Acta Math. Univ. Comenianae 135
Vol. LXXXV, 1 (2016), pp. 135-146

GENERALIZED SASAKIAN SPACE FORMS WITH
mM-PROJECTIVE CURVATURE TENSOR

J. P. SINGH

ABSTRACT. In the present paper, we study ¢-m-projectively flat generalized Sasakian
space forms, m-projectively locally symmetric generalized Sasakian space forms and
m-projectively locally ¢-symmetric generalized Sasakian space forms. Obtained re-
sults are supported by illustrative examples.

1. INTRODUCTION

Recently, P. Alegre, D. Blair and A. Carriazo [1] introduced and studied general-
ized Sasakian space forms. These space forms are defined as follows:
Given an almost contact metric manifold M (¢, &, n,g), we say that M is general-
ized Sasakian space forms if there exist three functions f1, fa, f3 on M such that
the curvature tensor R is given by
R(X,Y)Z = fi{g(Y, 2)X —g(X,2)Y}

+ f2{9(X,02)9Y — g(Y, 0Z)pX +29(X, ¢Y)pZ}

+ fs{n(X)n(2)Y —n(Y)n(2)X

+9(X, Z)n(Y)§ — g(Y, Z)n(X)E}
for any vector fields X,Y,Z on M. In such a case, we denote the manifold as
M(f1, f2, f3). These kinds of manifolds appear as a generalization of well-known
Sasakian space forms which can be obtained as a particular case of generalized
Sasakian space forms by taking f; = C'XS, fo=f3= ‘311. It may be noted that
these are not merely generalization of Sasakian space forms but also contain a
large class of almost contact manifolds. For example, it is well-known that [2] any
three dimensional (o, 8)-trans Sasakian manifolds with «, 5 depending on ¢ is a
generalized Sasakian space form. However, we can find generalized Sasakian space
forms with non-constant functions and arbitrary dimensions. In [1], the authors
cited several examples of generalized Sasakian space forms in terms of warped
product space. In [9], U. K. Kim studied conformally flat generalized Sasakian
space forms and locally symmetric generalized Sasakian space forms. Generalized
Sasakian space forms studied by several authors, viz., [5], [6], [7]. In [16], the
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authors studied ¢-projectively flat generalized Sasakian space forms and obtained
several interesting results.

In 1971, G. P. Pokhriyal and R. S. Mishra [13] defined a tensor field W* on a
Riemannian manifold as

W*(X,Y)Z = R(X,Y)Z — i{S(Y, Z2)X — 8(X,2)Y
+9(Y, 2)QX — g(X, Z)QY },

(1.2)

such a tensor field W* is known as m-projective curvature tensor.

The properties of the m-projective curvature tensor in Sasakian and Kahler man-
ifolds were studied by R.H. Ojha ([10], [11]). He showed that it bridges the gap
among the conformal curvature tensor, conharmonic curvature tensor and con-
circular curvature tensor. Recently this curvature tensor was studied by many
geometers, viz., [14], [15], [4]. In [17], Venkatesha and B. Sumangala studied m-
projective curvature tensor in generalized Sasakian space forms and showed that a
(2n+1) dimensional (n > 1) generalized Sasakian space form is m-projectively flat
if and only if f3 = 3f 2 Motivated these studies, in the present paper, we made
an attempt to Study the properties of ¢-m-projectively flat generalized Sasakian
space forms.

The present paper is organized as follows: In Section 2, we review some pre-
liminary results. In Section 3, we study ¢-m-projectively flat generalized Sasakian
space forms and prove that a generalized Sasakian space form of dimension greater
than three is ¢-m-projectively flat if and only if it is m-projectively flat. Section 4
deals with m-projectively locally symmetric generalized Sasakian space forms and
it is shown that a generalized Sasakian space form of dimension greater than three
is m-projectively locally symmetric if and only if it is conformally flat. Section 5 is
devoted to the study of m-projectively locally ¢-symmetric generalized Sasakian
space forms. Here we find that an m-projectively locally ¢-symmetric general-
ized Sasakian space form of dimension greater than three is also conformally flat
and hence m-projectively locally symmetric. The last section contains illustrative
examples to ensure the validity of the obtained results.

2. PRELIMINARIES

In an almost contact metric manifold, we have [3]:

(2.1) ¢2(X)=—X+77(X)§7 ¢§ =0,

(2.2) (&) = 9(X, &) =n(X),  n(¢X) =0,
(2.3) 9(¢X, ¢Y) = 9(X,Y) —n(X)n(Y),

(2.4) 9(6X,Y) = —g(X,¢Y),  ¢(¢X,X) =0,
(2.5) (Vxn)(Y) = 9(Vx&,Y),

where ¢ is a (1,1) tensor, ¢ is a vector field, n is a 1-form and ¢ is a Riemannian
metric. The metric g induces an inner product on the manifold.
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Again, we know that [1] in a generalized Sasakian space form the curvature
tensor R of M is given by the equation (1.1), where f1, fo, f3 are smooth functions
on the manifold. The Ricci operator @, the Ricci tensor S, and the scalar curvature
tensor 7 of the manifold of dimension (2n + 1) are given by

(2.6) QX =(2nfi1+3f2— f3)X — (Bfa+ (2n —1)f5)n(X)E,
27) SX)Y)=(2nf1+3f2 — f3)9(X,Y) = (3f2 + (2n — 1) f5)n(X)n(Y),
r=2n(2n+1)f1 +6nfy —4nfs.

3. ¢-m-PROJECTIVELY FLAT GENERALIZED SASAKIAN SPACE FORMS

Definition 3.1. A (2n + 1)-dimensional (n > 1) generalized Sasakian space
forms is called ¢-m-projectively flat if it satisfies

P*W*(¢X,0Y)9Z =0
for any vector fields X, Y, Z on the manifolds [12].

From the definition, it follows that every m-projectively flat generalized Sasakian
space forms is ¢-m-projectively flat. In this section, we prove that for a generalized
Sasakian space form of dimension greater than three, the converse also holds.

Let us consider a ¢-m-projectively flat generalized Sasakian space form. Then
by definition,

W™ (6X,0Y)$Z = 0.

In view of (1.2), the above equation yields

FIRGX,0Y)67 — 1 {S(6Y,02)6X ~ S(6X, 62)6Y
(67 6Z)Q0X — 96X, 07)Q9Y )] = 0.
Making use of (1.1), (2.6) and (2.7), we obtain
P96V, 62)6X — g(6X, 6Z)0Y )
(2)  + RGN PPV — g6V, 2)6X + 29(6X,6Y)¢7)]
= Z(onfi +3f — f5)0*{9(0, 02)0X — g(6X,62)57Y).

(3.1)

Applying (2.3), to the above equation we get

O*[f1{9(Y, 2)oX —n(Y)n(Z)pX — g(X, Z)¢Y +n(X)n(Z)¢Y}
+ f2{9(X,02)¢* X — g(Y, 0Z)$* X + 29(X, ¢Y ) > Z}]

= o Onfi + 30— F)6 9V 2)6X — n(¥In(Z)QX

—9(X, Z2)¢Y +n(X)n(Z)9Y }.

(3.3)
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Making use of (2.1) and (2.2) in the equation (3.3), we have
flg(Y, 2)X —n(Y)n(Z)¢X — g(X, Z)Y +n(X)n(Z)¢Y }
+ f2{9(X,02)0° X — (Y, 62)¢* X +29(X, ¢Y)$* Z}

= %(Q”fl +3f2 — f3){g(Y, 2)pX —n(Y)n(Z2)QX

—9(X, Z2)¢Y +n(X)n(Z2)9Y}.

Taking inner product of both sides of the above equation with respect to an arbi-
trary vector field U, we get

(3.4)

fi{g(Y; Z)g(¢X7 U)=n(Y)n(Z)g(¢X,U) — g(X, Z)g(¢Y,U)
Y¢Z) < O’ X,U) +29(X, ¢Y)g(¢*Z,U)}

~
= o nfi 32— ) {9, 2)g(0X, U) — (¥ )(2)g(QX, )
(X, 2)g(6Y,0) + n(X)n(2)g(6Y, U)}.

Putting Y = Z = e; in the above equation, where {e;} is an orthonormal basis
of the tangent space at each point of the manifold and taking summation over i,
1=1,2,...,2n+ 1, we get

-9

38 9(X,00) = *2 =P 00 1)g0x,00).

The above equation is true for any vector fields X and U. Let U # X. Then, it
follows from the above definition that

3y —
3f2= %(2” -1),
which after simplification gives
_ 3fe
(3.6) fo= T2

From [17], it is known that a generalized Sasakian space form of dimension

greater than three is m-projectively flat if and only if f3 = 5 f22

that a ¢-m-projectively flat generalized Sasakian space form is m-projectively flat.
Conversely, if the manifold is m-projectively flat, then W*(X,Y)Z = 0. From

that it trivially follows that ¢?W*(¢X,¢Y)pZ = 0. Therefore, the manifold is

¢-m-projectively flat. Now, we can state the following theorem.

Theorem 3.1. A (2n+1) dimensional (n > 1) generalized Sasakian space form
is ¢-m-projectively flat if and only if it is m-projectively flat.

It is known that [17] a generalized Sasakian space form of dimension greater
than three is m-projectively flat if and only if it is Ricci-symmetric. Hence, we
can state the following corollary.
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Corollary 3.1. A (2n + 1) dimensional (n > 1) generalized Sasakian space
form is ¢-m-projectively flat if and only if it is Ricci-symmetric.

If the manifold is flat, then it is m-projectively flat. If the manifold is m-project-
ively flat, then from the equations (1.2), (2.6), (2.7) and (3.6), we get
R(X,Y)Z = (f1 = [s){9(Y, 2)X —g(X, 2)Y}.
Thus we obtain the following corollary.

Corollary 3.2. Fvery flat generalized Sasakian space form is m-projectively
flat, but the converse is true when f1 = f3.

Now, in consequence of Theorem 3.1 and Corollary 3.2, we state the following
corollary.

Corollary 3.3. Every flat generalized Sasakian space form is ¢p-m-projectively
flat, but the converse is true when f1 = fs.

Next we prove that the relation

3fa
1—2n

implies fo = f3 =0.
In view of (1.1), (2.6) and (2.7), we can write the equation (1 2) as

(3.7) —n(Y)n(2)g(X,U) +g(X, Z)n(Y)n(U)
—9(Y, Z)n(X)n(U) + g(Y, Z)g(X,U)
—9(X,Z)g(Y,U)},
where W*(X,Y, Z,U) = g(W*(X,Y)Z,U).
Replacing X by ¢X and Y by ¢Y, we get
W* (X, Y, Z,U) = fo{g(6X,02)g(¢*Y,U) = g(8Y, 6Z)g(¢*X,U)
(3.8) +29(¢X. ¢°Y)g(¢Z,U)} + f3{9(8Y. Z)g(¢X,U)
Putting Y = U = e; in the above equation, where {e;} is an orthonormal basis
of the tangent space at each point of the manifold and taking summation over i,
i=1,2,...,2n 4+ 1, we have
2n+1
D WX, dei, Z,es) = fo{ —9(0X, 0Z)g(¢es, be:)
39 = + (627, 6°X) + 29(6 X, 67 2)}
— f39(¢Z, $X).
Again putting X = Z = e; and taking summation over 4, we get by virtue of (3.5),
f2 = 0 which in view of (3.5) yields f3 = 0.

Conversely, fo = f3 = 0 trivially implies f3 = 13_f22n for n > 1.
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Theorem 3.2. A (2n+1) dimensional (n > 1) generalized Sasakian space form
is ¢-m-projectively flat or m-projectively flat if and only if fo = f3 =0.

It is known that [9] a generalized Sasakian space form of dimension greater than
three is conformally flat if and only if fo = 0. Hence, we can say the following
corollary.

Corollary 3.4. A (2n + 1) dimensional (n > 1) generalized Sasakian space
form is ¢-m-projectively flat or m-projectively flat if and only if it is conformally

flat.

4. m-PROJECTIVELY LOCALLY SYMMETRIC GENERALIZED
SASAKIAN SPACE FORMS

Definition 4.1. Sarkar and Akbar [16] defined a (2n+ 1) dimensional (n > 1)
projectively locally symmetric generalized Sasakian space form as

(VuP)(X,Y)Z =0

for all vector fields X,Y,Z orthogonal to £ and an arbitrary vector field U.
Analogous to this definition, we define a (2n+1) dimensional (n > 1) m-project-
ively locally symmetric generalized Sasakian space form as

(4.1) (VoW (X, Y)Z =0
for all vector fields X,Y,Z orthogonal to £ and an arbitrary vector field U.
From (1.1) and (1.2), we have
WX, Y)Z = fi{g(Y, 2)X — g(X, 2)Y'} + fo{9(X,02)0Y — g(Y,0Z)pX
+29(X,9Y)oZ} + f3{n(X)n(2)Y — U(Y)U(Z)X
+9(X, Z2)n(Y)§ — g(Y, Z)n(X)€} — *[ Y, 2)X - 5(X, 2)Y
+9(Y, 2)QX — g(X, 2)QY].

Taking covariant differentiation of both sides of the above equation with respect
to an arbitrary vector field U, we get

(VUW*)(X,Y)Z

= dfi(U){g(Y, 2)X — g(X, 2)Y} + dfs(U){g(X,02)6Y — g(Y,6Z)pX
+29(X,0Y)0Z} + f{9(X,02)(Vuo)Y + 9(X,(Vu)Z)¢Y
—9(Y,0Z)(Vup)X — g(Y,(Vuo)Z2)pX + 29(X, ¢)(Vu o) Z
+29(X, (Vuo)Y)oZ} + dfs(U){n(X)n(2)Y — n(Y)n(Z)X

(43) 4 (X, Z)n(Y)E — g(Y, Z)n(X)E} + f{(Vun)(X)n(2)Y

+0(X)(Vun)(Z)Y — (Vo) (Y )n(Z)X —n(Y)(Vun)(Z)X
+9(X, 2)(Vun)(Y)E + g(X, Z)n(Y)(Vu€) — g(Y, Z) (Vo) (X)E

gV, 2(X) (Vo)) — (V)Y 2)X ~(VurS)(X, Z)Y
(Y, 2)(VoQ)(X) ~9(X, 2)(VuQ)(Y)],

(4.2)
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where V denotes the Riemannian connection on the manifold. Differentiating
(2.7) with respect to an arbitrary vector field U, we get

(VuS)(X,Y)
(44) =d@nfi1+3f2 = fs)(U)g(X,Y) —d(Bf2 + (2n — 1) f3)([U)n(X)n(Y)

= Bf2+ 2n = D ){(Von)(X)n(Y) + n(X)(Vyn)(Y)}-

Again differentiating (2.6) covariantly with respect to an arbitrary vector field U,
we get

(Vu@Q)(X)
(4.5) =d2nfi +3f2 — f3)(U)X —d(3f2 + (2n — 1) f3(U)n(X)E

— (3f2+ (2n = 1) f3){(Vun)(X)§ + n(X)(Vué)}
In view of (4.3), (4.4) and (4.5), it follows that

(VoW (X,Y)Z

=dfi(U{g(Y,2)X — g(X, 2)Y'} + df2(U){g(X, pZ)pY
—9(Y,02)0X +29(X, Y )02} + f2{9(X,0Z)(Vud)Y
+9(X, (Vug)2)9Y — g(Y,0Z)(Vup)X — g(Y, (Vu$)Z)9X
+29(X,8)(Vud)Z +29(X, (Vud)Y)dZ} + dfs(U){n(X)n(2)Y
= n(Y)n(Z2)X + g(X, Z)n(Y)§ — g(Y, Z)n(X)&}
+ [s{ (Vo) (X)n2)Y + n(X)(Vun)(2)Y — (Von)(Y)nZ)X

6) —"1YINVun(2)X +9(X, Z)(Vum(Y)§

+9(X, Z)n(Y)(Vu) — (Y, Z)(Vun)(X)€ — g(Y, Z)n(X)(Vu)}

— - R2d@f +3f — )Y )X ~ g(X, 2)Y)
—dB3f2+ (2n = 1) f3)(U){n(Y)n(2)X —n(X)n(2)Y

+9(Y, Z)n(X)¢§ — (X, Z)n(Y)E}

= Bf2+ @2n =D f){(Vun)Y)n(Z)X + (Vun)(Z)n(Y)X
= (Vum)(X)n(2)Y = (Vun)(Z)n(X)Y + (Von)(X)g(Y, Z)¢

= (Vun)(Y)g(X, Z)§ + (Vusn(X)g(Y, Z) — (Vusn(Y)g(X, Z2)}].
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Taking X,Y, Z orthogonal to &, from the previous equation, we get
(VoW )(X,Y)Z
= df1(U{g(Y, 2)X — g(X, 2)Y'}
+ df2(U{9(X,02)¢Y — g(Y,02)$X + 29(X, ¢Y)$Z}
(4.7) + f2{9(X,02)(Vud)Y + g(X, (Vud)Z)pY
—9(Y,0Z)(Vu)X — g(Y,(Vu$)Z)9X
+29(X, 9)(Vue)Z +29(X, (Vud)Y)oZ}

~ e d(@nfy + 30— f5)(U){g(V, 2)X — g(X, 2)Y}.

If the manifold is m-projectively locally symmetric, then from the above equation,
we get
S-donfi +3f — f5)(U) (Y, 2)X — g(X, 2)Y)
= AL (U) {9V, 2)X — 9(X, )Y}
FAR(U)(g(X, 6200V — (Y, 62)6X + 29(X, 6¥)67)
+ 110X, 62)(Vud)Y +4(X, (Vo) Z)Y
—9(Y,02)(Vuo)X — g(Y, (Vu¢)Z)pX
+29(X,0)(Vud)Z + 29(X, (Vud)¥ )67},

(4.8)

Taking inner product of both sides of the equation (4.8) with V', we have

Sd(2nfy +3f — [3)(U){9(Y, 2)g(X, V) — g(X, 2)g(¥,V))
=df1(U){9(Y, 2)9(X,V) — g(X,2)g(Y,V)}
+dfa(U){g(X, 02)g(9Y. V) — g(Y. $Z)g(6 X, V)
9y og(xX,¢Y)g(62.V)}
+ f2{9(X,02)9(Vud)Y, V) + 9(X, (Vu$) Z)g(8Y, V)
— g(Y,62)g((Vud)X, V) — g(Y, (Vi) Z)g(¢X, V)
+29(X, 0)g(Vud)Z, V) +29(X, (Vi)Y )g(¢Z, V)}.

Putting V = Z = e; in the above equation, where {e;} is an orthonormal basis
of the tangent space at each point of the manifold and taking summation over i,
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1=1,2,...,2n+ 1, we get

fo{=g(¢X, (Vuo)Y +Zg (Vud)e)g(dY, e:) + 9(8Y, (Vug)X)

(4.10)
=29V, (Vud)eg(6X,ei) +2 3 g(X, 0V )g((Vud)e)isei)} = 0.

For a Levi Civita connection V, (Vyg)(X,Y) = 0, which gives
Vug(X,Y) —g(VuX,Y) —g(X,VyY) = 0.
Putting X = e; and Y = ¢; in the above equation, we obtain
—9(Vuei, de;) — g(ei, Vude;) =0,
which can be written as
g(ei,oVue;) — glei, Vuge;) =0
Thus we have
(4.11) g(ei, (Vug)e;) = 0.
By the virtue of (4.11), (4.10) takes the form

fo{=9(¢X, (Vuo)Y +Zg (Vuo)ei)g(dY, e;)

(4.12)
+9(oY, (Vo) X Zg (Vuo)ei)g(¢X, ei).

The above equation is true for any vector fields X, Y on the manifold. For X # Y,
the above equation yields fo = 0.

It is known that [9] a generalized Sasakian space form of dimension greater
than three is conformally flat if and only if fo = 0. Hence the manifold under
consideration is conformally flat.

Conversely, suppose that the manifold is conformally flat. Hence fo = 0. In
addition, if we consider X, Y, Z orthogonal to &, then (1.1) yields

R(X,Y)Z = fulg(Y, )X — g(X, )Y ).
The above equation gives
(4.13) r=2n2n+1)f;.
In view of (2.9) and (4.13), we obtain f3 = 0. Hence from (4.7), we get
(VuW*)(X,Y)Z = 0.

Therefore, the manifold is m-projectively locally symmetric. Now, we are in posi-
tion to state the following theorem.

Theorem 4.1. A (2n+1) dimensional (n > 1) generalized Sasakian space form
is m-projectively locally symmetric if and only if it is conformally flat.
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5. m-PROJECTIVELY LOCALLY ¢-SYMMETRIC GENERALIZED
SASAKIAN SPACE FORMS

Definition 5.1. A generalized Sasakian space form of dimension greater than
three is called m-projectively locally ¢-symmetric if it satisfies
¢*(VuW*)(X,Y)Z =0
for all vector fields X, Y, Z orthogonal to &.

Let us consider a m-projectively locally ¢-symmetric generalized Sasakian space
from of dimension greater than three. Then form the definition and (2.1), we get

(5.1) —(VoW")(X,Y)Z +n((VoW™)(X,Y)Z)§ = 0.

Taking inner product of both sides of the above equation with respect to an arbi-
trary vector field U, we obtain

(6.2)  —g(VuW)(X,Y)Z,U) +n((VoW*)(X,Y)Z)n(U) = 0.
If we take U orthogonal to &, then the above equation yields
(5.3) J(VuW™)(X,Y)Z,U) = 0.

The Equation (5.3) is true for all U orthogonal to £. If we choose U # 0 and not
orthogonal to (VyW*)(X,Y)Z, then it follows that

(VoW*)(X,Y)Z = 0.

Hence, the manifold is m-projectively locally ¢-symmetric and so by theorem, it
is conformally flat.

Conversely, let the manifold be conformally flat and hence f = 0. Again for
X,Y, Z orthogonal to &, fo = 0 implies f3 = 0, as before. From (4.7), we get
(VuW*)(X,Y)Z = 0, which implies that

P*(VuW*)(X,Y)Z =0,
where X, Y, Z are orthogonal to £&. Therefore, the manifold is m-projectively locally

¢-symmetric.
This leads to the following theorem.

Theorem 5.1. A (2n+1) dimensional (n > 1) generalized Sasakian space form
is m-projectively locally ¢-symmetric if and only if it is conformally flat.

Combining the results of Section 3, Section 4 and Section 5, we find the following
corollary.

Corollary 5.1. In a (2n + 1) dimensional (n > 1) generalized Sasakian space
form, the following conditions are equivalent:
(i) the manifold is m-projectively flat,
(ii) the manifold is ¢-m-projectively flat,

(i) the manifold is conformally flat,
(iv) the manifold is m-projectively locally symmetric,

(v) the manifold is m-projectively locally ¢-symmetric.
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Remark 5.1. The notion of quarter-symmetric metric connection was intro-
duced by S. Golab [8]. The torsion tensor of the quarter-symmetric metric con-
nection is given by

T(X,Y)=nY)X —n(X)Y.
If X, Y are orthogonal to £, then the torsion tensor vanishes and quarter-symmetric
metric connection reduces to Levi-Civita connection. Therefore, all the results of
the last two sections are of the same form with respect to quarter-symmetric metric
connection and Levi-Civita connection.

Example 5.1. In[l], it is shown that R x ; C™ is a generalized Sasakian space

form with
f/ 2 f/ 2 f//

n=-Yr n-o on=-Ura L
where f = f(¢), t € R and f’ denotes derivative of f with respect to ¢. If we
choose m = 4 and f(t) = e, then M is a 5-dimensional conformally flat gener-
alized Sasakian space form because fo = 0. Consequently, we see that f3 = 0.
Therefore, by the results obtained in the present paper, M is m-projectively
flat, ¢-m-projectively flat, conformally flat, m-projectively locally symmetric and
m-projectively locally ¢-symmetric.

Example 5.2. For a Sasakian space form of dimension greater than three
and of constant ¢-sectional curvature 1, fi = 0, fo = f3 = 0. So, by the results
obtained in the present paper, the manifold is m-projectively flat, ¢-m-projectively
flat, conformally flat, m-projectively locally symmetric and m-projectively locally
¢-symmetric.
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