe the following situations:

i) Mn is expanding if (n−1)
4ω+2k(3σ+ρ)+2(n−1) − 2r2 > 2,

ii) Mn is steady if (n−1)
4ω+2k(3σ+ρ)+2(n−1) − 2r2 = 2,

iii) Mn is shrinking if (n−1)
4ω+2k(3σ+ρ)+2(n−1) − 2r2 < 2.

Example 1. Let M =
{

(x, y, z, t) ∈ R4
∣∣ t 6= 0

}
, where (x, y, z, t) are the stan-

dard coordinates of R4. Consider a Lorentzian metric g on M is given by

(38) ds2 = e2t
(
dx2 + dy2 + dz2

)
− dt2.

The non-vanishing components of the Christoffel symbol, the curvature tensor and
Ricci tensor are

Γ4
11 = Γ4

22 = Γ4
33 = e2t,

Γ1
14 = Γ2

24 = Γ3
34 = 1,

R1411 = R2442 = R3443 = e2t,

R1221 = R1331 = R2332 = −e4t,

S11 = S22 = S33 = −3e2t, S44 = 3.

Therefore, the scalar curvature of the manifold is r = −12. Thus,
(
M4, g

)
is a

perfect fluid spacetime whose isotropic pressure and energy density are

ρ =
1

k
(λ+ 3) and σ = −1

k
(λ+ 3) ,

respectively.
Let η be the 1-form defined by η (Z) = −g (Z, t) for any Z ∈ χ (M) . Take ξ = t.

Replacing V = ξ in (6) and using

(Lξg) (X,Y ) = 2 [g (X,Y ) + η (X) η (Y )] ,

we see that the soliton equation becomes

(39) 2 [gii + ηi ⊗ ηi] + 2αSii + (2λ− βr) gii + 2µηi ⊗ ηi = 0
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for all i ∈ {1, 2, 3, 4} . Thus the data (ξ, g, λ, µ, α, β) is η-Ricci–Yamabe soliton on(
M4, g

)
, where

λ = 3α− 4β − 1 and µ = −1,

which is expanding if 3α−4β > 1, shrinking if 3α−4β < 1, and steady if 3α−4β = 1
[16].
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