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ON THE EXISTENCE AND UNIQUENESS OF A SOLUTION

TO THE BOUNDARY VALUE PROBLEM FOR LINEAR

ORDINARY DIFFERENTIAL EQUATIONS

N. A. GASILOV

Abstract. In this study, we investigate the Boundary Value Problem (BVP) for

second order non-homogeneous linear differential equation with Dirichlet conditions.

We derive a novel sufficient condition for the existence and uniqueness of a solution.
The condition is formulated in terms of input parameters (coefficient functions and

the length l of the interval, where the BVP is considered), not in secondary terms
as Lipschitz coefficients. We compare the obtained sufficient condition with those

for non-linear BVPs and demonstrate that it covers a significantly wider class of

BVPs.

1. Introduction

1.1. Formulation of the problem

Consider the following BVP for a second order non-homogeneous linear differential
equation (LDE) with Dirichlet boundary conditions:

(1)


y′′ + p(x) y′ + q(x) y = r(x),

y(0) = A,

y(l) = B,

where l > 0, A, B are given real numbers. Here and throughout the article, we
assume that p(x), q(x), r (x) are real functions continuous on [0, l]. Below we will
often refer to l, A, B, p(x), q (x) and r(x) as input parameters.

We will investigate the existence and uniqueness issue for BVP (1). The issue
is as follows. It is well known that for an Initial Value Problem (IVP), when the
given functions p, q and r are continuous, the solution exists and is unique. For
a BVP, however, the situation is uncertain. Depending on the input parameters,
three cases are possible:

1. There exists precisely one solution.
2. There exist infinitely many solutions.
3. There exists no solution.
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Currently, there is no decision mechanism that determines, based on the input
parameters, which case will occur for a problem under consideration. In this study,
we will attempt to establish a sufficient condition of existence and uniqueness for
BVP (1). Namely, we will derive under what conditions on the right-hand side and
coefficient functions, boundary values and l we can state that the solution exists
and is unique. Generally, the issue is treated as a special case of non-linear BVPs.

1.2. Existence and uniqueness results for non-linear BVPs

In this subsection, we give a brief summary of results for non-linear BVPs.
Let us consider the two-point boundary value problem

(2)


y′′(x) + f (x, y(x), y′(x)) = 0,

y (a) = A,

y (b) = B.

First we provide a widely used result on the issue [5].

Theorem 1.1. Let the function f(x, y, z) in (2) be continuous on the domain
D =

{
(x, y, z)

∣∣ a ≤ x ≤ b, y2 + z2 <∞
}

and satisfy there a uniform Lipschitz
condition with respect to y and z:

(3) |f (x, y1, z1)− f (x, y2, z2) | ≤ K |y1 − y2| + L |z1 − z2| .

Also, let the function f(x, y, z) have continuous partial derivatives on D which
satisfy, for some positive constant M ,

∂f

∂y
< 0,

∣∣∣∣∂f∂z
∣∣∣∣ ≤M.

Then the BVP (2) has a unique solution.

A very important special case of Theorem 1.1 occurs for second-order linear
BVPs.

Corollary 1.2. Let the functions p(x), q (x) and r(x) be continuous on [a, b]
with q(x) < 0, a ≤ x ≤ b. Then the BVP

(4)


y′′ + p(x) y′ + q(x) y = r (x) , a < x < b,

y (a) = A,

y (b) = B

has a unique solution for each A, B.

The above theorem covers a narrow class of BVPs. Different approaches are
applied to get better results. One of them deals with the sequence of functions
defined by Picard’s iteration. Picard [7, 8] showed that for the class of functions
f(x, y, z) which are continuous and satisfy the uniform Lipschitz condition (3), his
iteration procedure converges (to the solution) whenever the length l = b − a of
the interval [a, b] is small enough. (We notice that the expression “whenever the
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length of the interval [a, b] is small enough” can be commented also as “whenever
the function f (x, y, z) changes slowly enough”.) In this way, he established that

(5)
1

8
Kl2 +

1

2
Ll < 1

suffices for the existence and uniqueness of a solution to (2). After that, the
question of a maximum bound for l became a subject of continuing interest. Let-
tenmeyer [6] improved the above estimate to

(6)
1

π2
Kl2 +

4

π2
Ll < 1.

Further improvement over (6) was done by Coles and Sherman [2]:

(7)

1

12
Kl2 +

1

3
Ll < 1 for K ≤ L2,

3−
√

3

12
Kl2 +

√
3

6
Ll < 1 for K > L2.

The approach based on Picard’s iteration convergence has some restrictions, which
were expressed by Bailey, Shampine and Waltman [1] as follows: “Although this
convergence question has been investigated by a number of people over many
years (see [2, 6, 7, 8, 10], for example), the maximum interval for which Picard’s
iteration procedure converges is still not known. And even if it were, that fact
alone would not necessarily tell us anything about the maximum interval for which
the boundary value problem has a unique solution, other than that it provides a
lower bound. Thus Picard’s method, though extremely useful for a wide class of
problems, does have the one serious limitation of being applicable to only those
problems for which the iteration procedure happens to converge”.

For linear BVP (1), besides the above results, some independent results were
also obtained. By using a Riccati equation, de la Valleé Poussin [2, 10] obtained
the following estimate:

(8) l < 2

∫ ∞
0

dx

x2 + Lx+K
,

where K ≥ |q(x)| and L ≥ |p (x)|. This estimate for the uniqueness interval is
better than (5), (6) and (7).

In particular, for constant coefficient equations, the following estimates can be
obtained from (8) by takingK = |q|, L = |p|, and using the notation ∆ = L2−4K:

(9)

l <
2√
∆

ln

(
1 +

2
√

∆

L−
√

∆

)
if ∆ > 0;

l <
4

L
if ∆ = 0;

l <
2√
|∆|

(
π − 2arctan

L√
|∆|

)
if ∆ < 0.
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1.3. Preliminaries on linear BVPs

In this subsection, we give some basic information on the existence and uniqueness
issue for the considered BVP (1).

The IVP

(10)


y′′ + p(x) y′ + q(x) y = r(x),

y(0) = 0,

y′(0) = 0

has a unique solution. Denote it as yp(x). Then, the solution of (1) (if any) can
be represented as

y = yp(x) + yc(x),

where yc(x) is the solution of the BVP

(11)


y′′ + p(x) y′ + q(x) y = 0,

y(0) = α,

y(l) = β

with α = A and β = B − yp(l).
Thus, the following conclusion implies.

Lemma 1.3. The existence and uniqueness issue of BVP (1) for a non-homoge-
neous linear differential equation is the same as that of BVP (11) for the associated
homogeneous equation (provided that all the involved functions are continuous).

We can also interpret this fact in such a way that the existence and uniqueness
of the solution of BVP (1) is determined by the coefficient functions, the boundary
values and l, not by the right-hand side function r(x). Based on this circumstance,
we will further focus on the question of the existence and uniqueness of the solution
of BVP (11) for a homogeneous differential equation.

Solutions to the IVPs

(12)


y′′ + p(x) y′ + q(x) y = 0,

y(0) = 1,

y′(0) = 0

and

(13)


y′′ + p(x) y′ + q(x) y = 0,

y(0) = 0,

y′(0) = 1

exist and are unique. Denote the first as y1(x) and the second as y2(x). Then, the
solution to BVP (11) (if any) can be represented as

y = c1y1(x) + c2y2(x) .

Coefficients c1 and c2 are solutions to the linear system

(14)

{
c1y1(0) + c2y2(0) = α,

c1y1(l) + c2y2(l) = β,
⇐⇒

{
c1 = α,

c2y2(l) = β − αy1(l).
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Consequently, the conditions for the existence and uniqueness of the solution to
BVP (11) are the same as for the linear system (14). Hence we get the following
result [4].

Lemma 1.4.

(i) BVP (11) has a unique solution for all α and β if and only if y2(l) 6= 0 for
the solution of IVP (13).

(ii) BVP (11) has an infinite number of solutions if and only if y2 (l) = 0 and
β = αy1(l). In this case, the general solution is y = αy1(x)+cy2 (x), c ∈ R.

(iii) BVP (11) has no solution if and only if y2(l) = 0 but β 6= αy1(l).

We emphasize that it is decisive for existence and uniqueness whether y2(l)
equals 0 or not.

1.4. Existence and uniqueness of a solution of BVP for linear differential
equation with constant coefficients

Consider the BVP

(15)


y′′ + p y′ + q y = 0,

y(0) = α,

y(l) = β,

where p and q are constants.
The solutions of the differential equation are of the form y = erx. The charac-

teristic equation is r2 + pr+ q = 0. Its discriminant is ∆ = p2 − 4q, and roots are

r1,2 = −p2 ±
√

∆
2 .

The solutions of IVPs (12) and (13) for the considered case are as follows:

If ∆ > 0, then y1 = e−
p
2x
[
cosh

(√
∆
2 x
)

+ p√
∆

sinh
(√

∆
2 x
)]

,

y2 = 2√
∆

e−
p
2xsinh

(√
∆
2 x
)

.

If ∆ = 0, then y1 =
(
1 + p

2x
)

e−
p
2x, y2 = xe−

p
2x.

If ∆ < 0, then y1 = e−
p
2x

[
cos
(√
|∆|
2 x

)
+ p√

|∆|
sin
(√
|∆|
2 x

)]
,

y2 = 2√
|∆|

e−
p
2xsin

(√
|∆|
2 x

)
.

It can be seen that if ∆ ≥ 0, then y2(l) > 0, and consequently y2(l) 6= 0. Thus,
from the formulas given above and Lemma 1.4, the following conclusion can be
drawn [4].

Corollary 1.5. In the case ∆ ≥ 0, the solution of BVP (15) exists, and it is
unique regardless of the value of l (as well as the values of α and β).
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In the case ∆ < 0:

(a) If

√
|∆| l
2π is not an integer number, then the solution exists and is unique

regardless of the values of α and β.

(b) If

√
|∆| l
2π is an integer number and β = αe−

pl
2 cos

(√
|∆| l
2

)
, then an infinite

number of solutions exist:

y = e−
p
2x

[
α cos

(√
|∆|
2

x

)
+ c sin

(√
|∆|
2

x

)]
, c ∈ R.

(c) If

√
|∆| l
2π is an integer number but β 6= αe−

pl
2 cos

(√
|∆| l
2

)
, then no solution

exists.

We notice that existence and uniqueness are violated only when ∆ < 0 and at
points l∗n = 2π√

|∆|
n, n ≥ 1. They are called resonance points by some researchers.

We also notice that, in particular, if l < l∗1, then the solution exists and is unique.
Taking this circumstance into account, it can be seen that (5)–(9) are, in fact,
estimates for the first resonance point l∗1.

Remark 1. By Corollary 1.5(a), in particular, if ∆ < 0 and

√
|∆| l
2π < 1 ⇐⇒

|∆|
4 < π2

l2 , then the solution of BVP (15) exists and is unique. This condition can

be reduced to the form 0 < q − p2

4 < π2

l2 . By adding the case ∆ ≥ 0, the following
conclusion can be reached. If

(16) q − p2

4
<
π2

l2
,

then BVP (15) has a unique solution.

1.5. Existence and uniqueness of a solution of BVP for Cauchy-Euler
equation

We represent a Cauchy-Euler equation (also referred as an equidimensional equa-
tion) in the form

y′′ +
b

x+ ε
y′ +

c

(x+ ε)
2 y = 0 .

Notice that we are using a shift of ε in x to make the equation normal (well-be-
haved) at x = 0.

The solution of the Cauchy-Euler equation is of the form y = (x+ ε)
r
. The

characteristic equation is r (r − 1) + br + c = 0 ⇐⇒ r2 + (b− 1) r + c = 0, its

discriminant is ∆ = (b− 1)
2 − 4c and the roots are r1,2 = 1−b

2 ±
√

∆
2 .

The solutions of IVPs (12) and (13) are as follows:

If ∆ > 0, then y1 =
(
x
ε + 1

) 1−b
2

[
cosh

(√
∆
2 ln

(
x
ε +1

))
− 1−b√

∆
sinh

(√
∆
2 ln

(
x
ε +1

))]
,

y2 = 2ε√
∆

(
x
ε + 1

) 1−b
2 sinh

(√
∆
2 ln

(
x
ε + 1

))
.

If ∆ = 0, then y1 =
(
x
ε + 1

) 1−b
2
[
1− 1−b

2 ln
(
x
ε +1

)]
, y2 = ε

(
x
ε +1

) 1−b
2 ln

(
x
ε +1

)
.
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If ∆ < 0, then y1 =
(
x
ε +1

) 1−b
2

[
cos
(√
|∆|
2 ln

(
x
ε +1

))
− 1−b√

|∆|
sin
(√
|∆|
2 ln

(
x
ε +1

))]
,

y2 = 2ε√
|∆|

(
x
ε + 1

) 1−b
2 sin

(√
|∆|
2 ln

(
x
ε + 1

))
.

From here and from Lemma 1.4, for the BVP

(17)


y′′ + b

x+ε y
′ + c

(x+ε)2 y = 0,

y(0) = α,

y(l) = β,

we obtain the following result.

Corollary 1.6. In the case ∆ ≥ 0, the solution of BVP (17) for a Cauchy-
Euler equation exists, and it is unique regardless of the value of l (as well as the
values of α and β).
In the case ∆ < 0:

(a) If

√
|∆| ln( lε+1)

2π is not an integer number, then the solution exists and is
unique regardless of the values of α and β.

(b) If

√
|∆| ln( lε+1)

2π is an integer number and β=α
(
l
ε+1

) 1−b
2 cos

(√|∆| ln( lε+1)
2

)
,

then an infinite number of solutions exist:

y =
(x
ε

+1
) 1−b

2

[
α cos

(√|∆|
2

ln
(x
ε

+1
))

+ c sin
(√|∆|

2
ln
(x
ε

+1
))]

, c ∈ R.

(c) If

√
|∆| ln( lε+1)

2π is an integer number but β 6=α
(
l
ε+1

) 1−b
2 cos

(√|∆| ln( lε+1)
2

)
,

then no solution exists.

One can see that for Cauchy-Euler equation, the resonance points are l∗n =

ε
(

e
2π√
|∆|

n
− 1
)

, n ≥ 1. Similarly to Remark 1, we can obtain the following result.

Remark 2. If

(18) c− (b− 1)
2

4
<

π2

ln2
(
l
ε + 1

) ,
then BVP (17) has a unique solution.

2. New sufficient conditions for existence and uniqueness

In this section, we investigate existence-uniqueness for linear BVPs directly, not
in the frame of non-linear BVPs.

For equations with constant coefficients, the condition p2 − 4q ≥ 0 is one (in-
deed, the first) of the sufficient conditions for the existence and uniqueness of the
solution. Regarding this, the following question may arise.

Question. If p2(x)−4q(x) ≥ 0 for all x ∈ [0, l], can it be stated that BVP (11)
has a solution and it is unique (regardless of the values α and β)?
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The answer to this question is “No”. To see this, consider the following Cauchy-
Euler equation:

y′′ +
3

x+ 1
y′ +

2

(x+ 1)
2 y = 0.

For this equation, the above condition holds (for every l), but the existence and
uniqueness of the solution occurs not for all values of the parameters. Indeed, the
characteristic equation for the considered equation is r (r − 1) + 3r + 2 = 0 ⇐⇒
r2 + 2r + 2 = 0. Its discriminant is ∆ = −4 and roots are r1,2 = −1 ± i. The
solution of IVP (13) is y2(x) = (x+ 1)−1 sin (ln(x+ 1)). If we take, for example,
l = eπ−1, then y2(l) = 0. Therefore, not for all boundary conditions, the existence
and uniqueness of a solution to BVP (11) occurs.

Lemma 1.4 is formulated in terms of solutions to IVPs (12) and (13). Below
we will attempt to get results in terms of input parameters (in terms of l, a, b and
the coefficient functions p(x) and q (x)).

Lemma 2.1. If q(x) ≤ 0 for all x ∈ [0, l], then BVP (11) has a solution, and
it is unique (regardless of what the values of α and β are).

Proof. Let u(x) = e
∫ x
0
p(x)dx. Then, u′ = p(x)u(x). Multiply equation (13)

by u(x): u y′′ + pu y′ + qu y = 0, and write it as (u(x)y′(x))
′

= −q(x)u(x)y(x).
Integrating from 0 to x gives

u(x) y′(x)− u (0) y′(0) =

x∫
0

(−q (x))u(x)y(x)dx.

From here and u(0) = 1, y′(0) = 1, we have

y′(x) =

1 +
x∫
0

(−q(x))u(x)y(x)dx

u(x)
.

Since y(0) = 0, u(x) > 0 and −q(x) ≥ 0, as long as y(x) ≥ 0, we get y′(x) > 0.
Therefore, the solution of IVP (13), y2, is a strictly increasing function. From
here, y2(l) 6= 0. Then, according to Lemma 1.4, the solution of the BVP exists
and is unique. �

Lemma 2.1 is almost identical to Corollary 1.2, obtained as a special case of the
results for non-linear BVPs. The lemma’s condition is more efficient, since it also
includes the equality case.

Let us reduce equation (11) to a simpler form (canonical form) to obtain new
results in the future.

Denote v = e
1
2

∫ x
0
p(x)dx. Then, v′ = 1

2p(x)v(x). Put z = v (x) y(x). The

derivatives are z′ = v y′ + 1
2pv y and z′′ = v y′′ + pv y′ + 1

4

(
p2 + 2p′

)
v y.

Multiply equation (11) by v(x):

v y′′ + pv y′ + qv y = 0
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and move on to the variable z:

(19) z′′ +
1

4

(
4q − p2 − 2p′

)
z = 0.

After the variable change, BVP (11) is transformed into the following form:

(20)


z′′ + g(x) z = 0,

z(0) = α,

z(l) = β̃,

where g(x) = 1
4

(
4q(x)− p2(x)− 2p′(x)

)
and β̃ = β v(l).

From here we can obtain the following result.

Lemma 2.2. If 4q(x) − p2(x) − 2p′(x) ≤ 0 for all x ∈ [0, l], then BVP (11)
has a solution and it is unique (no matter what the values of α and β are).

Proof. In equation (20) obtained for z(x), the coefficient functions are p̃(x) =
0 and q̃ (x) = 1

4

(
4q − p2 − 2p′

)
. According to Lemma 2.1, if q̃(x) ≤ 0, i.e., if

4q− p2− 2p′ ≤ 0, then the solution z(x) exists and is unique. From here and from

v(x) > 0, the solution y(x) = z(x)
v(x) also exists and is unique. �

Using the variable z, we reduced BVP (11) to BVP (20). Let us also express
IVP (13) in terms of z. Since v(0) = 1, we have z (0) = 0 and z′(0) = 1. Thus,
IVP (13) becomes as follows:

(21)


z′′ + g(x) z = 0,

z(0) = 0,

z′(0) = 1.

Let us reformulate condition (16) in Remark 1 in terms of the function g(x).
For BVP (15), if

(22) g(x) ≡ q − p2

4
<
π2

l2
,

then the solution exists and is unique.
Similarly, condition (18) in Remark 2 is formulated as follows. For BVP (17)

with the Cauchy-Euler equation, if

(23) g(x) ≡
(
c− b2 − 2b

4

)
1

(x+ ε)
2 <

[
π2

ln2
(
l
ε + 1

) +
1

4

]
1

(x+ ε)
2 ,

then the solution exists and is unique.
Below we will show that conditions (22) and (23) are applicable to any linear

equation, and not only to equations of the indicated types.
Let us examine Lemma 2.2’s effectiveness.
For equations with constant coefficients, the sufficient condition in Lemma 2.2

takes the form p2 − 4q ≥ 0. This is the same as the first condition (∆ ≥ 0) at the
beginning of the independently obtained Corollary 1.5.

The first sufficient condition in Corollary 1.6 for the Cauchy-Euler equation
y′′ + b

x+ε y
′ + c

(x+ε)2 y = 0 is (b− 1)
2 − 4c ≥ 0 ⇐⇒ 4c − (b− 1)

2 ≤ 0. Since
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p(x) = b
x+ε and q (x) = c

(x+ε)2 , the condition 4q − p2 − 2p′ ≤ 0 in Lemma 2.2

takes the form 4 c
(x+ε)2 − b2

(x+ε)2 + 2 b
(x+ε)2 ≤ 0 ⇐⇒ 4c− (b− 1)

2 ≤ 1. Thus, the

condition in Lemma 2.2 is rough than that in Corollary 1.6.
The condition in Corollary 1.6 can be represented as c ≤ 1

4 (b− 1)
2
, and the

condition obtained from Lemma 2.2 can be expressed as c ≤ 1
4 (b− 1)

2− 1
4 . There-

fore, the region 1
4 (b− 1)

2 − 1
4 ≤ c ≤ 1

4 (b− 1)
2
, where there is only one solution,

falls outside the scope of Lemma 2.2. Figure 1 shows the situation graphically.

−2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

2.5

b

c

Figure 1. In the marked region, the solution of BVP (17) for the Cauchy-

Euler equation is unique. In the more contrasting region between the two
curves, the solution also exists and is unique, but Lemma 2.2 does not cover

this region.

Let us explain the above circumstance through an example. For the equation
y′′ + 2

x+1 y
′ + 1

9
1

(x+1)2 y = 0 (i.e., in the case of b = 2 and c = 1
9 ), since the

discriminant of the characteristic equation, ∆ = (b− 1)
2 − 4c = 5

9 , is positive, the
BVP (17) has a solution and it is unique. However, the condition obtained from

Lemma 2.2 (c ≤ 1
4 (b− 1)

2 − 1
4 ⇐⇒

1
9 ≤ 0) does not hold.

Let us investigate how Lemma 2.2 can be improved. To do this, we will try to
use the estimate (6) obtained by Lettenmeier [6] for the non-linear BVP (2).
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For BVP (20), f (x, z(x), z′(x)) = 1
4

(
4q(x)− p2 (x)− 2p′(x)

)
z(x). If we take

K = 1
4 max
x∈[0,l]

∣∣4q(x)− p2(x)− 2p′(x)
∣∣ and L = 0, the Lipschitz condition (3) is sat-

isfied. Then, condition (6) becomes as 1
π2Kl

2 = l2

4π2 max
x∈[0,l]

∣∣4q(x)−p2(x)− 2p′(x)
∣∣<

1. This implies the following lemma.

Lemma 2.3. If max
x∈[0, l]

∣∣4q(x)− p2 (x)− 2p′(x)
∣∣ < 4π2

l2 , then BVP (11) has a

solution and it is unique.

To obtain the next result, we use the following theorem and corollary given
in [9].

Consider the equation

(24) [k(x)y′]
′
+ g (x) y = 0 (a ≤ x ≤ b),

where the function k(x) is positive and continuously differentiable, and the function
g(x) is continuous.

Theorem 2.4 (Sturm Comparison Theorem). Let yn = yn(x) be nonzero so-
lutions of the linear equations

[kn(x)y′n]
′
+ gn(x)yn = 0 (n = 1, 2),

and let the inequalities k1(x) ≥ k2(x) > 0 and g1(x) ≤ g2(x) hold. Then the
function y2 has at least one zero lying between any two adjacent zeros, x1 and x2,
of the function y1 (it is assumed that the identities k1 ≡ k2 and g1 ≡ g2 are not
satisfied on any interval simultaneously).

Corollary 2.5. If g(x) ≤ 0 or there exists a constant c such that

k(x) ≥ c > 0, g(x) < c
( π

b− a

)2

,

then every nontrivial solution to equation (24) has no more than one zero on the
interval [a, b].

For IVP (21), k(x) = 1 and g (x) = 1
4

(
4q(x)− p2 (x)− 2p′(x)

)
. If to

take c = 1, then the condition k(x) = 1 ≥ 1 > 0 holds. Besides, if g (x) =
1
4

(
4q(x)− p2 (x)− 2p′(x)

)
< π2

l2 ⇐⇒ 4q(x) − p2 (x) − 2p′(x) < 4π2

l2 , then, ac-
cording to Corollary 2.5, each non-trivial solution z(x) of the differential equation
has at most one zero in the interval [0, l]. Then, since z(0) = 0 at 0, the solution
of IVP (21) has no other zeros. From here, according to Lemma 1.4, BVP (20)
has a solution and it is unique. Summarizing, we can express the result obtained
as follows.

Lemma 2.6. If max
x∈[0,l]

(
4q(x)− p2 (x)− 2p′(x)

)
< 4π2

l2 , then BVP (11) has a

solution and it is unique.

This result (Lemma 2.6) is stronger than Lemma 2.3 obtained on the basis of
the study by Lettenmeyer [6]. The result is also stronger than Lemma 2.2.
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Let us consider a numerical example to evaluate the impact of the result achieved
(i.e., of Lemma 2.6). For the differential equation y′′+ 1

2
1

(x+1)2 y = 0, the solution

of IVP (13) is y2(x) = 2
√
x+ 1 sin

(
1
2 ln(x+ 1)

)
. If l < e2π − 1 ≈ 534.49, then

y2(x) 6= 0. Therefore, BVP has a solution and it is unique.
Now, let us check the condition of Lemma 2.6:

max
x∈[0,l]

(
4q(x)−p2(x)−2p′(x)

)
= max
x∈[0,l]

2

(x+1)2
<

4π2

l2
⇐⇒ 2 <

4π2

l2
⇐⇒ l2 < 2π2.

Thus, Lemma 2.6 guarantees the existence-uniqueness of the solution only when
l <
√

2π ≈ 4.44 (that is, for relatively small values of l). As a result, Lemma 2.6
has the potential to be developed further.

Let us reduce the solution of the 2nd order differential equation (21) in canonical
form to the solution of the Riccati equation. With k(x) being a function, subtract
(kz)

′
from the equation and add it back to get

z′′ − (kz)
′
+ (kz)

′
+ gz = 0

and group the terms as follows:

(25) (z′ − kz)′ + k

(
z′ +

k′ + g

k
z

)
= 0 .

Choose the function k(x) so that k′+g
k = −k. This function solves the Riccati

equation k′ + k2 + g = 0. Now, assume that it is found.
Put w = z′ − kz. Equation (25) becomes

w′ + kw = 0.

Since w(0) = 1− 0 = 1 for IVP (21), we have

w = e
−
x∫
0

k(x) dx
(note: w (x) > 0).

Using the function w, (21) is transformed into the following first-order linear
IVP:

z′ − kz = w, z(0) = 0 .

The integrating factor is

u = e
−
x∫
0

k(x) dx
= w(x),

the general solution is

z =
1

u(x)

(
C +

∫
w(x) u(x) dx

)
=

1

w(x)

(
C +

∫
w2(x) dx

)
.

Since z (0) = 0, we get

z =

x∫
0

w2 (x) dx

w(x)
.

From here, we establish that z2 (x) > 0 (as long as the function k(x) is defined).
Then, based on Lemma 1.4, we arrive at the following conclusion.
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Lemma 2.7. If the Riccati equation k′ + k2 + g(x) = 0 has a solution defined
on [0, l], then BVP (20) has a solution and it is unique.

Below, we recall a theorem from [3] that we will use in the future.

Theorem 2.8 (Comparison theorem). Let the functions f1 (x, y), f2 (x, y) be
continuous in Q = {(x, y) | a ≤ x ≤ b, u ≤ y ≤ v}, and f1 (x, y) has partial de-

rivative ∂f1

∂y (x, y) in Q. Then, if y1(x), y2(x) on interval [a, b] are solutions of

Cauchy problems{
y′1(x) = f1 (x, y1(x)) ,

y1 (a) = y01,
and

{
y′2(x) = f2 (x, y2(x)) ,

y2 (a) = y02,

where f1 (x, y) ≥ f2 (x, y), (x, y) ∈ Q, and y01 ≥ y02, the following inequality
holds:

y1(x) ≥ y2(x), x ∈ [a, b] .

Based on this Theorem, we prove the following lemma.

Lemma 2.9. If the initial value problem k′ = −
(
k2 + g(x)

)
, k(0) = k0 for the

Riccati equation has solutions defined in [0, l], for continuous functions g = g1(x)
and g = g2(x) (where g1(x) ≤ g2(x)), then it also has a solution for any continuous
function g(x) satisfying the condition g1(x) ≤ g(x) ≤ g2(x).

Proof. Let a function g(x), satisfying the lemma’s condition, be given. Accord-
ing to the classical existence and uniqueness theorem, there exists a solution to

the initial value problem in an interval [0, δ̃). Let us show that this solution can
be extended to the interval [0, l]. Assume the opposite is true: Let the widest
interval over which the solution can be extended be narrower than [0, l]. This
widest interval can be (1) closed or (2) open.

(1) Let us see if this case is possible. Let the interval in question be [0,m] (m <
l). Taking m as the starting point, the solution of the initial value problem under
investigation can be extended to an interval [m,m+ δ). As a result, a solution
defined in the interval [0,m+ δ) is obtained. This contradicts the assumption that
the widest interval to which the solution can be extended is [0,m]. Hence, case (1)
cannot occur.

Consider case (2). Let [0,m) (m ≤ l) be the widest interval over which the
solution can be extended. Let us denote the solutions corresponding to the func-
tions g = g1 (x) and g = g2(x) as k1(x) and k2(x), respectively. These continuous
functions are bounded because they are defined on the closed interval [0, l]. By the
Comparison theorem (Theorem 2.8) [3], the solution k (x) is trapped between k1(x)
and k2 (x) on each interval [0,m] (m < m), hence, on [0,m): k2 (x) ≤ k(x) ≤ k1(x)
for all x ∈ [0,m). Consider the limit of the solution function k(x) when x→ m−.
This limit ( lim

x→m−
k(x)) (i) may exist or (ii) may not exist. If the limit exists (let

us call it km), by taking k (m)=km, the solution could be extended to the closed
interval [0,m] (note that in this case, the solution could be further extended to
an interval [0,m+ δ)). Thus, in case (i) there is a contradiction that the widest
interval over which the solution can be extended is [0,m).
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Let us look at situation (ii). In this case, when x→ m−, the solution function
k(x) has no limit. On the other hand, k (x) is bounded. According to these two
facts, we can choose two increasing sequences xn and zn that converge to m, so
that the limits of k (xn) and k (zn) are different (we denote them as kx and kz).
Let us denote the absolute value of the difference between the limits by d, i.e.,
d = |kz − kx|.

Put M = sup
x∈[0, m)

∣∣k2(x) + g(x)
∣∣. For each ε, a δ > 0 can be chosen such that

Mδ < ε
4 . Also, for each ε, one can choose an N such that for all n greater than N ,

the following inequalities hold: |xn −m| < δ, |zn −m| < δ and |k (xn)− kx| < ε
4 ,

|k (zn)− kz| < ε
4 . Let us take two elements, xi and zj , with numbers greater than

N and such that xi 6= zj . Either xi < zj , or zj < xi. For clarity, let xi < zj .
Then,

|k (zj)− k (xi)| =

∣∣∣∣∣
zj∫
xi

k′(x) dx

∣∣∣∣∣ =

∣∣∣∣∣
zj∫
xi

(
k2(x) + g(x)

)
dx

∣∣∣∣∣ ≤
zj∫
xi

∣∣k2 (x) + g(x)
∣∣dx

≤
zj∫
xi

Mdx = M (zj − xi) ≤Mδ

<
ε

4
.

On the other hand,

|k (zj)− k (xi)| = |k (zj)− kz + kz − kx + kx − k (xi)|
= |kz − kx + (k (zj)− kz + kx − k (xi))|
|a+b|≥|a|−|b|

≥ |kz − kx| − |k (zj)− kz + kx − k (xi)|
≥ |kz − kx| − (|k (zj)− kz|+ |k (xi)− kx|)

≥ d−
(ε

4
+
ε

4

)
= d− ε

2
,

If we take ε < d, then on the one hand |k (zj)− k (xi)| < ε
4 < d

4 , and on the

other hand |k (zj)− k (xi)| ≥ d − ε
2 > d − d

2 = d
2 . This is a contradiction (the

same expression cannot be less than d
4 and greater than d

2 , where d is a positive
number). Therefore, case (2)(ii) also cannot occur.

As a result, the assumption that the solution of the initial value problem cannot
be extended to the interval [0, l] is false. The lemma is proved. �

And now we formulate the key assertion of our work.

Lemma 2.10. If there exists ε > 0 such that g(x) <
[

π2

ln2( lε+1)
+ 1

4

]
1

(x+ε)2 for

all x ∈ [0, l], then BVP (20) has a solution and it is unique (regardless of what the

values of α and β̃ are).
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Proof. We will carry out the proof in 4 steps.
(1) Take an ε that satisfies the lemma’s condition. Let us show that

(26) ∃δ > 0 ∀x ∈ [0, l] : g(x) ≤
[

π2

ln2
(
l+δ
ε + 1

) +
1

4

]
1

(x+ ε)2
.

We will prove it by contradiction. Assume that the statement does not hold, i.e.,

(27) ∀δ > 0 ∃x ∈ [0, l] : g(x) >

[
π2

ln2
(
l+δ
ε + 1

) +
1

4

]
1

(x+ ε)2
.

Let us take a sequence of positive numbers δn approaching to 0. For each δn,
taking an xn that satisfies the condition (27), we create a sequence xn. Since
xn ∈ [0, l], we can choose a convergent subsequence of this sequence: let it be the

sequence zn and its limit be z. Since z ∈ [0, l], we have g (z) ≥
[

π2

ln2( lε+1)
+ 1

4

]
1

(z+ε)2

according to (27). This is a contradiction to the Lemma’s condition. Therefore,
(26) is satisfied.

(2) Let us take g = g2(x) =
[

π2

ln2( l+δε +1)
+ 1

4

]
1

(x+ε)2 and consider the Riccati

equation k′ + k2 + g(x) = 0. It can be seen that
(28)

k=k2(x)=
1

x+ε

{
1

2
− π

ln
(
l+δ
ε

+1
) tan

(
π

ln
(
l+δ
ε

+1
) 2ln (x+ ε)− (ln (l + ε) + ln (ε))

2

)}
is a solution with the initial value

k0 = k(0) =
1

ε

{
1

2
+

π

ln
(
l+δ
ε

+ 1
) tan

(
π

2

ln
(
l
ε

+ 1
)

ln
(
l+δ
ε

+ 1
))} = B,

where B > 0. (The solution function k2 is defined on [0, l]. This proposition
can be proved as follows. In the expression under the tangent function in (28),

the function s (x) = 2ln(x+ε)−(ln(l+ε)+ln(ε))
2 , which is the second factor, is an in-

creasing function of x, and s(0) = 2ln(ε)−(ln(l+ε)+ln(ε))
2 = − 1

2 ln
(
l
ε + 1

)
, s (l) =

2ln(l+ε)−(ln(l+ε)+ln(ε))
2 = 1

2 ln
(
l
ε + 1

)
. Therefore, − 1

2 ln
(
l
ε + 1

)
≤ s(x) ≤ 1

2 ln
(
l
ε + 1

)
on [0, l]. From here, for the entire expression under the tangent function, we get:
−π2 < π

ln( l+δε +1)
s(x) < π

2 . Thus, tangent is defined. Consequently, k2 is defined

on the interval [0, l].)

(3) Let us take a function g(x) that satisfies the lemma’s condition. Put G =
min
x∈[0, l]

g(x) and A = min {−1, G}. By this definition, A < 0. Put a =
√
−A > 0.

For the function g = g1(x) = −a2, the solution of the Riccati equation k′ +
k2 + g(x) = 0 corresponding to the initial condition k(0) = k0 = B is k = k1 (x) =

a
(

1− 2(a−B)
a−B+(a+B)e2ax

)
. (One can see that if a = B, then k1(x) = B). Since a > 0

and B > 0, it is easy to see that the solution function k1 is defined in [0, l].

(4) According to the above, for a function g(x) satisfying the lemma’s condition,
we have g1(x) ≤ g(x) ≤ g2(x) for all x ∈ [0, l]. Then, according to Lemma 2.9, the
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Riccati equation for g = g(x) has a solution in [0, l]. From here and Lemma 2.7 it
follows that BVP (20) has only one solution. �

3. Main results

Based on Lemmas 1.3 and 2.1, taking into account that we have denoted g (x) =
1
4

(
4q(x)− p2 (x)− 2p′(x)

)
and expressing Lemma 2.10 in terms of the functions

p(x) and q(x), we get the following result.

Theorem 3.1. Let the functions p(x), q(x), r(x) and p′(x) be continuous on
[0, l]. If

(i) q (x) ≤ 0 for all x ∈ [0, l] ,

or

(ii) there exists ε > 0 such that 4q(x)− p2 (x)− 2p′(x) <

[
4π2

ln2( lε+1)
+ 1

]
1

(x+ε)2

for all x ∈ [0, l],

then BVP (1) has a solution and it is unique (regardless of what the values of A
and B are).

Below we derive two particular sufficient conditions from the theorem that are
convenient to apply.

For the function ĝ(x) :=
[

π2

ln2( lε+1)
+ 1

4

]
1

(x+ε)2 on the right-hand side of the

inequality in Lemma 2.10, it can be seen that ĝ(x) → 1
4x2 when ε → 0. This

implies that the condition g(x) < 1
4x2 for all x ∈ (0, l], is a sufficient condition

for existence and uniqueness. This result can be expressed in terms of input
parameters as follows.

Corollary 3.2. If 4q(x)−p2 (x)− 2p′(x) < 1
x2 for all x ∈ (0, l], then BVP (1)

has a solution and it is unique (regardless of what the values of A and B are).

It can also be seen that if ε→∞, then

ĝ(x) =
π2

ln2
(
l
ε + 1

) 1

(x+ ε)
2 +

1

4

1

(x+ ε)2
≈ π2[

(x+ ε)ln
(
1 + l

ε

)]2 + 0

=
π2[

(x+ ε) lε ln
(
1 + l

ε

) ε
l

]2 ≈ π2[
l
(
x
ε + 1

)
ln e
]2 → π2

[l · 1 · 1]
2 .

From here, we get ĝ(x) → π2

l2 . It can then be seen that the condition g(x) < π2

l2

for all x ∈ [0, l], is also a sufficient condition for existence and uniqueness. The
corresponding proposition is as follows.

Corollary 3.3. If 4q(x) − p2 (x) − 2p′(x) < 4π2

l2 for all x ∈ [0, l], then BVP
(1) has a solution and it is unique (regardless of what the values of A and B are).
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Notice that Corollary 3.3 is the same as Lemma 2.6.
None of Corollaries 3.2 and 3.3 is stronger than the other. This statement can

be justified by the examples below.
Let us consider the equation y′′ + 1

8 y = 0. Take l = 3. The condition of

Corollary 3.2 (i.e., the condition 1
2 < 1

x2 ⇐⇒ x2 < 2) is not satisfied if the
entire interval (0, l] is considered. But the condition of Corollary 3.3 (the condition
1
2 <

4π2

9 ) is satisfied. Therefore, based on Corollary 3.2, it cannot be decided about
the solution of BVP for the given equation. However, based on Corollary 3.3, the
existence and uniqueness of the solution can be established.

Now consider the equation y′′ + 1
4

1
(x+1)2 y = 0 and take l = 3π. The condition

of Corollary 3.2 (the condition 1
(x+1)2 <

1
x2 ⇐⇒ (x + 1)2 > x2) is satisfied, but

the condition of Corollary 3.3 (the condition 1
(x+1)2 <

4π2

9π2 ⇐⇒ (x+ 1)
2
> 9

4 ) is

not satisfied on some part of the interval (0, l] = (0, 3π].

Remark. For differential equations with constant coefficients, the condition of

Corollary 3.3 becomes 4q− p2 < 4π2

l2 , which can also be expressed as a disjunction

of two conditions: p2 − 4q ≥ 0 or 0 < 4q − p2 < 4π2

l2 . Therefore, Corollary 3.3
completely covers the first sufficient condition of Corollary 1.5 and partially covers
its condition (a). In the case of Cauchy-Euler equations, a similar statement is
valid for Theorem 3.1(ii) and Corollary 1.6.

4. Comparison with existing results and discussion

In this section, we demonstrate that the existing results on existence and unique-
ness cover only a narrow class of BVPs, and, in contrast, the results obtained in
this study allow us to expand this class significantly. For this purpose, we use
BVPs (15) for linear differential equations with constant coefficients. In this case,
the Lipschitz coefficients are K = |q| and L = |p|. Also, to be specific, we take
l = b− a = 1.

First, we compare the result by Lettenmeyer [6] with Coles and Sherman [2],
i.e., the estimates (6) and (7), which can be represented as

|q| < π2 − 4 |p|

and

|q| < 12− 4 |p| for |q| ≤ p2,

|q| < 12− 2
√

3 |p|
3−
√

3
for |q| > p2,

respectively. As can be seen from Figure 2, the estimate by Coles and Sherman
(Figure 2(a)) is mainly better than that by Lettenmeyer (Figure 2(b), the inner
region), except for a thin region that becomes visible when we zoom in on it (see
Figure 2(c)).
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Figure 2. The regions in the pq-plane, where the solution of BVP (15)
exists and is unique: (a) by Coles and Sherman, (b) by Lettenmeyer (the

inner region), (c) the thin region where Lettenmeyer’s estimate is better (the
intermediate region at the top of the figure).

The estimate (8)–(9) by de la Vallee Poussin is better than all existing Picard-
like estimates. To illustrate this circumstance, we make a comparison with the
Lettenmeyer’s estimate in Figure 3.

Figure 3. The regions in the pq-plane, where the solution of BVP (15) exists
and is unique: by Lettenmeyer (the inner region) and by de la Vallee Poussin

(the entire marked region including the inner part).
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Figure 4. The regions in the pq-plane, where the solution of BVP (15) exists
and is unique: by de la Vallee Poussin (the inner region) and by Corollary 3.3

(the entire marked region including the inner part).

Now let us compare our result with the most accurate of the estimates men-
tioned above, i.e., with the estimate by de la Vallee Poussin. For the comparison
we use Corollary 3.3. For constant coefficient linear differential equations, it be-

comes as 4q − p2 < 4π2

l2 . Thus, we have the estimate q < 1
4p

2 + π2, when l = 1.
Figure 4 shows that de la Vallee Poussin’s estimate determines only a bounded
region. The region according to Corollary 3.3 (see Figure 4) is unbounded and
entirely includes the region determined by de la Vallee Poussin. Therefore, our
analysis demonstrates that the result obtained in this study is significantly better
than the ones obtained for non-linear BVPs.

We would like to emphasize that we used the Graphing Calculator – Desmos
(desmos.com) when creating Figures 2–4.
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