PSEUDO-UMBILICAL CR-SUBMANIFOLD OF AN ALMOST HERMITIAN MANIFOLD

XIE LI and WAN YONG

Abstract. In this paper, we firstly study differentiable functions on M, where M is a pseudo-umbilical CR-submanifold of an almost Hermitian manifold, then give a theorem which concerns the geodesic character of M, and extend Bejancu and Chen B.Y.'s conclusions.

1. Introduction

Let M be a real differentiable manifold. An almost complex structure on M is a tensor field J of type $(1, 1)$ on M such that at every point $x \in M$ we have $J^2 = -I$, where I denotes the identify transformation of T_xM. A manifold M endowed with an almost complex structure is called an almost complex manifold.

A Hermitian metric on an almost complex manifold M is a Riemannian metric g satisfying

$$g(JX, JY) = g(X, Y)$$

for any $X, Y \in \Gamma(TM)$.

An almost Hermitian manifold M with Levi-Civita connection ∇ is called a Kaehlerian manifold if we have $\nabla X J = 0$ for any $X \in \Gamma(TM)$.

Let M be an m-dimensional Riemannian submanifold of an n-dimensional Riemannian manifold \overline{M}. We denote by TM^\perp the normal bundle to M and by g both metric on M and \overline{M}. Also, by ∇ we denote the Levi-Civita connection on \overline{M}, by ∇^\perp denote the induced connection on M, by ∇^\perp and denote the induced normal connection on M.

Then, for any $X, Y \in \Gamma(TM)$, we have

$$\nabla_X Y = \nabla_X Y + h(X, Y),$$

where $h: \Gamma(TM) \times \Gamma(TM) \to \Gamma(TM^\perp)$ is a normal bundle valued symmetric bilinear form on $\Gamma(TM)$. The equation (1.2) is called the Gauss formula and h is called the second fundamental form of M.

Received October 28, 2013.

2010 Mathematics Subject Classification. Primary 53C25, 58A30.

Key words and phrases. almost Hermitian manifold; CR-submanifold; distribution; connection; pseudo-umbilical.

Supported by Foundation of Department of Science and Technology of Hunan Province (No. 2010SK3023).
Now, for any \(X \in \Gamma(TM) \) and \(V \in \Gamma(TM^\perp) \) by \(-AVX\) and \(\nabla_X^\perp V\) we denote the tangent part and normal part of \(\nabla_X V\), respectively. Then we have

\[
\nabla_X V = -AVX + \nabla_X^\perp V.
\]

Thus, for any \(V \in \Gamma(TM^\perp) \), we have a linear operator, satisfying

\[
g(AVX, Y) = g(X, AVY) = g(h(X, Y), V).
\]

The equation (1.3) is called the Weingarten formula.

Definition 1.1 ([1])

Let \(M \) be a real \(n \)-dimensional almost Hermitian manifold with almost complex structure \(J \) and with Hermitian metric \(g \). Let \(M \) be a real \(m \)-dimensional Riemannian manifold isometrically immersed in \(M \). Then \(M \) is called a CR-submanifold of \(M \) if there exists a differentiable distribution \(D: x \mapsto D_x \subset T_x M \), on \(M \) satisfying the following conditions:

1. \(D \) is holomorphic, that is, \(J(D_x) = D_x \) for each \(x \in M \),
2. the complementary orthogonal distribution \(D^\perp: x \mapsto D^\perp_x \subset T_x M \),

is anti-invariant, that is, \(J(D^\perp_x) \subset T_x M^\perp \) for each \(x \in M \).

Let \(M \) be a CR-submanifold of an almost Hermitian manifold \(M \), then we have the orthogonal decomposition

\[
TM^\perp = JD^\perp \oplus \nu.
\]

By \(r \) denote the complex dimension of \(\nu_x (x \in M) \). Since \(\nu \) is a holomorphic vector bundle, we can take a local field of orthonormal frames on \(TM^\perp \)

\[
\{JE_1, JE_2, \cdots, JE_q, V_1, V_2, \cdots, V_r, V_{r+1} = JV_1, V_{r+2} = JV_2, \cdots, V_{2r} = JV_r\}
\]

where \(\{E_1, E_2, \cdots, E_q\} \) is a local field of orthonormal frames on \(D^\perp \). Then we let

\[
A_i = A_{JE_i}, \quad A_\alpha = A_{V_\alpha}, \quad A_\alpha^* = A_{V_\alpha^*},
\]

where

\[
i, j, k, \cdots = 1, \cdots, q; \alpha, \beta, \gamma, \cdots = 1, \cdots, r; \alpha^*, \beta^*, \gamma^* \cdots = r + 1, \cdots, 2r.
\]

Definition 1.2 ([1])

The CR-submanifold \(M \) is said to be pseudo-umbilical if the fundamental tensors of Weingarten are given by

\[
A_i X = a_i X + b_i g(X, E_i) E_i,
\]

\[
A_\alpha X = a_\alpha X + \sum_{i=1}^q b^i_\alpha g(X, E_i) E_i,
\]

\[
A_\alpha^* X = a_\alpha^* X + \sum_{i=1}^q b^{i*}_\alpha g(X, E_i) E_i,
\]

where \(a_i, b_i, a_\alpha, a_\alpha^*, b^i_\alpha, b^{i*}_\alpha \) are differential functions on \(M \) and \(X \in \Gamma(TM) \).

Now let \(M \) be an arbitrary Riemannian manifold isometrically immersed in an almost Hermitian manifold \(M \). For each vector field \(X \) tangent to \(M \), we put

\[
JX = \phi X + \omega X,
\]
where ϕX and ωX are the tangent part and the normal part of JX, respectively. Also, for each vector field V normal to M, we put
\begin{equation}
J V = BV + CV,
\end{equation}
where BV and CV are the tangent part and the normal part of JV, respectively.

The covariant derivative of B, C, respectively, is defined by
\begin{equation}
(\nabla_X B)V = \nabla^\perp_X BV - B \nabla^\perp_X V,
\end{equation}
\begin{equation}
(\nabla_X C)V = \nabla^\perp_X CV - C \nabla^\perp_X V
\end{equation}
for all $X \in \Gamma(TM), V \in \Gamma(TM^\perp)$.

A CR-submanifold M of an almost Hermitian manifold \overline{M} is D-geodesic if we have
\begin{equation}
\nonumber h(X, Y) = 0
\end{equation}
for any $X, Y \in \Gamma(D)$. M is mixed geodesic if we have
\begin{equation}
\nonumber h(X, Y) = 0
\end{equation}
for any $X \in \Gamma(D)$ and $Y \in \Gamma(D^\perp)$.

2. Main Results

Theorem 2.1 ([1]). Let M be a CR-submanifold of an almost Hermitian manifold \overline{M}, then M is mixed geodesic if and only if
\begin{align*}
A_V X &\in \Gamma(D), \quad A_V U \in \Gamma(D^\perp) \\
A_V X &\in \Gamma(D), \quad A_V U \in \Gamma(TM)
\end{align*}
for each $X \in \Gamma(D), U \in \Gamma(D^\perp), V \in \Gamma(TM)$.

Theorem 2.2. Let M be a pseudo-umbilical CR-submanifold of an almost Hermitian manifold \overline{M}, then M is mixed geodesic.

Proof. For each $X \in \Gamma(D), Y \in \Gamma(D^\perp)$, according to the Definition 1.2 we get
\begin{align*}
A_i X &= a_i X \in \Gamma(D), \quad A_\alpha X = a_\alpha X \in \Gamma(D), \quad A_\alpha^* X = a_\alpha^* X \in \Gamma(D) \\
A_i Y &= a_i Y + b_i g(Y, E_i) E_i \in \Gamma(D^\perp), \\
A_\alpha Y &= a_\alpha Y + \sum_{i=1}^q b^\alpha_{i, g}(Y, E_i) E_i \in \Gamma(D^\perp), \\
A_\alpha^* Y &= a_\alpha^* Y + \sum_{i=1}^q b^\alpha_{i* g}(Y, E_i) E_i \in \Gamma(D^\perp).
\end{align*}
The assertion follows from Theorem 2.1.

Since a Kaehlerian manifold is an almost Hermitian manifold, we obtain the following corollary.

Corollary 2.1 ([1]). Any pseudo-umbilical CR-submanifold of a Kaehlerian manifold is mixed geodesic.
Lemma 2.1. Let \(M \) be a pseudo-umbilical CR-submanifold of an almost Hermitian manifold \(\mathcal{M} \), then

\[
g(A_{JV}X - JA_{V}X + (\nabla_X J)V, Z) = 0
\]

for all \(X, Z \in \Gamma(D), V \in \Gamma(\nu) \).

Proof. Let \(X, Z \in \Gamma(D), V \in \Gamma(\nu) \). From Weingarten formula and (1.1), we get

\[
g(A_{JV}X - JA_{V}X, Z) = g(-\nabla_X JV, Z) + g(A_{V}X, JZ)
\]

(2.1)

\[
= -g(\nabla_X JV, Z) + g(J\nabla_X V, Z)
\]

(2.2)

\[
= -g((\nabla_X J)V, Z).
\]

The proof is now complete from (2.2). \(\square \)

Lemma 2.2. Let \(M \) be a CR-submanifold of an almost Hermitian manifold \(\mathcal{M} \). Then we have

\[
(\nabla_X B)V = \nabla_X BV - B\nabla_X^\perp V
\]

(2.3)

\[
= A_{CV}X - \phi A_{V}X + ((\nabla_X J)V)^\perp
\]

for all \(X \in \Gamma(TM), V \in \Gamma(TM^\perp) \).

Proof. Let \(X \in \Gamma(TM), V \in \Gamma(TM^\perp) \). From (1.10) and Weingarten formula, we obtain

\[
(\nabla_X J)V = \nabla_X JV - J\nabla_X
\]

(2.4)

\[
= \nabla_X (BV + CV) + J(A_{V}X - \nabla_X^\perp V).
\]

By using the Gauss formula, we get

\[
\nabla_X (BV + CV) = \nabla_X BV + h(X, BV) - A_{CV}X + \nabla_X^\perp CV.
\]

(2.5)

Taking account of (1.9) and (1.10), we have

\[
J(A_{V}X - \nabla_X^\perp V) = \phi A_{V}X + \omega A_{V}X - B\nabla_X^\perp V - C\nabla_X^\perp V.
\]

(2.6)

From (2.5), (2.6), (1.11) and (1.12), (2.4) can become

\[
(\nabla_X J)V = (\nabla_X B)V + h(X, BV) - A_{CV}X
\]

(2.7)

\[
+ (\nabla_X^\perp C)V + \phi A_{V}X + \omega A_{V}X
\]

By comparing to the tangent part in (2.7), (2.3) is satisfied. \(\square \)

Theorem 2.3. Let \(M \) be a pseudo-umbilical proper CR-submanifold of an almost Hermitian manifold \(\mathcal{M} \). If \(q > 1 \), then we have \(A_{E_i}E_i = A_{\alpha X}X = A_{\alpha, X}X = 0 \) for all \(X \in \Gamma(D), i \neq j \).

Proof. From (1.4) and (1.6), we obtain

\[
g(A_{E_i}E_i, E_i) = g(A_{E_j}E_j, E_i) = 0,
\]

thus \(A_{E_i}E_i \in \Gamma(D) \). On the other hand, \(A_{E_i}E_i = a_{j}E_i + b_{i}g(E_i, E_j)E_j = a_{j}E_i \in \Gamma(D^\perp) \), hence \(A_{E_i} = 0 \).
For a unit vector $X \in \Gamma(D)$, by using (1.7), (1.1), (2.1) and (1.8) we have
\[(2.8)\]
\[a_{\alpha} = g(a_{\alpha}X, X) = g(A_{\alpha}X, X) = g(A_{\alpha}X + (\nabla_X J)V_{\alpha}, JX) = g(a_{\alpha}X + (\nabla_X J)V_{\alpha}, JX) = a_{\alpha}X + g(\nabla_X J)V_{\alpha}, JX) = g((\nabla_X J)V_{\alpha})^T, JX).\]

Taking (2.3) into account, (2.9) can become
\[(2.10)\]
\[a_{\alpha} = g(-A_{\alpha}V_{\alpha}X + \phi A_{\alpha}V_{\alpha}X, JX) = g(-a_{\alpha}X, JX) + g(A_{\alpha}X, X).\]

From (2.8) and (2.10), we have
\[(2.11)\]
\[g(-a_{\alpha}X, JX) = 0,\]
thus $A_{\alpha}X \in \Gamma(D^\perp)$. On the other hand, $A_{\alpha}X = a_{\alpha}X + \sum_{i=1}^q b_{\alpha}^i g(X, E_i)E_i = a_{\alpha}X \in \Gamma(D)$, hence $A_{\alpha}X = 0$.

In a similar way we get $A_{\alpha}X = 0$.

For $E_i \in \Gamma(D^\perp)$ and a unit vector field $X \in \Gamma(D)$, from $a_i = g(A_i E_i, E_i)$, $a_{\alpha} = g(A_{\alpha}X, X)$ and (2.8), according to the Theorem 2.3, we have the following theorem.

Theorem 2.4. Let M be a pseudo-umbilical proper CR-submanifold of an almost Hermitian manifold M. If $q > 1$, then $a_j = a_{\alpha} = a_{\alpha}^* = 0$.

Since a Kaehlerian manifold is an almost Hermitian manifold, we obtain

Corollary 2.2 ([1]). Let M be a pseudo-umbilical proper CR-submanifold of a Kaehlerian manifold M. If $q > 1$, then the functions $a_j, a_{\alpha}, a_{\alpha}^*$ vanish identically on M.

Theorem 2.5. Let M be a pseudo-umbilical proper CR-submanifold of an almost Hermitian manifold \overline{M}. If $q > 1$, then M is D-geodesic.

Proof. Taking account of Definition 1.2 and Theorem 2.4, we get
\[(2.12)\]
\[g(h(X, Y), \sum_{i=1}^q J E_i + \sum_{\alpha=1}^r V_{\alpha} + \sum_{\alpha^*=r+1}^{2r} V_{\alpha^*}) = \sum_{i=1}^q g(A_{\alpha}E_i, X, Y) + \sum_{\alpha=1}^r g(A_{\alpha}V_{\alpha}, X, Y) + \sum_{\alpha^*=r+1}^{2r} g(A_{\alpha^*}X, Y) = \sum_{i=1}^q b_{\alpha}^i g(X, E_i)g(Y, E_i) + \sum_{\alpha=1}^r \sum_{i=1}^q b_{\alpha}^i g(X, E_i)g(Y, E_i) + \sum_{\alpha^*=r+1}^{2r} \sum_{i=1}^q b_{\alpha}^i g(X, E_i)g(Y, E_i).\]
for all $X, Y \in \Gamma(D)$.

From (2.12), we have

$$g(h(X, Y), \sum_{i=1}^{q} JE_i + \sum_{\alpha=1}^{r} V_{\alpha} + \sum_{\alpha^* = r+1}^{2r} V_{\alpha^*}) = 0,$$

so $h(X, Y) = 0$, i.e., M is D-geodesic.

References

Xie Li, Dept.of Math.and Computing Science, Changsha University of Science and Technology, Changsha, Hunan, P. R. China, e-mail: lily_xieli@163.com

Wan Yong, Dept.of Math.and Computing Science, Changsha University of Science and Technology, Changsha, Hunan, P. R. China, e-mail: wanyong870901@foxmail.com