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QAUSI CONFORMAL CURVATURE TENSOR ON

N(k)-CONTACT METRIC MANIFOLDS

VENKATESHA and R. T. N. KUMAR

Abstract. The purpose of this paper is to study N(k)-contact metric manifolds en-

dowed with a qausi-conformal curvature tensor. Here we consider quasi-conformally

flat, Einstein semi-symmetric quasi-conformally flat, quasi-conformally semi-sym-
metric, and globally φ-quasiconformally symmetric N(k)-contact metric manifolds.

1. Introduction

In 1968, Yano and Sawaki [8] introduced the quasi-conformal curvature tensor
given by

C̃(X,Y )Z = aR(X,Y )Z + b[S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX

− g(X,Z)QY ]− r

2n+ 1

( a
2n

+ 2b
)

[g(Y,Z)X − g(X,Z)Y ],
(1)

where a and b are constants, and R, S, Q, and r are the Riemannian curvature
tensor of type (1, 3), the Ricci tensor of type (0, 2), the Ricci operator defined by
S(X,Y ) = g(QX,Y ) and scalar curvature of the manifold, respectively. If a = 1
and b = − 1

n−2 , then (1) takes the form

C̃(X,Y )Z = R(X,Y )Z − 1

n− 2
[S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX

r − g(X,Z)QY ]− r

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ]

= C(X,Y )Z,

(2)

where C is the conformal curvature tensor [9].
From (1), we obtain

(∇W C̃)(X,Y )Z = a(∇WR)(X,Y )Z + b[(∇WS)(Y, Z)X − (∇WS)(X,Z)Y

+ g(Y, Z)(∇WQ)(X)− g(X,Z)(∇WQ)(Y )]

− dr(W )

2n+ 1

( a
2n

+ 2b
)

[g(Y,Z)X − g(X,Z)Y ].

(3)
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In [11], De and Matsuyama studied a quasi-conformally flat Riemannian manifold
satisfying a certain condition on the Ricci tensor. Again Cihan Ozgar and De
[10] studied quasi-conformal curvature tensor on Kenmotsu manifold and showed
that a Kenmotsu manifold is quasi-conformally flat or quasi-conformally semi-
symmetric if and only if it is locally isometric to the hyperbolic space. Recently
Ali Akbar and Avijit Sarkar [16] studied quasi-conformally flat trans-Sasakian
manifold. The geometry of quasi-conformal curvature tensor in a Riemannian
manifold with different structures was studied by several authors, viz., [12, 13,
15, 19, 20].

The present paper is organized as follows: In Section 2, we give the definitions
and some preliminary results that will be needed thereafter. In Section 3, we
discuss quasi-conformally flat N(k)-contact metric manifold and it is shown that
the manifold is η-Einstein. Section 4 is devoted to the study of Einstein semi-
symmetric quasi-conformally flat N(k)-contact metric manifold and obtains that
the scalar curvature is constant in that case. In section 5, we consider quasi-
conformally semi-symmetric N(k)-contact metric manifold and prove that the
manifold is η-Einstein provided a 6= b. Finally, in the last section, we show that
an N(k)-contact metric manifold is globally φ-quasiconformally symmetric if and
only if it is globally φ-symmetric provided k 6= 0 and r is constant.

2. Preliminaries

A (2n + 1)-dimensional smooth manifold M is said to be a contact manifold if it
carries a global differentiable 1-form η which satisfies the condition η ∧ (dη)n 6= 0
everywhere on M . Also a Contact manifold admits an almost Contact structure
(φ, ξ, η), where φ is a (1, 1)-tensor field, ξ is a characteristic vector field and η is a
global 1-form such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0.(4)

An almost Contact structure is said to be normal if the induced almost complex
structure J on the product manifold M ×R defined by

J
(
X,λ

d

dt

)
=
(
φX − λξ, η(X)

d

dt

)
,

is integrable, where X is tangent to M , t is the coordinate of R and λ a smooth
function on M×R. The condition of almost contact metric structure being normal
is equivalent to vanishing of the torsion tensor [φ, φ] + 2dη ⊗ ξ, where [φ, φ] is the
Nijenhuis tensor of φ. Let g be the compatible Riemannian metric with almost
Contact structure (φ, ξ, η), that is,

g(φX, φY ) = g(X,Y )− η(X)η(Y ), g(X, ξ) = η(X)(5)

for all vector fields X,Y ∈ χ(M). A manifold M together with this almost Con-
tact metric structure is said to be almost Contact metric manifold denoted by
M(φ, ξ, η, g). An almost Contact metric structure reduces to a contact metric
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structure if g(X,φY ) = dη(X,Y ). Moreover, if ∇ denotes the Riemannian con-
nection of g, then the following relation holds

∇Xξ = −φX − φhX.(6)

Blair, Koufogiorgos and Papantoniou [17] introduced the (k, µ)-nullity distribution
of a Contact metric manifold M that is defined by

N(k, µ) : p→ Np(k, µ)

Np(k, µ) = {U ∈ TpM | R(X,Y )U = (kI + µh)g(Y, U)X − g(X,U)Y }

for allX,Y ∈ TM , where (k, µ) ∈ R2. A Contact metric manifold with ξ ∈ N(k, µ)
is called a (k, µ)-contact metric manifold. If µ = 0, the (k, µ)-nullity distribution
reduces to k-nullity distribution. The k-nullity distribution N(k) of a Riemannian
manifold is defined by [5]

N(k) : p→ Np(k) = {U ∈ TpM | R(X,Y )U = k[g(Y, U)X − g(X,U)Y ]},

k being a constant. If the characteristic vector field ξ ∈ N(k), then we call a
contact metric manifold an N(k)-contact metric manifold [18]. If k = 1, then the
manifold is Sasakian and if k = 0, then the manifold is locally isometric to the
product En+1(0) × Sn(4) for n > 1 and flat for n = 1 [3]. In an N(k)-contact
metric manifold, the following relations hold:

h2 = (k − 1)φ2,(7)

R(X,Y )ξ = k[η(Y )X − η(X)Y ],(8)

S(X,Y ) = [2(n− 1)− nµ]g(X,Y ) + [2(n− 1) + µ]g(hX, Y ),(9)

S(φX, φY ) = S(X,Y )− 2nkη(X)η(Y )− 4(n− 1)g(hX, Y ),(10)

S(X, ξ) = 2nkη(X),(11)

(∇Xη)(Y ) = g(X + hX, φY ).(12)

Definition 2.1. A (2n + 1)-dimensional N(k)-contact metric manifold M is
said to be η-Einstein if its Ricci tensor S is of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y )

for any vector fields X and Y , where a and b are constants. If b = 0, then the
manifold M is an Einstein manifold.

Definition 2.2. The Einstein Tensor denoted by E is defined by

E(X,Y ) = S(X,Y )− r

2
g(X,Y ),(13)

where S is a Ricci tensor and r is the scalar curvature.

3. Quasi-conformally flat N(k)-contact metric manifold

Definition 3.1. A (2n+ 1)-dimensional N(k)-contact metric manifold is said

to be quasi-conformally flat if the quasi conformal curvature tensor C̃ = 0.
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Now, we consider an N(k)-contact metric manifold which is quasi-conformally
flat. Then from (1), we get

R(X,Y )Z = − b

a
{S(Y, Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY }

+
r

a(2n+ 1)

( a
2n

+ 2b
)
{g(Y,Z)X − g(X,Z)Y }.

(14)

Taking inner product on both sides of above equation with respect to W , we get

R(X,Y, Z,W ) = − b

a
{S(Y,Z)g(X,W )− S(X,Z)g(Y,W )

+ g(Y,Z)S(X,W )− g(X,Z)S(Y,W )}

+
r

a(2n+ 1)

( a
2n

+ 2b
)
{g(Y, Z)g(X,W )− g(X,Z)g(Y,W )},

(15)

where R(X,Y, Z,W ) = g(R(X,Y )Z,W ) and S(X,Y ) = g(QX,Y ).
Now using (8) in the above, we get

R(ξ,X, Y, ξ) = kg(φX, φY ).(16)

Putting X = W = ξ in (15), we obtain

R(ξ, Y, Z, ξ) = − b

a
{S(Y,Z)− S(ξ, Z)η(Y ) + g(Y,Z)S(ξ, ξ)

− η(Z)S(Y, ξ)}+
r

a(2n+ 1)

( a
2n

+ 2b
)
{g(Y,Z)− η(Z)η(Y )}.

(17)

By virtue of (5), (11) and (16), equation (17) becomes

S(Y,Z) =
[ r

b(2n+ 1)

( a
2n

+ 2b
)
− 2nk − ka

b

]
g(Y,Z)(18)

+
[
4nk +

ka

b
− r

b(2n+ 1)

( a
2n

+ 2b
) ]
η(Y )η(Z).

S(Y,Z) = Ag(Y,Z) +Bη(Y )η(Z),(19)

where

A =
[ r

b(2n+ 1)

( a
2n

+ 2b
)
− 2nk − ka

b

]
,(20)

B =
[
4nk +

ka

b
− r

b(2n+ 1)

( a
2n

+ 2b
) ]
.(21)

Hence we state the following:

Theorem 3.2. A (2n + 1) dimensional quasi-conformally flat N(k)-contact
metric manifold is an η-Einstein manifold.
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4. Einstein semi-symmetric quasi-conformally flat N(k)-contact
metric manifold

Definition 4.1. A (2n + 1)-dimensional quasi-conformally flat N(k)-contact
metric manifold is called Einstein Semi-symmetric if

R(X,Y ).E(Z,W ) = 0(22)

for any vector fields X, Y , Z and W .

Using g(QX,Y ) = S(X,Y ) in (19), we get

QX = AX +Bη(X)ξ.(23)

Substituting (18) and (23) in (14), we have

R(X,Y )Z = M{g(Y,Z)X − g(X,Z)Y }+N{g(Y,Z)η(X)ξ

− g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y },
(24)

where

M =
{4nbk

a
+ 2k − r

a(2n+ 1)

( a
2n

+ 2b
)}

,

N =
{ r

a(2n+ 1)

( a
2n

+ 2b
)
− 4nbk

a
− k
}
.

Now, we consider the quasi-conformally flat N(k)-contact metric manifold which
is Einstein Semi-symmetric, i.e.,

R · E = 0.(25)

The above equation reduces to

E(R(X,Y )Z,U) + E(Z,R(X,Y )U) = 0.(26)

In view of (13), equation (26) gives

S(R(X,Y )Z,U)− r

2
g(R(X,Y )Z,U) + S(Z,R(X,Y )U)

− r

2
g(Z,R(X,Y )U) = 0.

(27)

Using (19), we get from the above equations(
A− r

2

)
g(R(X,Y )Z,U) +

(
A− r

2

)
g(Z,R(X,Y )U)

+Bη(R(X,Y )Z)η(U) +Bη(R(X,Y )U)η(Z) = 0.
(28)

Putting Z = ξ in (28), we get(
A− r

2

)
g(R(X,Y )ξ, U) +

(
A− r

2

)
g(ξ,R(X,Y )U)

+Bη(R(X,Y )ξ)η(U) +Bη(R(X,Y )U) = 0.
(29)

Using (24) in (29), we have

B{g(X,U)η(Y )− g(Y, U)η(X)} = 0.(30)
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Putting Y = ξ in (30), we get

B{g(X,U)− η(U)η(X)} = 0.(31)

Again putting U = QW in (31) and using (23), we get

B{S(X,W )− (A+B)η(W )η(X)} = 0.(32)

This implies that, either B = 0, or S(X,W )− (A+B)η(W )η(X) = 0.
Now if B = 0, then from (21), we get that r is constant.
Again if S(X,W )− (A+B)η(W )η(X) = 0, then we have

S(X,W ) = (A+B)η(W )η(X).(33)

Putting X = W = ei in (33), where {ei} is an orthonormal basis of the tangent
space at any point of the manifold and taking summation over i, 1 ≤ i ≤ 2n+ 1,
we get

r = 2nk.

Thus we have the following:

Theorem 4.2. If a (2n + 1)-dimensional quasi-conformally flat N(k)-contact
metric manifold is Einstein Semi-symmetric, then the scalar curvature is constant.

5. Quasi-conformally semi-symmetric N(k)-contact metric manifold

Let us consider a Quasi-conformally semi-symmetric N(k)-contact metric mani-
fold. Then the condition

R(X,Y ).C̃ = 0(34)

holds for every vector fields X, Y . From the above equation, we have

0 = (R(X,Y ) · C̃)(U, V )W = R(X,Y )C̃(U, V )W

− C̃(R(X,Y )U, V )W − C̃(U,R(X,Y )V )W − C̃(U, V )R(X,Y )W.
(35)

For X = ξ, the above equation gives

0 = R(ξ, Y )C̃(U, V )W − C̃(R(ξ, Y )U, V )W

− C̃(U,R(ξ, Y )V )W − C̃(U, V )R(ξ, Y )W.
(36)

In view of (8), the equation (36) can be written as

0 = k[C̃(U, V,W, Y )ξ − η(C̃(U, V )W )Y + η(U)C̃(Y, V )W

− g(Y,W )C̃(U, V )ξ − g(Y, U)C̃(ξ, V )W + η(V )C̃(U, Y )W

− g(Y, V )C̃(U, ξ)W + η(W )C̃(U, V )Y ],

(37)

where C̃(U, V,W, Y ) = g(C̃(U, V )W,Y ).
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Taking inner product of the above equation with ξ, we get

0 = k[C̃(U, V,W, Y )− η(C̃(U, V )W )η(Y ) + η(U)η(C̃(Y, V )W )

− g(Y,U)η(C̃(ξ, V )W ) + η(V )η(C̃(U, Y )W )− g(Y, V )η(C̃(U, ξ)W )

+ η(W )η(C̃(U, V )Y )− g(Y,W )η(C̃(U, V )ξ)].

(38)

Putting Y = U in (38), we obtain

0 = k[C̃(U, V,W,U)− g(U,U)η(C̃(ξ, V )W )

− g(U, V )η(C̃(U, ξ)W ) + η(W )η(C̃(U, V )U)].
(39)

Let {ei}, 1 ≤ i ≤ 2n + 1, be an orthonormal basis of the tangent space at any
point. Then by virtue of (1), (8) and (11), the above equation reduces to

S(V,W ) =
{2n(ak + 2nkb)− rb

a− b

}
g(V,W )

+
{rb− (2n+ 1)2nkb

a− b

}
η(V )η(W ).

Hence we can state the following result:

Theorem 5.1. If M is a (2n + 1)-dimensional quasi-conformally semi-sym-
metric N(k)-contact metric manifold, then the manifold is η-Einstein provided
a 6= b.

6. Globally φ-quasiconformally symmetric
N(k)-contact metric manifold

Definition 6.1. An N(k)-contact metric manifold is said to be globally
φ-quasiconformally symmetric if

φ2(∇W C̃)(X,Y )Z = 0,(40)

for any X,Y, Z ∈ χ(M).

If X, Y and Z are horizontal vector fields, then the manifold is said to be locally
φ-quasiconformally symmetric.

Here we consider a (2n + 1)-dimensional N(k)-contact metric manifold which
is globally φ-quasiconformally symmetric. Then using (4) in (40), we obtain

−(∇W C̃)(X,Y )Z + η((∇W C̃)(X,Y )Z) = 0.(41)
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By virtue of (3) in equation (41) and taking inner product with U , we get

−ag((∇WR)(X,Y )Z,U)− b
[
(∇WS)(Y,Z)g(X,U)

−(∇WS)(X,Z)g(Y, U) + g(Y,Z)g((∇WQ)X,U)

−g(X,Z)g((∇WQ)Y, U)] + aη((∇WR)(X,Y )Z)η(U)

+
dr(W )

2n+ 1

[ a
2n

+ 2b
]

[g(Y,Z)g(X,U)− g(X,Z)g(Y,U)
]

+b[(∇WS)(Y, Z)η(X)η(U)− (∇WS)(X,Z)η(Y )η(U)

+g(Y,Z)η((∇WQ)(X))η(U)− g(X,Z)η((∇WQ)(Y ))η(U)]

−dr(W )

2n+ 1

[ a
2n

+ 2b
]

[g(Y,Z)η(X)η(U)− g(X,Z)η(Y )η(U)] = 0.

(42)

Putting X = U = ei in (42), where {ei}, 1 ≤ i ≤ 2n+ 1, is an orthonormal basis
of the tangent space at each point of the manifold and taking summation over i,
we get

−(a+ 2nb− b)(∇WS)(Y,Z)−
[
b

2n+1∑
i=1

g((∇WQ)ei, ei)

− 2n

2n+ 1
dr(W )

( a
2n

+ 2b
)
− b

2n+1∑
i=1

η((∇WQ)ei)η(ei)

+
dr(W )

2n+ 1

( a
2n

+ 2b
)]
g(Y,Z) + bg((∇WQ)Y,Z)

+a

2n+1∑
i=1

η((∇WR)(ei, Y )Zη(ei)− b(∇WS)(ξ, Z)η(Y )

−bη((∇WQ)Y )η(Z) +
dr(W )

2n+ 1

( a
2n

+ 2b
)
η(Y )η(Z) = 0.

(43)

Again putting Z = ξ in (43) and by virtue of (4), we obtain

−(a+ 2nb− b)(∇WS)(Y, ξ)−
[
bdr(W )− 2n

2n+ 1
dr(W )

( a
2n

+ 2b
)

−bη((∇WQ)ξ) +
dr(W )

2n+ 1

( a
2n

+ 2b
)]
η(Y )

+ag((∇WR)(ξ, Y )ξ, ξ)− b(∇WS)(ξ, ξ)η(Y ) +
dr(W )

2n+ 1

( a
2n

+ 2b
)
η(Y ) = 0.

(44)

Using (4), (5), (8), (11), and hξ = 0, we have the following relations:

η((∇WQ)ξ) = 0,(45)

g((∇WR)(ξ, Y )ξ, ξ) = 0,(46)

∇WS)(ξ, ξ) = 0.(47)
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In view of (45), (46) and (47), equation (44) gives

(∇WS)(Y, ξ) =
1

2n+ 1
dr(W )η(Y ).(48)

Putting Y = ξ in (48), we get dr(W ) = 0. This implies r is constant.
And from (48), we have

(∇WS)(Y, ξ) = 0

i.e.,

∇WS(Y, ξ)− S(∇WY, ξ)− S(Y,∇W ξ) = 0.(49)

Substituting (6) and (11) in (49), we get

2nk(∇W η)(Y ) + S(Y, φW ) + S(Y, φhW ) = 0.(50)

Using (12) in (50), we obtain

2nkg(φY,W ) + S(Y, φW ) + 2nkg(φY, hW ) + S(Y, φhW ) = 0.(51)

Replacing W by hW in (51) and using (7), we have

2nk2g(φY,W ) + kS(Y, φW ) = 0.(52)

Again replacing W by φW in (52) and using (4), (5) and (6), we get

k[2nkg(φY,W )− S(Y,W )] = 0.(53)

Therefore, (53) gives either k = 0 or

S(Y,W ) = 2nkg(Y,W ).(54)

Hence we state the following:

Theorem 6.2. A globally φ-quasiconformally symmetric N(k)-contact metric
manifold is an Einstein manifold provided k 6= 0.

Again from (54), we have QX = 2nkX. Then from (1), we obtain

C̃(X,Y )Z = aR(X,Y )Z +
[
4nbk − r

2n+ 1

( a
2n

+ 2b
) ]

[g(Y,Z)X

− g(X,Z)Y ],
(55)

from which we have

(∇W C̃)(X,Y )Z = a(∇WR)(X,Y )Z.(56)

Therefore

φ2(∇W C̃)(X,Y )Z = aφ2(∇WR)(X,Y )Z.(57)

Hence we state the following.

Theorem 6.3. An N(k)-contact metric manifold is globally φ-quasiconformally
symmetric if and only if it is globally φ-symmetric provided k 6= 0 and r is constant.
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