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GENERALIZED SASAKIAN SPACE FORMS WITH

m-PROJECTIVE CURVATURE TENSOR

J. P. SINGH

Abstract. In the present paper, we study φ-m-projectively flat generalized Sasakian

space forms, m-projectively locally symmetric generalized Sasakian space forms and
m-projectively locally φ-symmetric generalized Sasakian space forms. Obtained re-

sults are supported by illustrative examples.

1. introduction

Recently, P. Alegre, D. Blair and A. Carriazo [1] introduced and studied general-
ized Sasakian space forms. These space forms are defined as follows:
Given an almost contact metric manifold M(φ, ξ, η, g), we say that M is general-
ized Sasakian space forms if there exist three functions f1, f2, f3 on M such that
the curvature tensor R is given by

R(X,Y )Z = f1{g(Y, Z)X − g(X,Z)Y }
+ f2{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}
+ f3{η(X)η(Z)Y − η(Y )η(Z)X

+ g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ}

(1.1)

for any vector fields X,Y, Z on M . In such a case, we denote the manifold as
M(f1, f2, f3). These kinds of manifolds appear as a generalization of well-known
Sasakian space forms which can be obtained as a particular case of generalized
Sasakian space forms by taking f1 = c+3

4 , f2 = f3 = c−1
4 . It may be noted that

these are not merely generalization of Sasakian space forms but also contain a
large class of almost contact manifolds. For example, it is well-known that [2] any
three dimensional (α, β)-trans Sasakian manifolds with α, β depending on ξ is a
generalized Sasakian space form. However, we can find generalized Sasakian space
forms with non-constant functions and arbitrary dimensions. In [1], the authors
cited several examples of generalized Sasakian space forms in terms of warped
product space. In [9], U. K. Kim studied conformally flat generalized Sasakian
space forms and locally symmetric generalized Sasakian space forms. Generalized
Sasakian space forms studied by several authors, viz., [5], [6], [7]. In [16], the
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authors studied φ-projectively flat generalized Sasakian space forms and obtained
several interesting results.
In 1971, G. P. Pokhriyal and R. S. Mishra [13] defined a tensor field W ∗ on a
Riemannian manifold as

W ∗(X,Y )Z = R(X,Y )Z − 1

4n
{S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY },
(1.2)

such a tensor field W ∗ is known as m-projective curvature tensor.
The properties of the m-projective curvature tensor in Sasakian and Kahler man-
ifolds were studied by R. H. Ojha ([10], [11]). He showed that it bridges the gap
among the conformal curvature tensor, conharmonic curvature tensor and con-
circular curvature tensor. Recently this curvature tensor was studied by many
geometers, viz., [14], [15], [4]. In [17], Venkatesha and B. Sumangala studied m-
projective curvature tensor in generalized Sasakian space forms and showed that a
(2n+1) dimensional (n > 1) generalized Sasakian space form is m-projectively flat

if and only if f3 = 3f−2
1−2n . Motivated these studies, in the present paper, we made

an attempt to study the properties of φ-m-projectively flat generalized Sasakian
space forms.

The present paper is organized as follows: In Section 2, we review some pre-
liminary results. In Section 3, we study φ-m-projectively flat generalized Sasakian
space forms and prove that a generalized Sasakian space form of dimension greater
than three is φ-m-projectively flat if and only if it is m-projectively flat. Section 4
deals with m-projectively locally symmetric generalized Sasakian space forms and
it is shown that a generalized Sasakian space form of dimension greater than three
is m-projectively locally symmetric if and only if it is conformally flat. Section 5 is
devoted to the study of m-projectively locally φ-symmetric generalized Sasakian
space forms. Here we find that an m-projectively locally φ-symmetric general-
ized Sasakian space form of dimension greater than three is also conformally flat
and hence m-projectively locally symmetric. The last section contains illustrative
examples to ensure the validity of the obtained results.

2. preliminaries

In an almost contact metric manifold, we have [3]:

φ2(X) = −X + η(X)ξ, φξ = 0,(2.1)

η(ξ) = 1, g(X, ξ) = η(X), η(φX) = 0,(2.2)

g(φX, φY ) = g(X,Y )− η(X)η(Y ),(2.3)

g(φX, Y ) = −g(X,φY ), g(φX,X) = 0,(2.4)

(∇Xη)(Y ) = g(∇Xξ, Y ),(2.5)

where φ is a (1, 1) tensor, ξ is a vector field, η is a 1-form and g is a Riemannian
metric. The metric g induces an inner product on the manifold.
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Again, we know that [1] in a generalized Sasakian space form the curvature
tensor R of M is given by the equation (1.1), where f1, f2, f3 are smooth functions
on the manifold. The Ricci operator Q, the Ricci tensor S, and the scalar curvature
tensor r of the manifold of dimension (2n+ 1) are given by

QX = (2nf1 + 3f2 − f3)X − (3f2 + (2n− 1)f3)η(X)ξ,(2.6)

S(X,Y ) = (2nf1 + 3f2 − f3)g(X,Y )− (3f2 + (2n− 1)f3)η(X)η(Y ),(2.7)

r = 2n(2n+ 1)f1 + 6nf2 − 4nf3.(2.8)

3. φ-m-Projectively flat generalized Sasakian space forms

Definition 3.1. A (2n + 1)-dimensional (n > 1) generalized Sasakian space
forms is called φ-m-projectively flat if it satisfies

φ2W ∗(φX, φY )φZ = 0

for any vector fields X, Y , Z on the manifolds [12].

From the definition, it follows that everym-projectively flat generalized Sasakian
space forms is φ-m-projectively flat. In this section, we prove that for a generalized
Sasakian space form of dimension greater than three, the converse also holds.

Let us consider a φ-m-projectively flat generalized Sasakian space form. Then
by definition,

φ2W ∗(φX, φY )φZ = 0.

In view of (1.2), the above equation yields

φ2[R(φX, φY )φZ − 1

4n
{S(φY, φZ)φX − S(φX, φZ)φY

+g(φY, φZ)QφX − g(φX, φZ)QφY }] = 0.
(3.1)

Making use of (1.1), (2.6) and (2.7), we obtain

φ2[f1{g(φY, φZ)φX − g(φX, φZ)φY }
+ f2{g(φX, φ2Z)φ2Y − g(φY, φ2Z)φX + 2g(φX, φ2Y )φ2Z}]

=
2

4n
(2nf1 + 3f2 − f3)φ2{g(φY, φZ)φX − g(φX, φZ)φ2Y }.

(3.2)

Applying (2.3), to the above equation we get

φ2[f1{g(Y, Z)φX − η(Y )η(Z)φX − g(X,Z)φY + η(X)η(Z)φY }
+ f2{g(X,φZ)φ2X − g(Y, φZ)φ2X + 2g(X,φY )φ2Z}]

=
1

2n
(2nf1 + 3f2 − f3)φ2{g(Y,Z)φX − η(Y )η(Z)QX

− g(X,Z)φY + η(X)η(Z)φY }.

(3.3)
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Making use of (2.1) and (2.2) in the equation (3.3), we have

f1{g(Y,Z)φX − η(Y )η(Z)φX − g(X,Z)φY + η(X)η(Z)φY }
+ f2{g(X,φZ)φ2X − g(Y, φZ)φ2X + 2g(X,φY )φ2Z}

=
1

2n
(2nf1 + 3f2 − f3){g(Y,Z)φX − η(Y )η(Z)QX

− g(X,Z)φY + η(X)η(Z)φY }.

(3.4)

Taking inner product of both sides of the above equation with respect to an arbi-
trary vector field U , we get

f1{g(Y, Z)g(φX,U)− η(Y )η(Z)g(φX,U)− g(X,Z)g(φY,U)

+ η(X)η(Z)g(φY,U)}+ f2{g(X,φZ)g(φ2X,U)

− g(Y, φZ)g(φ2X,U) + 2g(X,φY )g(φ2Z,U)}

=
1

2n
(2nf1 + 3f2 − f3){g(Y, Z)g(φX,U)− η(Y )η(Z)g(QX,U)

− g(X,Z)g(φY,U) + η(X)η(Z)g(φY,U)}.

(3.5)

Putting Y = Z = ei in the above equation, where {ei} is an orthonormal basis
of the tangent space at each point of the manifold and taking summation over i,
i = 1, 2, . . . , 2n+ 1, we get

3f2 g(X,φU) =
3f2 − f3

2n
(2n− 1)g(X,φU).

The above equation is true for any vector fields X and U . Let U 6= X. Then, it
follows from the above definition that

3f2 =
3f2 − f3

2n
(2n− 1),

which after simplification gives

f3 =
3f2

1− 2n
.(3.6)

From [17], it is known that a generalized Sasakian space form of dimension

greater than three is m-projectively flat if and only if f3 = 3f2
1−2n . Hence, we see

that a φ-m-projectively flat generalized Sasakian space form is m-projectively flat.
Conversely, if the manifold is m-projectively flat, then W ∗(X,Y )Z = 0. From

that it trivially follows that φ2W ∗(φX, φY )φZ = 0. Therefore, the manifold is
φ-m-projectively flat. Now, we can state the following theorem.

Theorem 3.1. A (2n+1) dimensional (n > 1) generalized Sasakian space form
is φ-m-projectively flat if and only if it is m-projectively flat.

It is known that [17] a generalized Sasakian space form of dimension greater
than three is m-projectively flat if and only if it is Ricci-symmetric. Hence, we
can state the following corollary.
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Corollary 3.1. A (2n + 1) dimensional (n > 1) generalized Sasakian space
form is φ-m-projectively flat if and only if it is Ricci-symmetric.

If the manifold is flat, then it is m-projectively flat. If the manifold is m-project-
ively flat, then from the equations (1.2), (2.6), (2.7) and (3.6), we get

R(X,Y )Z = (f1 − f3){g(Y, Z)X − g(X,Z)Y }.
Thus we obtain the following corollary.

Corollary 3.2. Every flat generalized Sasakian space form is m-projectively
flat, but the converse is true when f1 = f3.

Now, in consequence of Theorem 3.1 and Corollary 3.2, we state the following
corollary.

Corollary 3.3. Every flat generalized Sasakian space form is φ-m-projectively
flat, but the converse is true when f1 = f3.

Next we prove that the relation

f3 =
3f2

1− 2n

implies f2 = f3 = 0.
In view of (1.1), (2.6) and (2.7), we can write the equation (1.2) as

W ∗(X,Y, Z, U) = f2{g(X,φZ)g(φY,U)− g(Y, φZ)g(φX,U)

+ 2g(X,φY )g(φZ,U)}+ f3{η(X)η(Z)g(Y, U)

− η(Y )η(Z)g(X,U) + g(X,Z)η(Y )η(U)

− g(Y,Z)η(X)η(U) + g(Y,Z)g(X,U)

− g(X,Z)g(Y,U)},

(3.7)

where W ∗(X,Y, Z, U) = g(W ∗(X,Y )Z,U).
Replacing X by φX and Y by φY , we get

W ∗(φX, φY, Z, U) = f2{g(φX, φZ)g(φ2Y,U)− g(φY, φZ)g(φ2X,U)

+ 2g(φX, φ2Y )g(φZ,U)}+ f3{g(φY,Z)g(φX,U)

− g(φX,Z)g(φY,U)}.
(3.8)

Putting Y = U = ei in the above equation, where {ei} is an orthonormal basis
of the tangent space at each point of the manifold and taking summation over i,
i = 1, 2, . . . , 2n+ 1, we have

2n+1∑
i=1

W ∗(φX, φei, Z, ei) = f2{−g(φX, φZ)g(φei, φei)

+ g(φ2Z, φ2X) + 2g(φ2X,φ2Z)}
− f3g(φZ, φX).

(3.9)

Again putting X = Z = ei and taking summation over i, we get by virtue of (3.5),
f2 = 0 which in view of (3.5) yields f3 = 0.

Conversely, f2 = f3 = 0 trivially implies f3 = 3f2
1−2n for n > 1.
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Theorem 3.2. A (2n+1) dimensional (n > 1) generalized Sasakian space form
is φ-m-projectively flat or m-projectively flat if and only if f2 = f3 = 0.

It is known that [9] a generalized Sasakian space form of dimension greater than
three is conformally flat if and only if f2 = 0. Hence, we can say the following
corollary.

Corollary 3.4. A (2n + 1) dimensional (n > 1) generalized Sasakian space
form is φ-m-projectively flat or m-projectively flat if and only if it is conformally
flat.

4. m-projectively locally symmetric generalized
Sasakian space forms

Definition 4.1. Sarkar and Akbar [16] defined a (2n+ 1) dimensional (n > 1)
projectively locally symmetric generalized Sasakian space form as

(∇UP )(X,Y )Z = 0

for all vector fields X,Y,Z orthogonal to ξ and an arbitrary vector field U .
Analogous to this definition, we define a (2n+1) dimensional (n > 1) m-project-

ively locally symmetric generalized Sasakian space form as

(∇UW
∗)(X,Y )Z = 0(4.1)

for all vector fields X,Y,Z orthogonal to ξ and an arbitrary vector field U .

From (1.1) and (1.2), we have

W ∗(X,Y )Z = f1{g(Y,Z)X − g(X,Z)Y }+ f2{g(X,φZ)φY − g(Y, φZ)φX

+ 2g(X,φY )φZ}+ f3{η(X)η(Z)Y − η(Y )η(Z)X

+ g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ} − 1

4n
[S(Y,Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY ].

(4.2)

Taking covariant differentiation of both sides of the above equation with respect
to an arbitrary vector field U , we get

(∇UW
∗)(X,Y )Z

= df1(U){g(Y,Z)X − g(X,Z)Y }+ df2(U){g(X,φZ)φY − g(Y, φZ)φX

+ 2g(X,φY )φZ}+ f2{g(X,φZ)(∇Uφ)Y + g(X, (∇Uφ)Z)φY

− g(Y, φZ)(∇Uφ)X − g(Y, (∇Uφ)Z)φX + 2g(X,φ)(∇Uφ)Z

+ 2g(X, (∇Uφ)Y )φZ}+ df3(U){η(X)η(Z)Y − η(Y )η(Z)X

+ g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ}+ f3{(∇Uη)(X)η(Z)Y

+ η(X)(∇Uη)(Z)Y − (∇Uη)(Y )η(Z)X − η(Y )(∇Uη)(Z)X

+ g(X,Z)(∇Uη)(Y )ξ + g(X,Z)η(Y )(∇Uξ)− g(Y,Z)(∇Uη)(X)ξ

− g(Y, Z)η(X)(∇Uξ)} −
1

4n
[(∇US)(Y, Z)X−(∇US)(X,Z)Y

+g(Y,Z)(∇UQ)(X)−g(X,Z)(∇UQ)(Y )],

(4.3)
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where ∇ denotes the Riemannian connection on the manifold. Differentiating
(2.7) with respect to an arbitrary vector field U , we get

(∇US)(X,Y )

= d(2nf1 + 3f2 − f3)(U)g(X,Y )− d(3f2 + (2n− 1)f3)(U)η(X)η(Y )

− (3f2 + (2n− 1)f3){(∇Uη)(X)η(Y ) + η(X)(∇Uη)(Y )}.

(4.4)

Again differentiating (2.6) covariantly with respect to an arbitrary vector field U ,
we get

(∇UQ)(X)

= d(2nf1 + 3f2 − f3)(U)X − d(3f2 + (2n− 1)f3(U)η(X)ξ

− (3f2 + (2n− 1)f3){(∇Uη)(X)ξ + η(X)(∇Uξ)}.

(4.5)

In view of (4.3), (4.4) and (4.5), it follows that

(∇UW
∗)(X,Y )Z

= df1(U){g(Y,Z)X − g(X,Z)Y }+ df2(U){g(X,φZ)φY

− g(Y, φZ)φX + 2g(X,φY )φZ}+ f2{g(X,φZ)(∇Uφ)Y

+ g(X, (∇Uφ)Z)φY − g(Y, φZ)(∇Uφ)X − g(Y, (∇Uφ)Z)φX

+ 2g(X,φ)(∇Uφ)Z + 2g(X, (∇Uφ)Y )φZ}+ df3(U){η(X)η(Z)Y

− η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ}

+ f3{(∇Uη)(X)ηZ)Y + η(X)(∇Uη)(Z)Y − (∇Uη)(Y )ηZ)X

− η(Y )(∇Uη)(Z)X + g(X,Z)(∇Uη)(Y )ξ

+ g(X,Z)η(Y )(∇Uξ)− g(Y,Z)(∇Uη)(X)ξ − g(Y,Z)η(X)(∇Uξ)}

− 1

4n
[2d(2nf1 + 3f2 − f3)(U){g(Y, Z)X − g(X,Z)Y }

− d(3f2 + (2n− 1)f3)(U){η(Y )η(Z)X − η(X)η(Z)Y

+ g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ}

− (3f2 + (2n− 1)f3){(∇Uη)(Y )η(Z)X + (∇Uη)(Z)η(Y )X

− (∇Uη)(X)η(Z)Y − (∇Uη)(Z)η(X)Y + (∇Uη)(X)g(Y, Z)ξ

− (∇Uη)(Y )g(X,Z)ξ + (∇Uξ)η(X)g(Y,Z)− (∇Uξ)η(Y )g(X,Z)}].

(4.6)
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Taking X,Y, Z orthogonal to ξ, from the previous equation, we get

(∇UW
∗)(X,Y )Z

= df1(U){g(Y, Z)X − g(X,Z)Y }

+ df2(U){g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}

+ f2{g(X,φZ)(∇Uφ)Y + g(X, (∇Uφ)Z)φY

− g(Y, φZ)(∇Uφ)X − g(Y, (∇Uφ)Z)φX

+ 2g(X,φ)(∇Uφ)Z + 2g(X, (∇Uφ)Y )φZ}

− 1

2n
d(2nf1 + 3f2 − f3)(U){g(Y,Z)X − g(X,Z)Y }.

(4.7)

If the manifold is m-projectively locally symmetric, then from the above equation,
we get

1

2n
d(2nf1 + 3f2 − f3)(U){g(Y,Z)X − g(X,Z)Y }

= df1(U){g(Y, Z)X − g(X,Z)Y }

+ df2(U){g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}

+ f2{g(X,φZ)(∇Uφ)Y + g(X, (∇Uφ)Z)φY

− g(Y, φZ)(∇Uφ)X − g(Y, (∇Uφ)Z)φX

+ 2g(X,φ)(∇Uφ)Z + 2g(X, (∇Uφ)Y )φZ}.

(4.8)

Taking inner product of both sides of the equation (4.8) with V , we have

1

2n
d(2nf1 + 3f2 − f3)(U){g(Y, Z)g(X,V )− g(X,Z)g(Y, V )}

= df1(U){g(Y,Z)g(X,V )− g(X,Z)g(Y, V )}

+ df2(U){g(X,φZ)g(φY, V )− g(Y, φZ)g(φX, V )

+ 2g(X,φY )g(φZ, V )}

+ f2{g(X,φZ)g((∇Uφ)Y, V ) + g(X, (∇Uφ)Z)g(φY, V )

− g(Y, φZ)g((∇Uφ)X,V )− g(Y, (∇Uφ)Z)g(φX, V )

+ 2g(X,φ)g((∇Uφ)Z, V ) + 2g(X, (∇Uφ)Y )g(φZ, V )}.

(4.9)

Putting V = Z = ei in the above equation, where {ei} is an orthonormal basis
of the tangent space at each point of the manifold and taking summation over i,
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i = 1, 2, . . . , 2n+ 1, we get

f2{−g(φX, (∇Uφ)Y ) +
∑
i

g(X, (∇Uφ)ei)g(φY, ei) + g(φY, (∇Uφ)X)

−
∑
i

g((Y, (∇Uφ)ei)g(φX, ei) + 2
∑
i

g(X,φY )g((∇Uφ)e)i, ei)} = 0.
(4.10)

For a Levi Civita connection ∇, (∇Ug)(X,Y ) = 0, which gives

∇Ug(X,Y )− g(∇UX,Y )− g(X,∇UY ) = 0.

Putting X = ei and Y = ei in the above equation, we obtain

−g(∇Uei, φei)− g(ei,∇Uφei) = 0,

which can be written as

g(ei, φ∇Uei)− g(ei,∇Uφei) = 0.

Thus we have

(4.11) g(ei, (∇Uφ)ei) = 0.

By the virtue of (4.11), (4.10) takes the form

f2{−g(φX, (∇Uφ)Y ) +
∑
i

g(X, (∇Uφ)ei)g(φY, ei)

+ g(φY, (∇Uφ)X)−
∑
i

g(Y, (∇Uφ)ei)g(φX, ei).
(4.12)

The above equation is true for any vector fields X, Y on the manifold. For X 6= Y ,
the above equation yields f2 = 0.

It is known that [9] a generalized Sasakian space form of dimension greater
than three is conformally flat if and only if f2 = 0. Hence the manifold under
consideration is conformally flat.

Conversely, suppose that the manifold is conformally flat. Hence f2 = 0. In
addition, if we consider X, Y , Z orthogonal to ξ, then (1.1) yields

R(X,Y )Z = f1{g(Y,Z)X − g(X,Z)Y }.

The above equation gives

(4.13) r = 2n(2n+ 1)f1.

In view of (2.9) and (4.13), we obtain f3 = 0. Hence from (4.7), we get

(∇UW
∗)(X,Y )Z = 0.

Therefore, the manifold is m-projectively locally symmetric. Now, we are in posi-
tion to state the following theorem.

Theorem 4.1. A (2n+1) dimensional (n > 1) generalized Sasakian space form
is m-projectively locally symmetric if and only if it is conformally flat.
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5. m-projectively locally φ-symmetric generalized
Sasakian space forms

Definition 5.1. A generalized Sasakian space form of dimension greater than
three is called m-projectively locally φ-symmetric if it satisfies

φ2(∇UW
∗)(X,Y )Z = 0

for all vector fields X, Y , Z orthogonal to ξ.

Let us consider a m-projectively locally φ-symmetric generalized Sasakian space
from of dimension greater than three. Then form the definition and (2.1), we get

−(∇UW
∗)(X,Y )Z + η((∇UW

∗)(X,Y )Z)ξ = 0.(5.1)

Taking inner product of both sides of the above equation with respect to an arbi-
trary vector field U , we obtain

−g((∇UW
∗)(X,Y )Z,U) + η((∇UW

∗)(X,Y )Z)η(U) = 0.(5.2)

If we take U orthogonal to ξ, then the above equation yields

g((∇UW
∗)(X,Y )Z,U) = 0.(5.3)

The Equation (5.3) is true for all U orthogonal to ξ. If we choose U 6= 0 and not
orthogonal to (∇UW

∗)(X,Y )Z, then it follows that

(∇UW
∗)(X,Y )Z = 0.

Hence, the manifold is m-projectively locally φ-symmetric and so by theorem, it
is conformally flat.

Conversely, let the manifold be conformally flat and hence f2 = 0. Again for
X,Y, Z orthogonal to ξ, f2 = 0 implies f3 = 0, as before. From (4.7), we get
(∇UW

∗)(X,Y )Z = 0, which implies that

φ2(∇UW
∗)(X,Y )Z = 0,

whereX,Y, Z are orthogonal to ξ. Therefore, the manifold ism-projectively locally
φ-symmetric.
This leads to the following theorem.

Theorem 5.1. A (2n+1) dimensional (n > 1) generalized Sasakian space form
is m-projectively locally φ-symmetric if and only if it is conformally flat.

Combining the results of Section 3, Section 4 and Section 5, we find the following
corollary.

Corollary 5.1. In a (2n+ 1) dimensional (n > 1) generalized Sasakian space
form, the following conditions are equivalent:
(i) the manifold is m-projectively flat,

(ii) the manifold is φ-m-projectively flat,

(iii) the manifold is conformally flat,

(iv) the manifold is m-projectively locally symmetric,

(v) the manifold is m-projectively locally φ-symmetric.
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Remark 5.1. The notion of quarter-symmetric metric connection was intro-
duced by S. Golab [8]. The torsion tensor of the quarter-symmetric metric con-
nection is given by

T (X,Y ) = η(Y )X − η(X)Y.

IfX, Y are orthogonal to ξ, then the torsion tensor vanishes and quarter-symmetric
metric connection reduces to Levi-Civita connection. Therefore, all the results of
the last two sections are of the same form with respect to quarter-symmetric metric
connection and Levi-Civita connection.

Example 5.1. In[1], it is shown that R×f Cm is a generalized Sasakian space
form with

f1 = − (f ′)2

f2
, f2 = 0, f3 = − (f ′)2

f2
+
f ′′

f
,

where f = f(t), t ∈ R and f ′ denotes derivative of f with respect to t. If we
choose m = 4 and f(t) = et, then M is a 5-dimensional conformally flat gener-
alized Sasakian space form because f2 = 0. Consequently, we see that f3 = 0.
Therefore, by the results obtained in the present paper, M is m-projectively
flat, φ-m-projectively flat, conformally flat, m-projectively locally symmetric and
m-projectively locally φ-symmetric.

Example 5.2. For a Sasakian space form of dimension greater than three
and of constant φ-sectional curvature 1, f1 = 0, f2 = f3 = 0. So, by the results
obtained in the present paper, the manifold is m-projectively flat, φ-m-projectively
flat, conformally flat, m-projectively locally symmetric and m-projectively locally
φ-symmetric.

Acknowledgment. I am highly thankful to the anonymous referee for his/her
very useful suggestions to present the paper in a much better form.
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