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A COUPLED SYSTEM OF RIEMANN-LIOUVILE TYPE
FRACTIONAL LANGEVIN EQUATIONS WITH NONLOCAL
MULTI-POINT AND MULTI-STRIP COUPLED BOUNDARY

CONDITIONS

A. ALSAEDI, H. A. SAEED, B. AHMAD anD S. K. NTOUYAS

ABSTRACT. In this paper, we investigate the existence and uniqueness of solutions
for a coupled system of nonlinear Riemann-Liouvile type fractional Langevin equa-
tions equipped with nonlocal multi-point and multi-strip coupled boundary con-
ditions. We make use of Leray-Schauder’s alternative and Banach’s fixed point
theorem to derive the desired results, which are well-illustrated with examples. Our
results are useful in the given configuration and enrich the literature on boundary
value problems for fractional Langevin equations.

1. INTRODUCTION

Langevin in [34] applied Newtonian dynamics to a Brownian particle and pre-
sented an analytical approach to deal with the random processes. In fact, he
invented Newton’s second law of motion for stochastic physics, which is known
as the Langevin equation. Langevin (1872-1946) was a French physicist and con-
temporary of Einstein. In his own words, his approach to Brownian motion was
“infinitely more simple” than the one offered by Einstein.

However, it was found later that Langevin equation failed to describe the com-
plex systems. This finding led to some generalizations of Langevin equation to for-
mulate the physical phenomena in disordered regions [28], fluctuation-dissipation
configuration [29], statistical physics [30], etc. The fractional analogue of Langevin
equation was proposed by replacing the ordinary derivative in it by fractional order
derivative in [18], while the Langevin equation in terms of two different fractional
orders was considered in [36]. Other variants of Langevin equation can be found
in the papers [19, 45].

The topic of initial and boundary value problems is an important and interesting
area of research as such problems constitute mathematical models associated with
real-world problems. One can observe an overwhelming interest in the investigation
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of boundary value problems involving different kinds of fractional derivatives and
boundary conditions. For some recent works on the theoretical aspects of fractional
boundary value problems, we refer the reader to the books [4, 1] and articles
(16, 22, 25, 46, 31, 2, 39, 27, 3, 32, 40]. One can find some recent results on
boundary value problems of systems of fractional differential equations in [5, 6,
21, 7, 24, 8, 23, 37].

The study of boundary value problems for fractional order Langevin equation,
initiated in [9], received considerable attention in the later years, for instance, see
[10, 11, 44, 42, 35, 48, 13, 12, 17, 47, 41]. Systems of nonlinear fractional
order Langevin equations equipped with boundary conditions have also been dis-
cussed by many researchers. The authors in [43] studied a coupled system of
Riemann-Liouville type fractional Langevin equations complemented with uncou-
pled generalized nonlocal integral boundary conditions. In [33], a coupled sys-
tem of nonlinear fractional Langevin equations with nonlocal and non-separated
boundary conditions was investigated. In [38, 15], the authors studied systems
of generalized Sturm-Liouville and Langevin fractional differential equations. The
authors in [14] analyzed a coupled system of fractional order Langevin differential
equations associated with anti-periodic boundary conditions.

Motivated by aforementioned works on systems of fractional order Langevin
equations, in this paper, we investigate the existence and uniqueness of solutions
for a coupled system of Riemann-Liouville type fractional Langevin equations with
nonlocal multi-point and multi-strip coupled boundary conditions given by

YDA 4 NJa() = filtx(0)0(0), 1€ T,
DHDR 4 dalylt) = St a0, €T,
W L a0=0 dO=Y mm) o0=Y s [ s

j=1 G

g0 =0, ¥y =Y o), y1)=3w /«; 2(5)ds,
i=1 j=1 i

where D, D2 DA and D denote the Riemann-Liouvile fractional derivatives
of order a1, as, f1, B2, respectively, with 0 < a1, a0 < 1,1 < 1,82 < 2, A1, A2 >0,
Wiy T4y Pj, W5 € R, J = [0, 1], 0<n < Cj < fj <land f1, fo € C(j x R x R,R).

We apply Leray-Schauder’s alternative and Banach’s contraction mapping prin-
ciple to establish the existence and uniqueness of solutions to the problem (1),
respectively. Our results are novel and enrich the literature on boundary value
problem for systems of fractional order Langevin equations. Moreover, some new
results follow from the present ones as special cases by fixing the values of the
parameters involved in the boundary conditions (see the Conclusions section).

We arrange the rest of the paper as follows. We collect some preliminary defini-
tions and solve a linear version of the problem (1) in Section 2. The main results
are accomplished in Section 3. Illustrative examples for the obtained results are
offered in Section 4. Section 5 contains the concluding remarks and indicates some
special cases arising from the present work.
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2. A SUBSIDIARY RESULT

Let us begin this section with some basic concepts of fractional calculus [26].

Definition 2.1. For ¢ € Ly[a,b], the (left) Riemann-Liouville fractional inte-
gral I, of order a € R* is defined as
¢

1 a—1
T / (t— )21 (s)ds,

a

I§‘+¢ (t) =

where I' denotes the Euler gamma function.

Definition 2.2. Let ¥,¢(™ € Li[a,b] for —0o < a <t < b < +oo. The
Riemann-Liouville fractional derivative D%, of order order o € (m—1,m], m € N,
is defined as

t
dm 1 dm 1
D¢ — [ (t=s)"T " ds.
200 = Gl () = e g [ (=T (s

In the present work, we denote the Riemann-Liouville fractional integral and

derivative operators I?, and D!, with a =0 by I? and D9, respectively.

Now, we prove an auxiliary lemma dealing with linear variant of the problem (1).

Lemma 2.3. For g1,g2 € C([0,1]) N L([0,1]), the unique solution of the linear
system

@ D (D? + M)z(t) = gi(t),  teT,
De2(D% + d)y(t) = g2(t),  te T,
subject to the boundary conditions in (1),

3) =z(t) = /Ot [wm(s) _ Alwm)}ds

s giwven by a pair of integral equations

(61 + o) L'(61)
ot {Zul/ [— (;2)12:;_192(5)—&7(”1' ;(;):;rly(s)]ds

_ g)fita1—2 _g)f2
_/o [(1,31427&171) 1(s) — Al%w(s)}ds}
+¢a(t {Z Pj /EJ / (s _52 i-:: 192(u) - Az%y(u)} duds
B1t+ar—1 s B1—1
‘/0 [Uwfﬁ“ - Al%w@]“}

/3’1+c¥1 1

1 _ Botag—2 —s Ba—2
_/0 [;1(&1&2 ~ 1) g2(s) — )\2(1(,82)7 5 y(s)}ds}
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&; s—u 51+a1 1 (S_u),@l—l

+ BV ) S ]d d

¢4 {ij/ / ﬁl+al gl(u) 1 F(ﬁl) CL’(U) uas

Batas—1 _g)fe-t
_/0 [( (52)4—072) FOR F(5)2> y(s)]ds}

and

t _s Batas—1 _s Ba—1
@ o= [ [ e - e]as

)52+a2—1

0 (t {Zm/ [%92(5)—A2%y(5)]d3

1 B1toq—2 _g)f—2
_/0 [(16130“71) (s) — /\1(1(51)71) m(s)]ds}

n & S—U ﬁ2+a2 1 (S—U)BQ_I
+02(t {Z’OJ / / T(B2 + az) g2 (u) — >\2Wy(u)} duds

_/0 [%Ql() )\lwx(s)]ds}

ﬁ1+041*1

+ 0s(t {Zm/ %91(5) —Al%x(s)]ds

1 Botans—2 _ g)f2-2
_/ [“ﬁﬁ)m o(s) — Ag%y(s)]ds}

& (s —u) 51+a1 1 (siu)ﬁ171
+0a(t {ZWJ/ / TG + 1) a9 (w) — Alwﬂc(u)} duds

—/0 [%92(8) — )\2 U;«*ﬁy(s)} ds},

['(a1)
(a1 + B1)
(1)

(
(o 1 0
(
(

— F(Oél) 1
! L )Pt +) = 11 . )P
rat™t + 7’3) , o $2(1) (F(al e + a;) ;

I'(a1)
I + B1)
_ F(Oég) _
a2 B2—1 _ o t\*2) | an Ba—1
rot % + Tl)t s 92(t) = (F(ag n 62)2215 + Zl)t s
_ F(a2) a9 Ba—1 _ F(CYQ) ag Ba—1
— 71‘(512 +B2)uzt —|—u1)t s 94(t) = (71—‘(042 +/82)82t + Sl)t s
Ay By . A3Bl _ A4B1 -~ _ AxFq _
o A1 Al Al

ugt™t + u:g)tﬁl_l, ¢4(t) = ( 54171 4+ 53)15[31_17

['(a2)
I'(az + B2)

A4L1 Bl *El *Ll kaS
= = = e1s = kg —

Al7 /€17

e =—, k1 =es —ezeqe1s, ko =es —ezesers, ki =es — ezereuq,
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1 rks

ka = e9g —eserers, T1 = [ (e11 — eseroers) — ez + 67610614]’
e13 Lk1
1
ro = k—(eu + kor1 — 64610614) r3 = —€i14 (610 + e3r1 + 627“2),
-1 kseqe
T4 = A—l( AQT’S + A4T1 + A3T2 + 1), 1 = 5(67614 - %114)’
-1
20 = k—(e4e14+k2z1) 7 = e~ esz —eaz2 + 1),
24 = (A223 — Azzg — A421) uy = —hs , U2 = ! (1 - k2“1)
k1€13 kl
1 1
U3 = —eiq (€2U2 + €3’LL1), Uq4 = |: A2u3 + Ag’U,Q + A4U1] 51 = ’
AL €13
—k‘281 1
S9 = , 83 = —els (6381 + 6252), 84 = 7(14431 — Azsz + A352)7
ka1 A
F(Cll) as+pB2—1
A=, A =(Bi—1), A=
" T+ B 1) G T a2+ﬁ2 Z/“?
I
A4_Z‘“ﬂ2 L 1:& By =1,

Lla1 + 61)’

1 n
Ba = O42+L32 _ Otz-‘rﬂz , Bi=— (gB2 B2 ,
5 (a2+52+1 ij G*T2), Ba ﬂQ;pJ(ﬁj )

_ F(Oéz) _(p _
E3 - F(Oé2+,62—1)7 E4_(/82 1)’
_ F(Oq) - (eo1t+B1 a1+
L= Toa + A +1) Z:Wa@j G )
B1 31 _ F(O‘Q) _
Z‘UJE C L377F(o¢2+ﬂ2)’ Ls=1.

Proof. Applying the integral operators I** and [%? to the first and second
equations in (2), respectively, we get

(DPr 4 A)a(t) = I gy (t) + % e,
(DP2 4+ Xo)y(t) = I go(t) + t*2~1dy,

where ¢1,d; € R are unknown arbitrary constants.

Now, applying the integral operators It and I?> to the first and second equa-

tions in (6), respectively, we obtain

x()_laﬁ-ﬂl () )\1]/31 ()+

F(Ozl) _ _ _
tOé1+51 1cl+tl31 1C2+tl31 2037
(a1 + 1)

L(@2) joststg, | g, 4 152y,

_ gaz+f2 _ B2
y(t) =1 g2(t) — Aol y(t)+F(a2+ﬂ2)
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where ¢z, do, c3 and dz are unknown arbitrary real constants. Combining the con-
ditions z(0) = 0 = y(0) with (7), we find that ¢35 = d3 = 0as 1 < 1,62 < 2.
Then, the system (7) takes the form

r
x(t) = Ia1+6191(t) _ )\1161:5(75) + &taﬁrﬁrlcl + tﬂ171C2’
(8) I(a1 + 51)
F(Ozz) _ -~
t :[a2+52 t) — A Iﬁ2 t 7t042+ﬂz 1d tﬂ2 1d )
y(t) 92(t) — A2 y()+r(a2+52) L+ X

From (8), we have

_ _ F(Oq) _
") = Ia1+51 1 AEDY 1’81 1 t ta1+,31 2
z'(t) g1(t) — M x()+F(a1+ﬂ1—1) gl

_ 51*2C
(9) + (/81 l)t 25

r
y’(t) — Ia2+527192(t) _ Ag]ﬁz*ly(t) + . (a2) ta2+,8272d1

(g + B2 —1)
+ (By — 1)t 724y,
Now, using (8) and (9) in the remaining boundary conditions of (1), we get
Arcr + Aseo — Asdy — Audy = J4,
Bici + Bacy — Bsdy — Bydy = Ja,
—Fic1 — Eacp + Ezdy + Eudy = J3,
—Lycy — Lacy + Lady + Lady = Jy,

(10)

where Ay, By, Ep, Ly, p=1,2,3,4, are given in (5), and

m
J= [Ia2+5292(m) - >\2fﬁgy(7li)} - {Ialwl*lgl(l) - /\1[517%(1)}’
i=1
Jo :ij/ [I“2+5292(s) - )\QIBQy(s)}ds - [Iaﬁ'ﬁlgl(l) - )\1[[315(}(1)},
(11) e
Js =Y o {Imwlgl(m) - )\11&195(771')} - [Ia2+52_192(1) - )\2162_19(1)},
i—1
A :ij/ 19291 (5) = MIPa(s) | ds = [1024P25(1) = A2T™y(1)]
j=1 7%
Solving the system (10) for ¢1, ca,dy and da, we find that
c1 = rgJ1 + 24 Jo + ugds + s4Jy,
co =13J1 + 23J2 + uzJs + s3Ja,
dy = roJ1 + 22J2 +usJ3 + s2Jy,
dg = 7’1J1 + 2’1JQ =+ U1J3 =+ 51]4.

(12)
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Inserting the above values of ¢1,¢2,d; and dg in (8) together with (5) and (11),
we obtain the solution (3) and (4). By direct computation, one can obtain the
converse of the lemma. O

3. MAIN RESULTS

Let Y denote the Banach space of all continuous functions from J — R endowed
with the supremum norm |[|z|| = sup,¢ s [2(t)|. Then, the product space Y x Y is
also a Banach space endowed with the norm ||(z, )| = ||lz|| + |||, (z,y) €Y x Y.
In view of Lemma 2.3, we can transform the problem (1) into a fixed point problem
(z,y) =T (z,y), where T : Y xY =Y XY is an operator defined by

ron- (FE8)

with
(14) Ti(z,y)(t)
t — 3 Bita—1 s Br—1
- / [%f (s 25),w() = M Ep IS a(s)]as
Batas—1

+on(t {Z i [ [ Pl a6 as

,/01 [w'fl(s z(s),y(s)) — Alwx(s)]ds}

TG +ar—1) (B —1)
+oa(t {Zpa/j7/ 52 TJ:: : 2(”7x(u)»y(U))—)\g%y(u)]duds
7/0 [%ﬁ(&ﬂ@ﬂ(@) - Al%x(s)} ds}

)51+a1—1

+¢s(t {im/o [%ﬂ(s,x(s),y(s)) - Al%m(s)]ds

i=1

S s ate o) - 2 G e as)

['(B2+ a2 —1) (B —1)
s [ [ Ty o) - R ] duas
_ / e —— = g)i;) s, w(s),y(s) — 20 & ;W)ﬂ) 71y(8)]ds}

and
(15) Ta2(z,y)(t)

= [ st aten 2 o) as

e [ [ o)) —2e

[ L o) - i S aeas)
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+6(t {Eipglgi/ [ (a0, ) - 1 8 ) dus

_/) [u(y‘ifl(&x(s),y(s)) — Alwx(s)] ds}

L(B1+ a1) INGD)

003 o [ [P st -2 P ) as
—A[Qéﬂﬁgigf@w®y@D—M%ﬁ%ﬁSﬂ@P%
+0a(t {ZWJ/EJ/ > _gljj;jq 1f1(u,a:(u),y(u))—)\1 %x(u)]duds

[ psaeaten -2 S s as ).

Observe that the fixed points of the operator T are solutions to the problem (1).
In the forthcoming analysis, we need the following assumptions:

(H1) There exist real constants my,n, > 0, p = 1,2, and mg,ng > 0 such that
|f1(t 2, y)| < mo + malz| + malyl,
[f2(t, 2,y)| < no + nafz| + n2lyl,
for all z,y € R;
(H2) There exist constants ¢; and /3 such that for all t € J, zp,y, € R, p=1, 2,
|fi(t, 2, y2) — fi(t, x| < G(loe — 21| + |y2 — w1l),
|f2(t, 22, y2) — fo(t, w1, 91| < o(Jva — 21| + |y2 — 1))
For the sake of computational convenience, we introduce the notations:
T(B: +1a1 o T, - RGN T 0

B1ton

|ws | Bitoai+1  ~Brdai+l
+¢3Z|m L(A +a1+1+¢4ZFﬁ1+a1+2) (51’ G )
32+0<2

_ 2 Batan+1 Ba+as+1
¢1Z|’“ ﬂ+a 1) +¢22Fﬁ2+a2+2) (5 —G )

+ ¢ +é L
3T(B2 + a2) T(Be +azx+1)
1 — _ m B1

1 1
(ﬁ1+1)+¢1F(ﬁ)+¢zf(51+1)+¢32 SOy

+¢4zm'”12 Caa|

Z4= X |:¢1 Z ‘Nz /B Iy + ¢2 Z T ﬁ|p]+ %) (€ﬁ2+1 le_?2+l)

(16) 2, =

33:/\1{

T
+¢31—‘(,32) +¢4F(ﬁ2+1):|’
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1 _ m nzﬁl+0¢1

_ 1 _
vy v e VD Dl ey

w @ @
+ 942 F 61 | J| (651-0- 1+1 C][ﬁ-‘r 1+1) 7

+ a1 +2)

Mo = m%w%
+92§:F S (7 ) e s
+§4m’

Ngle{élr(lﬁ)wz ! +932|m

+94ZM'“3+'2 (s‘*l“ cfl“)},
1 2 2
o= A{ NSV IZ"“ G 22Fﬂ‘pJJrz (77 =)

— 1 — 1
+93F(52) +94F(52+1)}’

where

ap = sup |¢,(t)], 0, =sup 10,01, p=1,23,4.
teT teT

Now, we are in a position to present our main results. Our first result, dealing
with the existence of solutions for the problem (1), relies on Leray-Schauder’s
alternative [20].

Theorem 3.1. If the condition (Hy) is satisfied, then the problem (1) has at
least one solution on J, provided that max{W, Wh} < 1, where

Wi =mi1(Z1 + M) +n1(22 + N2) + (23 + N3),
Wy = mg(Zl +N1) + TLQ(ZQ +N2) + (24 +N4),
Z, and N, p=1,2,3,4, are given in (16).

(17)

Proof. Let us first establish that the operator 7:Y xY — Y x Y defined
by (13) is completely continuous. Observe that the operator 7 is continuous in
view of continuity of functions f and fo. Let B, = {(z,y) € Y xY : ||(z,y)| < p}
with
p mo(z1 +N1)+n0(32 +/\/2)

- 1-— max{Wl, WQ} ’
where W, and W, are given in (17). For any (z,y) € B,, let
[f1(t, 2, )| < mo + ma |z + mally| = Ky,
[fa(t, z,y)| < no + nal[z]] + nallyll = Ko.

(18)
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Then, for any (z,y) € B,, we obtain
72 (z, y)|l

t (tis)ﬁl‘F&l 1 (
gsup{ | e e + 0 s —

teJ

S 52+042*1 ; — )21
oSl [ [ ate (o) o+ 22 P o

s [ oo = 2 S e

sfuﬁ2+a2 ! s—u
+ 16200 {Zw / a1ttt )+ xa ()| duds

+ / [%Ims,x(s),y(s))l lewsn]ds}

B1+D¢1*1

m - ) (n
+ |¢s(t) {Zlml/ W‘fl(&m(s) y(s))| +A1W|x(s)l]ds
(1 _ 5)52+a2 2 (1 _ 8)52—2
s [ s+ 2 s
5_uﬁﬁﬂq 1 S_uﬁlfl
o) {Zw / [ eyt )] + 2 S — et duds

TP +ar) I'(B1)
i e + Aaurfﬂ)j;lw(sn]ds}}
< K121+ K225 + Zsllz|| + Z4|ly,
where Z,, p=1,2,3,4, are given in (16). Hence
(19) 1Ti(z,y)|| < K121 + K225 + Zs|x]| + Zallyl].
Similarly, we can find that
(20) 172(z,y)|| < KiNt + Ko No + Ns|lz|| + Nallyl,

where NV, p=1,2,3,4, are given in (16).
Inserting the values of K7 and K into (19) and (20) and using the definition
of norm, we get

IIT(x,y)H < mo(Zl Jer) +n0(ZQ +N2) + max (Wl,Wz)p < p,

where have used (18). This shows that 7(B,) is uniformly bounded.
Next, we show that 7 (B,) is equicontinuous. For that, we take t1,t, € J with
t1 <ty and (z,y) € B,. Then, we obtain

T2 (=, y)(t2) — Ta(x, y)(t1)]

to (tg _ S)ﬁl‘f’al*l . (s N (tg _ S)Blflx . )
= /0 { (B + oa) fils, () y()) =M L'(B1) ()}d

- ! w s, (s s)) — st s
/0 [ LB+ a1) Fils, (), 5(s) =M T ()}d
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+ [pr1(t2) = d1 ()| 1| + |pa(t2) — ¢2(t1)|] 2]
+ [ps(ta) — ¢3(t1)]]| Js| + |pa(tz) — pa(tr)|| 4
mo + (m1 + mz)p a « a
< [ (/31(4— p— 1) ] |: (2 t1)51+ 1 ‘t§1+ 1 —t'flJr 1|:|
A1
+ T +1 {2(152 — 1) 15—t | p
[ T(e)lral | sitar—1 _ ,61+ar—1 Bi-1_ Bi—1(]| 7
+ mﬁz =t |+ [rsl[ty ~ — ¢ ||
[ T(a)|z4] o — - - —1] 7
+ (B -l-‘ozl)ltglJr o _tfﬁ ' 1|+‘Z3||t§1 ' _t?l ' |J2}
[ T(a)|w o — o — _ _ 1 -
+ [l st s e -
[ T'(a1)ls o — o — _ 1] 5
T R e [ [

— 0 as (t2 — t1) — 0 independently of (z,y) € B,,

where J; and J, are obtained from (11) by replacing g; and go with f; and fo,
respectively, and

042+62 mo
Ji| < i s
} 1| NOZ\M (a2 +62+1)+I‘(a1+51)
02+ﬂ2
mi1-+me
+ i + +)\ i
{"17” E:“‘ oot 1) et 22:“L /3+1]
(§Q2+ﬁ2+1 <&2+ﬁ2+1) mo
Jo| < J
72| ’WE:WJ T(az + B2+ 2) T(ar + Bi+ 1)
|:n . Z‘ (§a2+ﬁ2+1 C;l2+52+1) mi + mo N A
2
! il T(az + B2 + 2) Clar+ 61 +1)  T(B+1)
(552-5-1 C52+1>
A RSV B
+ 22'/)] /8 +2) :|pa
a1+61 no
J3| < i +
} 3’ m02|a +ﬂl +1)  T(az+ B2)
041+31
ni+nsz A2
+ i A i T3 |”
{ml e Zla a1+ﬁ1+1)+1“(a2+ﬂ * 1Z|a 5+1 F(ﬂz) g

1 1
£a1+31+ C;l1+51+ ) no

T+ +2)  T(aathtl)

}J4| < mOZ|W1|

(€ﬂ1+[31+1 <{11+ﬁ1+1)
J

+{m1+m2 le]‘ (a1 + 51+ 2)

ni + ng

I(az+B2+1)

(551+1 Cﬁ1+l) Ao
“12"’”‘ MGi+2) TG0
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Similarly, it can be shown that
|T2(z, y)(t2) — Ta(x, y)(t1)] — 0 as (t2 — t1) — 0 independently of (z,y) € B,.

Thus, 71(B,) and T2(B,) are equicontinuous and hence 7 (B,) is equicontinu-
ous. Therefore, by Arzela-Ascoli theorem, T is completely continuous.

In the final step, we consider a set Q = {(z,y) € Y XY : (z,y) =77 (z,y), 0 <
7 < 1} and show that it is bounded. Let (z,y) € Q. Then (z,y) = 77 (x,y)
implies that z(t) = 771 (z,y)(t) and y(t) = 772(x,y)(t) for t € J. Then, by the
assumption (H;), we have

[[«]l = sup [z(t)] < sup |Ti(z, y) (1)
teJ teJ

<om{ [T (o) 3 5 ms)@ds
+ |#1(t) {Z|N1|/ %(no—i—nﬂx\—l—nﬂyo )132 1|y(5)qd8

[ O (o bl + maly) + Al%\x(sﬂ]ds}

/32+a21
S—u
Flgalt) {Dm// i (no + mulel + maly)

(s — w)P2~!
I'(B2)

+ /01 [% (mo +m1\x| +m2‘y‘) + Al%‘x(s)qu}

51+0t1 1

+ |¢a(t) {Z|Uz|/ W(mo+m1|m|+m2|y|)

(ni— )t
+)\1W|x(s)qu

o[ LA et ) + 2 G o] as)

8_uﬁ1+a1 1
+|¢4(t{ e / | e (o -+ mmlad + maly)

(s—u)ﬁ1 1 ol
AR

[ (e + ol +A2(15)ﬁ2_1y<s>|}ds}},

+ 2o |y(u)|]duds

I ]duds

which implies that
(21) |lz|| < (mo 21 +n022) + (M1 21 +n122 + 2Z3)||2]| + (M2 21 + 1225 + Z4) ||y].
In a similar manner, we can find that

(22) [yl < (moN1+noN2) + (maN1+niNa +N3) ||z]| + (ma N1 +n2Na +Na) [yl
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From (21) and (22), it follows that
[l + llyll < mo(Z1 + N1) + no(Z2 + N2) + max (W, Wa) ([l2ll + llyll),

where Wy and W, are given in (17). The above inequality can alternatively be
written as

1
(@, )| < aO[WO(Zl +N1) + no(22 + N2)],
where
Go =1—max (Wl,WQ).
Therefore, the set €2 is bounded. In consequence, we deduce by the Leray-Schauder

alternative [20] that there exists at least one fixed point for the operator 7. Hence,
the problem (1) admits at least one solution on J. O

Now, we accomplish a uniqueness result for the problem (1) by means of a fixed
point theorem due to Banach.

Theorem 3.2. Suppose that the condition (Hs) is satisfied. Then the prob-
lem (1) has a unique solution on J, provided that

(23) fl(Zl +N1)+£2(ZQ —|—N2)+1’I1&X(23 +N3,Z4 +N4) <1
where Z, and N, p =1,2,3,4, are given in (16).
Proof. Define a closed ball B, = {(z,y) € Y x Y : ||(z,y)|| < r} with

(24) > M1(Z1 +N1)+M2(Zz +N2)
11— [61(31 +./\/1) + EQ(ZQ +./\/2)} — max (Zg +N3,Z4 -i-./\f4)7
where sup;¢c 7 |f1(2,0,0)| = My < oo and sup;c 7| f2(£,0,0)] = Mz < oco. Now,
we show that 7B, C B,, where 7: B, — Y x Y is defined by (13). By (Hz), we
have
[fi(t, (), y(6)| < i@t x(t),y(t) — f1(£,0,0,)] + [f1(£,0,0,)] < b + My,
|f2(t,$(t),y(t))‘ < |f2(t7x(t)7y(t>) - fQ(t7O707)| + |f2(t50707)| < lor + M.

For (z,y) € B,, we obtain

71 (2, )l
t _ g)Prtaei—1 _ gt
ngg{/o [%(&T-ﬁ-/\/ﬁ) +)\1%|z(5)\]ds

— s 52+a2—1 S)ﬁQ—l

+ [ (t) {iw/ %(@Hmﬁm%w(s)qu

1 Brtai—2 _g)f1—2
+/O [(1&17&171)(417“4-/\40 +A1(1{(517)*1)|x(5)‘}d5}

+ |p2(t) {i|pg|/ / 5—7525_2‘:22 ' (€2T+M2)+A2%\y(u)qduds

+/01 [((ﬁl)‘il)l(ﬁlr—i—/\/h) +A1%|x(s)\]ds}
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—_s ﬁ1+al—1

+ [#3(t) {Zm/ %(&HM%M%@(S)@@

1 Bo+as—2 — s B2—2
Jr/() [(1’@‘3‘7&2—1) (EQT' + M2> + AZ%W(SN] ds}

_ ﬂ1+a1 1 _ P11
+ |pa(t) {Z|wg|/ / (s ZIJFO“ (élr—&-/\/ll)—l—)\l%\m(uﬂ]duds

1] _ g)Bataz—1 EAVCES|
+/0 [7(1F(ﬁ2)+a2) (£2r+M2) +A27(1 F(ﬂl) Iy(S)I]dS}}

< (b + M) 21+ Zslz|| 4+ (or + M2) 22 + Zay]|.-
Likewise, we can find that
[T2(z, )| < (Gr + Ma)N1 + N3] + (bor + Ma) N2 + Nally|.
Using the above inequalities together with (24), we get
1T (@, y)ll = 1T (z, v) || + [ T2(z, y)l
< [61(31 + N1) + 02( 2 +N2)}7“ + Mi(Z1 + M) + Ma(Z2 + Na)
+ max (23 + N3, Z4 + Ny)r < r,

which shows that T (z,y) € B,. Hence, TB, C B, as (x,y) € B, is an arbitrary
element.

Next, it will be established that the operator T is a contraction. For that, let
(z1,91), (z2,y2) € Y X Y. Then, for any ¢t € J, we obtain

(171 (2, y2) — Ti(w1, y1)l

t (t73)51+a171
< sup { | e e el 1(e) = fis.ma(s).n (4)

teJ (81 + a1)
—_s B1—1
+)\1%|m2( )~ wi(s)]]ds
771 _ S 52+a2—1
+ |1(t) {Z |Hz|/ 5—+Oé)|f2(571»‘2(8)7y2(8)) — fa(s,z1(s), y1(s))]

(i — 5)™~
2 ) o) as

1 (178)’61"'0‘1_2
+/O [Wf1(87562(8),y2(8))—f1(8,131(5)7y1(8))|

G () — o) s}

_ ﬁ2+a21
+ 16200 {Zw// b

(s —u)™!

Ja(u, w2 (u), y2(u)) — fa(u, z1(u), y1(u))|

+>\2W|y2 u) — ()|]duds

( )31+061 1
+/0 I T5 1oy 11 22(8):32(5)) = fuls, 21(s), y1(5))]
+)\1%\m2 s) — m1(5)|]ds}
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7h _ 8 ,31+01—1
+ |¢s(t) {Z |Uz|/ Wlﬁ(&m(s),yz(s)) = f1(s,21(s),y1(s))|
g)Pri—1
+ /\1%@2(3) ~ 2 (s)]]ds

1 —s Bataz—2
[ s 29,006 - s (9.5

I'(B2+ a2 —1)
(1—s)P272
20 () — (ol as |
S_uﬁ1+0c1 1
+ 16401 {Zw/ Ly s ) = i s ) s ()
s—u)fr—!
+ /\1%@2@) — xl(u)|] duds

1 (1_S)ﬁ2+a2—1
+ [ S e . m) - o .un )

) - y1<s>|]ds}}

I'(B2)
< (021 4 laZs) (|l — 2]l + [ly2 — w1 ll) + Zsllze — 21|l + Zally2 — w1 ll-
Similarly, we can get
172(z2,y2) — T2(z1,91) |
< (N A+ N2 (22 — 21| + [ly2 — w1 ]) + Nallzz — 21| + Nallyz — v -
From the foregoing inequalities, we have
T (22, 92) = T (@1, 91)|l
< [61(21 + M) + (25 + No) + max (25 + N3, 24 + Ny
X ([[22 = 2]l + lly2 = w1l)),

which, in view of (23), implies that 7 is a contraction. Thus, the conclusion of
Banach’s fixed point theorem applies and the operator 7 has a unique fixed point.
Therefore, the problem (1) has a unique solution on J. O

4. EXAMPLES

Example 4.1. Consider a coupled system of nonlinear Langevin equations:
DD + \)a(t) = fu(t,=(t),y(t), t€ T,
D (D 4 X)y(t) = falt, o(t),y(0), 1€ T,
(25) 2(0)=0, 21 =3 pyln), ij / y(s)ds,
i=1 :

m n

&
YO =0, () =Y owln), (1) =Y /C " a(s)ds,

j=1
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where ay = 3/4, agy =1/2, 51 =3/2, B2 =4/3, m = 1/28, o = 1/21, n3 = 1/14,
w = 1/15, uo = 1/10, pz = 1/5, 01 = 1/15, 09 = 1/10, 03 = 1/5, (1 = 1/9,
<2:3/97 C3:5/97§1:2/9762:4/9763:6/97 )‘1:1/207 )‘2:1/4a plzl/lla
p2=1/5,p3=1/3, w1 =1/12, wy =1/6, w3 =1/4, m=n=3, T =[0,1].

Using the given values, we find that Z; ~ 0.78606595, Z> =~ 0.08344012,
Z3 =~ 0.07533521, Z, ~ 0.02825324, N; ~ 0.04145488, N, ~ 1.16257045, N3 ~
0.00364788, and N, = 0.42076590. (Zp and N, p = 1,2,3,4, are given in (16)).
In order to illustrate Theorem 3.1, we take the following nonlinear functions in (25):

_ ! |2(®)] ly ()|
o filt,x(t),y(t) = 5 00+ 2D T EE D @D
Folt (1), y(t) = = e@® ly(t)]

6 2(1+[z())  (E+3)3A+[y®))
For each t € [0,1] and z,y € R, we have

a0 9O < 75 + ool + 5o,

Faltsa0) 9] <  + g0 + 5 ly0)]

Hence, the assumption (H;) holds with mo = 1/12, m; = 1/210, mg = 1/8,
ng =1/6, ny = 1/2, no = 1/27. Moreover, we find that

Wi =~ 0.70592896 <1 and W, = 0.59860778 < 1.

Thus, the hypothesis of Theorem 3.1 is verified. Therefore, by the conclusion of
Theorem 3.1, the Langevin system (25), with the nonlinear functions f; and fo
given by (26) has at least one solution on J.

Example 4.2. Consider a coupled fractional boundary value problem of
D> (DP + \)x(t) = fi(t, (1), y(t)), t € T,
Do (D% + Xo)y(t) = fo(t,x(t),y(t)), t € T,

&
(7) SORUEOES SIEANECED oy AFC

YO =0 Y=Y aaln) )= w [ ale)ds,
i=1 j=1 G

where a; = 3/43 Qo = 1/27 ﬂl = 3/27 62 = 4/37 m= 1/287 N2 = 1/213 N3 = 1/143
g = 1/15, pz = 1/10, pz = 1/5, on = 1/15, 05 = 1/10, 03 = 1/5, G = 1/9,
C2=3/9,(3=5/9,6 =2/9,§& =4/9, & =6/9, \t = 1/20, Ay = 1/4, p1 = 1/11,
P2 = 1/5, p3 = 1/3, w1 = 1/12, Wy = 1/67 w3 = 1/4, m=mn = 3, j: [0, 1]

Making use of the given data, we find that: Z; =~ 0.78606595, Z5 = 0.08344012,
Z3 =~ 0.07533521, Z; =~ 0.02825324, N7 =~ 0.04145488, Ny = 1.16257045, N3 =~
0.00364788, N4 =~ 0.42076590. (Zp and NV, p=1,2,3,4, are given in (16)).
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For demonstrating the application of Theorem 3.2, we take the nonlinear func-
tions in (27) as

1

Fi(t,2(8), () = ——tana(t) +

2 100 WP+
“y (t2(8),9(8)) = —e ((cosa(t) + ALY 5ot
A 3V + 144 1+ |y(®)] '

For each t € J and z1,y1, 22, y2 € R, we notice that

1

|f1(t, 22, y2) — fi(t,z1,y1)] < 1700(|=’C2 —z1| + y2 — w1l),
1

|fa(t, 22, y2) — fo(t, 21, y1)] < %(WZ —z1| + [y2 — y1l)-

Clearly, the condition (Hs) holds true with ¢; = 1/100 and ¢5 = 1/36. Further,

we have
El(Z1 +N1) + EQ(ZQ +N2) + max(Z;3 + N3, 2y +N4) =~ 0.49190575 < 1.

Since the assumptions of Theorem 3.2 are satisfied, therefore, it follows by its
conclusion that the problem (27) with f; and fa given in (28) has a unique solution

on J.

5. CONCLUSION

In this study, we have established the existence and uniqueness results for a cou-
pled system of Riemann-Liouville type nonlinear fractional Langevin equations
equipped with nonlocal multi-point and multi-strip coupled boundary conditions.
Our results are novel in the given configuration and contribute significantly to
the related literature on fractional Langevin equations. Some new results can be
obtained from the present ones by fixing the parameters involved in boundary
data of the given problem. For example, by taking yu; = o; =0 fori=1,...,m,
our results correspond to the ones equipped with multi-strip coupled boundary
conditions

#0)=0, y(0)=0, #'(1)=0, y(1)=0,
n & n 13

z(1l) = ; s)ds, = wj xz(s)ds.

(1) j}ﬂjpj /C y(s)ds, (1) ;:1: /< (s)

By taking p; =w; =0 for j = 1,...,n, in the present results, we obtain the ones
associated with multi-point coupled boundary conditions

2(0) =0, (1) =0, y(0)=0, y(1)=0,

/(1) = Zuiy(m), y'(1) = Zoix(m)-
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