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NULL HYPERSURFACE NORMALIZED BY THE CURVATURE

VECTOR FIELD IN A LORENTZIAN MANIFOLD

OF QUASI-CONSTANT CURVATURE

T. KEMAJOU MBIAKOP

Abstract. We introduce a class of null hypersurfaces M of Lorentzian manifolds of

quasi-constant curvature M , namely, ζ-rigging null hypersurfaces, whose curvature
vector field ζ is a rigging for M . We extend some well-known results for Lorentzian

manifolds of constant curvature and prove several classification theorems for such

a null hypersurface. Next, we establish sufficient conditions to guarantee that such
a null hypersurface must be totally geodesic. As a consequence, we prove that the

ambient manifold is flat along M .

1. Introduction

A submanifold M of a semi-Riemannian manifold is null if the induced metric
tensor is degenerated on M . Null hypersurfaces are specifically essential because
of their applications in physics and mainly in general relativity. The principal
differences between null and non-degenerate hypersurfaces stand up because of the
absence of natural projections on the former. This prevents the usual geometric
objects from being induced on null hypersurfaces. From the mathematical point of
view, several methods have been developed to study these objects. A useful one is
that of the rigging approach introduced in [7] and has proved to be a powerful tool
for the analysis of a null hypersurface. Briefly, the primary concept is to choose
a vector field E, called rigging, such that Ep is punctually transversal to M for
all p ∈M . From this precise arbitrary choice, we derive all the geometric objects
needed to deal with a null hypersurface.

Among the most studied null hypersurfaces are those with an integrable screen
distribution. They include the well-known totally umbilic screen distribution,
screen conformal, screen quasi-conformal, respectively. The latter two represent
natural classes to explore when it comes to classifying null hypersurfaces satisfy-
ing relevant geometric conditions, since in this context, the geometry of the null
hypersurfaces is related to that of its screen distribution.
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In [9, Theorem 2.4], the author proved a characterization theorem for null hy-
persurfaces with totally umbilic screen distribution. He showed that the local
second fundamental forms B and C of such a null hypersurface and its screen
distribution S(TM), respectively, satisfy B = 0 or C = 0. However, the classifi-
cation of Einstein null hypersurfaces M with quasi-conformal screen distribution
in semi-Riemannian manifolds M(c) of constant curvature c was studied in [12].
Authors proved that a screen quasi-conformal Einstein null hypersurface is locally
a triple product L ×M1 ×M2, where L is a null geodesic and M1, M2 are two
Riemannian manifolds (see [12, Theorem 5.8] for more details).

Several authors have studied the geometry of null hypersurfacesM of Lorentzian
manifolds of quasi-constant curvature M (see [8, 10] and references therein). How-
ever, they failed to address the situation where the curvature vector field ζ of M is
not tangent to M ; instead, they have only examined the case in which ζ is tangent
to M . In this work, we consider the case where the null hypersurface is transversal
to the curvature vector field ζ. The latter is then a rigging E for M , and M is
called ζ-rigging null hypersurface.

Our objective is to extend the above characterization theorems for ζ-rigging null
hypersurface. Therefore, the organization of this paper is the following. Section 2
contains all preliminaries needed. In Sections 3, we prove a non-existence result
of totally geodesic null hypersurfaces (Theorem 3.7), and we prove several classi-
fication theorems (Theorem 3.6, Theorem 3.11 and Theorem 3.13, Theorem 3.14,
Theorem 3.15 and Theorem 3.22). Next, we establish sufficient conditions to guar-
antee that a ζ-rigging null hypersurface with totally umbilic screen distribution is
totally geodesic (Theorem 3.26).

2. Preliminaries

In this section, we provide a brief review of Lorentzian manifolds of quasi-constant
curvature and the rigging technique for null hypersurfaces.

2.1. Lorentzian manifold of quasi-constant curvature

Chen and Yano [4] introduced the notion of a Riemannian manifold of quasi-
constant curvature as a Riemannian manifolds (M, g) endowed with the curvature
tensor R satisfying the following equation:

(1)

g(R(X,Y )Z, T ) = α
{
g(Y,Z)g(X,T )− g(X,Z)g(Y, T )

}
+ β

{
g(X,T )θ(Y )θ(Z)− g(X,Z)θ(Y )θ(T )

+ g(Y,Z)θ(X)θ(T )− g(Y, T )θ(X)θ(Z)
}

for any vector fields X,Y, Z, T ∈ Γ(TM), where α and β are smooth functions,
and

θ(X) = g(X, ζ)

is g-dual to a non-vanishing smooth vector field ζ, called the curvature vector field
of M . It is well known that if the curvature tensor R is of the form (1), then M
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is conformally flat. If β = 0, then M is a space of constant curvature. A non-flat
Riemannian manifold of dimension n(> 2) is called a quasi-Einstein manifold [1]
if its Ricci tensor Ric satisfies the condition

Ric(X,Y ) = rg(X,Y ) + sµ(X)µ(Y ),

where r and s are smooth functions such that s 6= 0 and µ is a non-vanishing
1-form such that g(X,U) = µ(X) for any vector field X, where U is a unit vector
field. If s = 0, then M is an Einstein manifold. It is easily to see that every
Riemannian manifold of quasi-constant curvature is quasi-Einstein.

2.2. Rigging technique for null hypersurface

Let (M
n+2

, g) be a Lorentzian manifold, and let (M, g) be a null hypersurface
of (M, g). Following Gutiérrez and Olea (see [7]), a rigging for M is a vector
field E defined on some open set of M containing M such that for each p ∈ M ,
Ep /∈ TpM . Given a rigging E for M , we set ω = g(E, ·), ω = i∗ω, ğ = g + ω ⊗ ω
and g̃ = i∗ğ, where i : M ↪→ M is the canonical inclusion map. It is well known
that g̃ is a Riemannian metric on M . The rigged vector field on M is the unique
null vector field ξ given by g̃(ξ, .) = ω and it satisfies g(E, ξ) = 1. A rigging E
defines a screen distribution S (E) given by S (E) = TM ∩E⊥ = kerω. The null
transversal vector field on M is

(2) N = E − 1

2
g(E,E)ξ,

which is the unique null vector field such that g(N, ξ) = 1. Moreover, it is worth
noting that TM admits the following splitting:

(3) TM |M = TM ⊕ span(N) =
{
S (E)⊕ span(ξ)

}
⊕ span(N).

A null hypersurface M equipped with a rigging E is said to be normalized and is
denoted (M,E).

According to the decomposition (3), the Gauss and Weingarten equations of M
and S (E) are the following (see [5, p. 82–85]):

∇XY = ∇XY +B(X,Y )N, ∇XPY =
?

∇XPY + C(X,PY )ξ,(4)

∇XN =−ANX+τ(X)N, ∇Xξ=−
?

AξX − τ(X)ξ, τ(X)=g(∇XN, ξ),(5)

for all X,Y tangent to M . Here, ∇ and
?

∇ are induced linear connections on
TM and S (TM), respectively, B is the null second fundamental form of M , and

C is the second fundamental form on S (TM). Moreover, AN and
?

Aξ are the
shape operators on TM and S (TM), respectively, connected with the second

fundamental forms by B(X,Y ) = g(
?

AξX,Y ) and C(X,PY ) = g(ANX,PY ), and
τ is a 1-form on TM . The induced linear connection ∇ is not a metric connection.
In fact, using the fact that ∇g = 0, we have

(6) (∇Xg)(Y,Z) = B(X,Y )ω(Z) +B(X,Z)ω(Y ) for all X,Y, Z ∈ Γ(TM).
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In addition, C is not symmetric since

(7) C(X,Y )−C(Y,X) = g(∇XY −∇YX,N) = η([X,Y ]) for all X,Y ∈ S (ζ).

Let us denote by R and R the Riemannian curvature tensors of ∇ and ∇,
respectively. Using (4) and (5), we get the so called Gauss-Codazzi equations [5]〈

R(X,Y )Z, ξ
〉

= (∇XB)(Y,Z)− (∇YB)(X,Z)(8)

+ τ(X)B(Y,Z)− τ(Y )B(X,Z),〈
R(X,Y )Z,PW

〉
=
〈
R(X,Y )Z,PW

〉
+B(X,Z)C(Y, PW )(9)

−B(Y,Z)C(X,PW ),〈
R(X,Y )ξ,N

〉
=
〈
R(X,Y )ξ,N

〉
(10)

= C(Y,
?

AξX)− C(
?

AξY,X)

− 2dτ(X,Y ) for all X,Y, Z,W ∈ Γ(TM |U ).〈
R(X,Y )PZ,N

〉
=
〈
(∇XAN )Y, PZ

〉
−
〈
(∇YAN )X,PZ

〉
(11)

+ τ(Y )
〈
ANX,PZ

〉
− τ(X)

〈
ANY, PZ

〉
,

for every X,Y and Z in Γ(TM).
We define the null mean curvature Hξ and the screen mean curvature HN as

Hξ =
1

n

n∑
i=1

B(
?

Ei,
?

Ei), HN
1

n

n∑
i=1

C(
?

Ei,
?

Ei),

where {
?

E1, . . . ,
?

En} is an orthonormal basis of S (ζ).

3. ζ-rigging null hypersurface

The majority of authors who have studied null submanifolds of Lorentzian man-
ifolds of quasi-constant curvature focused exclusively on the case in which the
curvature vector field is tangent to M ([8, 10]). Here, we suppose that the cur-
vature vector field ζ never belongs to the tangent space of the null hypersurface
M . In this case, ζ can be taken as a rigging for M . This leads to the following
definition.

Definition 3.1.

1. A null hypersurface M of Lorentzian manifolds of quasi-constant curvature such
that the curvature vector field ζ is a rigging for M , is said to be ζ-rigging null
hypersurface.

2. We say that the rigging ζ has a quasi-conformal screen distribution if the shape

operators AN and
?

Aξ of M and S (ζ) satisfy

(12) ANX = φ
?

AξX + σPX,

for any X ∈ Γ(TM) and some functions φ and σ.
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Equivalently,

C(X,PY ) = φB(X,PY ) + σg(X,PY )

for any X,Y ∈ Γ(TM). For σ = 0, we simply say that the rigging ζ has a
conformal screen distribution.

3. We say that the quasi-conformal pair (φ, σ) is adapted if τ(X) = 0, for all
X ∈ S (ζ), φ and σ are constant along S (ζ).

Example 3.2. Let M be a Robertson-Walker space-time (I ×ψ F,−dt2 +
ψ2(t)gF (c)), where (F, gF (c)) is a (n + 1)-dimensional Riemannian manifold of
constant sectional curvature c. For any X,Y, Z, T on M , we have

g(R(X,Y )Z, T ) =
f ′2 + c

f2
{
g(Y,Z)g(X,T )− g(X,Z)g(Y, T )

}
+
ff ′′ − f(f ′2 + c)

f2
{
g(X,T )θ(Y )θ(Z)− g(X,Z)θ(Y )θ(T )

+ g(Y,Z)θ(X)θ(T )− g(Y, T )θ(X)θ(Z)
}
,

where θ = g(.,−∂t) (see [11, Proposition 2.3]). Thus M is a Lorentzian manifold
of quasi-constant curvature with curvature vector field ζ = −∂t. Now, let M be an
(n+ 1)-dimensional null hypersurface of M . Since ζ = −∂t is timelike we can use
it as a rigging for M . Here, the screen distribution is given by ker θ. Let ξ denote
the corresponding rigged vector field. The associated null transversal vector field
is

(13) N = −∂t− 1

2
g(∂t, ∂t)ξ =

1

2
ξ − ∂t.

It is known that the vector field K = ψ∂t is a timelike closed conformal vector
field with closed conformal factor ψ′. Then, multiplying equation (13) by ψ and
differentiating in the direction of X ∈ Γ(TM), we get

X(ψ)N + ψ(−ANX + τ(X)N) =
1

2

(
(Xψ)ξ + ψ

(
−

?

AξX − τ(X)ξ
))

− ψ′
(
PX + η(X)ξ

)
.

Matching the tangential, radical and transversal parts of the expressions above,
we have

(14) ANX =
1

2

?

AξX + ln(ψ)′PX, τ(X) = − ln(ψ)′η(X),

which means that M is a ζ-rigging null hypersurface with quasi-conformal screen
distributions.

Proposition 3.3. Let (M, g) be a Lorentzian manifold of quasi-constant cur-
vature, and let M be a ζ-rigging null hypersurface of M . Then, for all X,Y ∈
Γ(TM), we have

(15) Ric(X,Y ) =
(
(n+ 1)α|M + g(ζ, ζ)β|M

)
g(X,Y ) + nβ|M{η(X)η(Y )},
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Ric(X,Y ) =
(
nα|M +

1

2
g(g(ζ, ζ)β|M

)
g(X,Y ) + 2β|M{(n− 1)η(X)η(Y )}

+B(X,Y )HN − g(ANX,
?

AξY ).

(16)

(17)

?

Ric(X,Y ) = (n− 1)α|Mg(X,Y ) + n
(
B(X,Y )HN + g(ANX,Y )Hξ

)
− g(

?

AξY,ANX)− g(
?

AξX,ANY ) for all X,Y ∈ S (ζ).

Proof. Take ζ = E to be a rigging vector field. Since M is of quasi-constant
curvature then θ(ξ) = 1, θ(N) = η(N) = 1

2g(ζ, ζ), and θ(X) = η(X) for all
X ∈ Γ(TM). From this, we have from equation (1)

g(R(ξ, Y )X,N) = α
{
g(Y,X)g(ξ,N)− g(ξ,X)g(Y,N)

}
+ β

{
g(ξ,N)θ(Y )θ(X)− g(ξ,X)θ(Y )θ(N)

+ g(Y,X)θ(ξ)θ(N)− g(Y,N)θ(ξ)θ(X)
}

= g(Y,X)(α+ βη(N)) + β(η(Y )η(X)− η(Y )η(X))

= g(Y,X)(α+ β|M
1

2
g(ζ, ζ)).

(18)

Also,

(19) g(R(N,Y )X, ξ) = g(Y,X)(α|M + β|M
1

2
g(ζ, ζ)).

Now, consider a quasi-orthonormal frame field {ξ;Ei} such that
S (ζ) = Span{Ei}, and let B = {ξ, Ei, N} be the corresponding frame field on

M . Using this, we have

(20) Ric(X,Y ) =

n∑
i=1

g(R(Ei, X)Y,Ei) + g(R(ξ,X)Y,N) + g(R(N,X)Y, ξ).

But, n∑
i=1

g(R(Ei, X)Y,Ei) =

n∑
i=1

(
α
{
g(Y,Z)g(Ei, Ei)− g(Ei, Y )g(X,Ei)

}
+ β

{
g(Ei, Ei)θ(X)θ(Y )− g(Ei, Y )θ(X)θ(Ei)

+ g(X,Y )θ(Ei)θ(Ei)− g(X,Ei)θ(Ei)θ(Y )
})

=
(

(n− 1)α+ β
(
nθ(X)θ(Y )

+ θ(ζ)− 2θ(ξ)θ(N)
))
g(X,Y )

+ β
(
η(Y )θ(X)θ(ξ) + η(X)θ(Y )θ(ξ)− 2θ(X)θ(Y )

)
=
(

(n− 1)α+ nβ
(
η(X)η(Y )

))
g(X,Y ).

(21)

Substituting equations (18), (19) and (21) in equation (20), we get equation (15).
Next, for all X,Y ∈ Γ(TM), the Ricci tensors of M and M are related by ([5])

(22) Ric(X,Y ) = Ric(X,Y ) + nB(X,Y )HN − g(ANX,
?

AξY )− g(R(ξ, Y )X,N).

Substituting also equations (15) and (18) in equation (22), we have equation (16).
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Finally, let
?

R be the Riemannian curvature on S (ζ). By straightforward com-
putation, we have

(23)

R(X,Y )Z =
?

R(X,Y )Z − C(Y, Z)
?

AξX + C(X,Z)
?

AξY

+
[
C(X,

?

∇Y Z) +X · C(Y, Z)− C(Y,
?

∇XZ)

− Y · C(X,Z)− C([X,Y ], Z)
]
ξ for all X,Y, Z ∈ S (ζ).

Thus, from equations (9)–(23), we have

(24)
g(

?

R(X,Y )Z,W ) =g(R(X,Y )Z,W )+B(Y,Z)C(X,W )−B(X,Z)C(Y,W )

+ C(Y,Z)B(X,W )− C(X,Z)B(Y,W ).

Now, from equations (21) and (24), the Ricci curvature
?

Ric on S (ζ) is given by
?

Ric(X,Y ) = (n− 1)α|Mg(X,Y ) + n
(
B(X,Y )HN + g(ANX,Y )Hξ

)
− g(

?

AξY,ANX)− g(
?

AξX,ANY ).

This completes the proof. �

Observe that the induced Ricci tensor Ric is not symmetric (see (16)), so it has
no geometric meaning. Nevertheless, null hypersurfaces with a quasi-conformal
screen distribution in semi-Riemannian space forms do admit an induced symmet-
ric Ricci tensor (see [12, Proposition 5.2.]). Using (16), we extend the above result
in the context of Lorentzian manifolds of quasi-constant curvature by showing the
following proposition.

Proposition 3.4. Let (M, g) be a Lorentzian manifold of quasi-constant cur-
vature, and let M be a ζ-rigging null hypersurface with a quasi-conformal screen
distribution. Then the tensor field Ric is an induced symmetric Ricci tensor of M.

Proof. Since ζ has a quasi-conformal screen distribution, the claim follows using
equation (12) in equation (16). �

Remark 3.5.

1. Suppose that M is a ζ-rigging null hypersurface of M. Let x ∈M and X ∈ S (ζ)
be a unitary vector field, i.e., g(X,X) = 1. Let also Σ = Span(X, ξ) be a null
plane contained in TxM . The null sectional curvature with respect to ξ of Σ is
given by [7]:

Kξ(Σ) = g(R(ξ,X)X, ξ)
(1)
= α|M

{
g(X,X)g(ξ, ξ)− g(ξ,X)g(X, ξ)

}
+ β|M

{
g(ξ, ξ)θ(X)θ(X)− g(ξ,X)θ(X)θ(ξ)

+ g(X,X)θ(ξ)θ(ξ)− g(X, ξ)θ(ξ)θ(X)
}

= β|Mg(X,X) for all X ∈ TxM.

Also, from (15), it is worth noting that Ric(ξ, ξ) = nβ|M . Then M is of constant

curvature α|M along M if and only if either Kξ(Σ) = 0 or Ric(ξ, ξ) = 0.
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2. Observe that if M is Einstein, then M is of constant curvature α|M along M .
In fact, being M Einstein, there exists a smooth function ρ in M which is
constant along S (ζ) and satisfies Ric(X,Y ) = ρg(X,Y ) for all X,Y ∈ Γ(TM)

(see [12]). Therefore, 0 = Ric(ξ, ξ)
(16)
= β|M .

Screen quasi-conformal or screen conformal null hypersurfaces satisfying classi-
cal geometric restrictions (totally geodesic, totally umbilical, Einstein) have been
studied, and numerous classification results exist for such hypersurfaces when the
ambient manifold has constant curvature (see [6, 12] and references therein). From
item (2) of Remark 3.5 and by the characterization theorem in [12, Theorem 5.8],
we have the following result.

Theorem 3.6. Let M be Lorentzian manifold of quasi-constant curvature, and
let M be a null Einstein ζ-rigging null hypersurface with quasi-conformal screen
distribution and adapted quasi-conformal pair (φ, σ). If M has exactly two distinct
screen principal curvatures, then M is locally diffeomorphic to a product M =
L × M1 × M2, where L is a null geodesic, and M1, M2 are two Riemannian
manifolds. Moreover, if α|M = 0, then one of the screen principal curvatures
vanishes.

Proof. Since M is Einstein, item (2) of Remark 3.5 implies that M is of constant
curvature α|M along M . Therefore, proceeding as in the proof of Theorem 5.8 in
[12], the claim follows. Indeed, the proof of Theorem 5.8 is still true if the curvature
vector field of M is constant just along the null hypersurface. �

The following result is an obstruction to the existence of totally geodesic null
hypersurfaces. Recall that M is said to be totally umbilical (resp. totally geodesic)
in M if there exists a smooth function k on M such that at each p ∈ M and for
all u, v ∈ TpM ,

(25) B(u, v) = kg(u, v)

(respectively, B vanishes identically on M).

Theorem 3.7. Let (M, g) be a Lorentzian manifold of quasi-constant curvature,
and let M be a ζ-rigging null hypersurface of M . If M is totally umbilic with
umbilic factor k, then k satisfies the partial differential equation

ξ(k)− k2 + kτ(ξ)− β|M = 0.(26)

PX(k) + kτ(PX) = 0.(27)

Moreover, if β|M 6= 0, then M can not be totally geodesic.

Proof. Take ζ = E to be a rigging vector field, then θ(ξ) = 1. Replacing T by
ξ in (1), we have

(28) g(R(X,Y )Z, ξ) = β|M
{
η(X)g(Y, Z)− η(Y )g(X,Z)

}
.

From equation (25), it is worth noting that

(∇XB)(Y,Z) = XB(Y,Z)−B(∇XY, Z)−B(∇XZ, Y )
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= X(k)g(Y,Z) + kXg(Y,Z)− kg(∇XY,Z)− kg(∇XZ, Y )

= X(k)g(Y,Z) + (∇Xg)(Y,Z)

= X(k)g(Y,Z) + k2
{
g(X,Y )η(Z) + g(X,Z)η(Y )

}
.

This leads to
(29)

(∇XB)(Y,Z)− (∇YB)(X,Z) + τ(X)B(Y, Z)− τ(Y )B(X,Z)

=
{
X(k)− k2η(X) + kτ(X)

}
g(Y,Z)−

{
Y (k)− k2η(Y ) + kη(Y )

}
g(X,Z).

From equation (29) together with equations (8) and (28), we have

(30)

β|M
{
η(X)g(Y,Z)− η(Y )g(X,Z)

}
= X(k)g(Y,Z) + k2

{
g(X,Y )η(Z) + g(X,Z)η(Y )

}
− Y (k)g(X,Z)

− k2
{
g(Y,X)η(Z) + g(Y,Z)η(X)

}
− kg(X,Z)τ(Y ) + kg(Y,Z)τ(X).

Replacing X by ξ in equation (30), we have

β|M
{
g(Y, Z)

}
= ξ(k)g(Y,Z)− k2

{
g(Y, Z)

}
+ kg(Y, Z)τ(ξ),

which gives equation (26).
Next, setting X = PX, Y = PY and Z = PZ in (30), we have

g(PX(k)PY − PY (k)PX − kgPXτ(PY ) + kPY τ(PX), PZ) = 0.

As S (ζ) is non-degenerate, this leads to (PX(k) + kτ(PX))PY = (PY (k) +
kτ(PY ))PX. Taking PX and PY to be linearly independent (rank(S (ζ)) > 1)
yields (27). The last claim follows setting k = 0 in equation (26). �

Definition 3.8. A null hypersurface M immersed in a Lorentzian manifold
(M, g) is said to be isoparametric if the screen principal curvatures, with respect

to
?

Aξ, are constant along S (ζ).

Theorem 3.9. Any ζ-rigging totally umbilic null hypersurface of a Lorentzian
manifold of quasi-constant curvature (M, g) such that the one form τ vanishes on
S (ζ), is isoparametric.

Proof. The result follows from the differential equation (27) by considering the
fact that τ vanishes on S (ζ). �

The reader may compare the following with [5, Proposition 2.5.4, p. 77].

Proposition 3.10. Let (M, g) be a Lorentzian manifold of quasi-constant cur-
vature, and M be a ζ- rigging null hypersurface of M . If ζ is screen quasi-

conformal with ANX = φ
?

AξX + σPX, then for all X,Y ∈ Γ(TM), we have

(31)

B(X,PZ)(2φτ(ξ) + σ − ξ(φ))

+ g(X,PZ)
[
στ(ξ) + α|M +

1

2
g(ζ, ζ)β|M − ξ(σ)− φβ|M

]
= 0,
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PX(φ)− 2φτ(PX)

] ?
AξPY +

[
2φτ(Y )− PY (φ)

] ?
AξPX

+
[
PX(σ)− στ(PX)

]
PY +

[
στ(PY )− PY (σ)

]
PX = 0.

(32)

Proof. From equation (12), we have

(33) C(Y, PZ) = φB(Y, PZ) + σg(Y, PZ) for all Y,Z ∈ Γ(TM).

Differentiating equation (33) gives

(∇XC)(Y, PZ) = φ(∇XB)(Y, PZ) + (X · φ)B(Y, PZ)

+ (X · σ)g(Y, PZ) + σB(X,PZ)η(Y ).

Interchanging X and Y in equations (34) and subtracting (34) from the new rela-
tion, we get

(∇XC)(Y, PZ)− (∇Y C)(X,PZ)

= φ
(

(∇XB)(Y, PZ)−(∇YB)(X,PZ)
)

+B(Y, PZ)(X · φ−ση(X))

+B(X,PZ)(ση(X)− Y · φ) + (X · σ)g(Y, PZ)− (Y · σ)g(X,PZ)

(8)
= φg(R(X,Y )PZ, ξ) +B(Y, PZ)(X · φ− ση(X)− φτ(X))

+B(X,PZ)(ση(X)−Y · φ+φτ(Y ))+(X · σ)g(Y, PZ)−(Y · σ)g(X,PZ)

(1)
= B(Y, PZ)(X · φ−ση(X)− φτ(X))+B(X,PZ)(ση(X)− Y · φ+φτ(Y ))

+ g(Y, PZ)
(
X · σ+φβ|Mθ(X)θ(ξ)

)
−g(X,PZ)

(
Y · σ+φβ|Mθ(Y )θ(ξ)

)
.

(34)

But,

(∇XC)(Y, PZ)− (∇Y C)(X,PZ)

(11)
= g(R(X,Y )Z,N) + τ(X)φB(Y, PZ)− φτ(Y )B(X,PZ)

+ στ(X)g(Y, PZ)− στ(Y )g(X,PZ)

(1)
= τ(X)φB(Y, PZ)− φτ(Y )B(X,PZ)

+ g(Y, PZ)
(
στ(X) + α|Mη(X) + β|Mθ(X)θ(N)

)
− g(X,PZ)

(
στ(Y ) + α|Mη(Y ) + β|Mθ(Y )θ(N)

)
+ βMθ(PZ)

(
η(X)θ(Y )− η(Y )θ(X)

)
.

(35)

Substituting equation (35) in equation (34), we get

B(Y, PZ)
[
X(φ)−2φτ(X)−ση(X)

]
+B(X,PZ)

[
2φτ(Y )+ση(Y )−Y (φ)

]
= −g(Y, PZ)

[
X(σ)−στ(X)−α|Mη(X)−β|Mθ(X)θ(N)+φβ|Mθ(X)θ(ξ)

]
− g(X,PZ)

[
στ(Y )+α|Mη(Y )+β|Mθ(Y )θ(N)−Y (σ)−φβ|Mθ(Y )θ(ξ)

]
+ βMθ(PZ)(η(X)θ(Y )− η(Y )θ(X)).

(36)
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As ζ = E, then θ(ξ) = 1 and θ(PZ) = 0, replacing Y by ξ in equation (36), we
get equation (31).

Finally, setting X = PX, Y = PY in (36) together with the fact S (ζ) is
non-degenerate, we obtain equation (32). �

The following result is a transversal version of [10, Theorem 3.3 and Theo-
rem 3.4], where it was assumed that the structural vector field is tangent to the
null hypersurface and S (ζ) totally umbilic in M . We recall also that the screen
distribution S (ζ) is totally umbilical (resp. totally geodesic) in M if there is a
smooth function λ such that

(37) C(X,PY ) = λg(X,Y )

for all X,Y ∈ Γ(TM) (respectively, C vanishes identically). (See [3, 5].)

Theorem 3.11. Let (M
n+2

, g) (n > 2) be a (n + 2)-dimensional Lorentzian
manifold of quasi-constant curvature, and let M be a ζ-rigging null hypersurface
of M . We suppose that S (ζ) is totally umbilic with umbilic factor λ. Then M is

locally a product manifold L×
?

M, where L is a null curve, and
?

M is an Einstein
manifold of constant curvature.

Proof. As S (ζ) is totally umbilic with umbilic factor λ, then it is integrable.

From [5], M is locally a product manifold L×
?

M, where L is a null curve, and
?

M
is a leaf of S(ζ) as a codimension two spacelike submanifold of M. Setting φ = 0
and σ = λ in equation (31), we have

(38) λB(Y,Z) = g(Y,Z)
(
− α|M −

1

2
g(ζ, ζ)β|M − λτ(ξ) + ξ(λ)

)
.

We distinguish two cases:

(1) If λ = 0, then from equations (38) and in (17), we have α|M = − 1
2g(ζ, ζ)β|M

and
?

Ric(X,Y )Z = (n − 1)(α|M ). Thus
?

M is an Einstein manifold of constant
curvature (α|M ) since n > 2.

(2) Assume that λ 6= 0. From equation (38), we have

(39) B(Y,Z) = kg(X,Y ) for all X,Y ∈ Γ(TM),

where

(40) k = λ−1
(
− α|M −

1

2
g(ζ, ζ)β|M − λτ(ξ) + ξ(λ

)
.

This means that M is totally umbilic with umbilic factor k.
Substituting equations (37) and (39) in equation (17) of Proposition 3.3, we

have
?

Ric(X,Y )Z = (n− 1)(α|M + 2kλ).

This implies that
?

M is an Einstein manifold of constant curvature (α|M + 2kλ)
since n > 2. This completes the proof. �

We recall the following from [9].



98 T. KEMAJOU MBIAKOP

Theorem 3.12. Let (M, ζ) be a lightlike hypersurface of a semi-Riemannian
space form (M(α), g) such that S (ζ) is totally umbilic. Then C = 0 or B = 0.
Moreover,

(1) C = 0 implies S (ζ) is totally geodesic and α = 0;
(2) B = 0 implies that M is totally geodesic immersed in M(α) and the induced

connection ∇ is metric.

From equations (26) and (40), we have

ξ(k)
(26)
= k2 − kτ(ξ) + β|M

and

ξ(λ)
(40)
= kλ+ α|M +

1

2
g(ζ, ζ)β|M + λτ(ξ).

As ξ(α|M + 2kλ) is constant, together with the above equations, we have

(41) 0 = ξ(α|M + 2kλ) = ξ(α|M ) + 2(ξ(k)λ) + kξ(λ))

(42)
ξ(α|M ) + 2k(α|M + 2kλ) + 2β|M

(
λ+

1

2
g(ζ, ζ)k

)
= ξ(α|M ) + 2λ(2k2 + β|M ) + 2k

(
α|M +

1

2
g(ζ, ζ)β|M

)
.

Using this, we present an extension of Theorem 3.12, where it was supposed M of
constant curvature.

Theorem 3.13. Let (M
n+2

, g) (n > 2) be a (n + 2)-dimensional Lorentzian
manifold of quasi-constant curvature, and let M be a ζ-rigging null hypersurface
of M such that S (ζ) is totally umbilic with umbilic factor λ. If any one of the
following conditions holds:

(i) β|M = 0,
(ii) α|M is constant along the integral curves of ξ and λ+ 1

2g(ζ, ζ)k = 0,

then C = 0 or B = 0.

Proof. Suppose that C 6= 0. Under the hypothesis (i) or (ii), equation (41) of
Theorem 3.11 leads to k(α|M + 2kλ) = 0. Therefore, k = 0 or (α|M + 2kλ) = 0.
From this, by following closely the argument of Theorem 2.4 in [9], we have the

result. Indeed, if (α|M + 2kλ) = 0, then
?

M is a semi-Euclidean space and the

second fundamental form C of
?

M satisfies C = 0. It is a disagreement to C 6= 0.
Thus we have k = 0. Consequently, we get B = 0 by equation (39). Thus M
is totally geodesic in M . Also, it is worth noting that (∇Xg)(X,Z) = 0 for all
X,Y, Z ∈ Γ(TM), that is, the induced connection ∇ on M is a metric one. �

Theorem 3.14. Let (M, g) be a Lorentzian manifold of quasi-constant curva-
ture, and let M be a ζ-rigging null hypersurface of M such that S (ζ) is totally
umbilic with umbilic factor λ. If λ and α|M are constant along the integral curves
of ξ, and β|M is positive, then C = 0 or (B = 0 and M is flat along M).
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Proof. Suppose that C 6= 0. Under the hypothesis, equation (42) of Theo-
rem 3.11 leads to 2λk(2k2 + β|M ) = 0. Therefore, 2k2 = −β|M as λ 6= 0(C 6= 0).
Since β is positive, we have k = 0 and β|M = 0. As λ is constant along the integral
curves of ξ, the screen mean curvature HN = λ 6= {0} is constant. Using this,
equation (50) leads to

α|M +
1

2
g(ζ, ζ)β|M = α|M = 0.

This completes the proof. �

From equation (31), for all X,Y ∈ Γ(TM), we have

(43) B(X,PZ)Λ + g(X,PZ)
[
στ(ξ) + α|M + β|M

(1

2
g(ζ, ζ)− φ

)
− ξ(σ)

]
= 0,

where

(44) Λ = 2φτ(ξ) + σ − ξ(φ).

From this, we have the following theorem.

Theorem 3.15. Let (M, g) be a Lorentzian manifold of quasi-constant cur-
vature, and let M be a ζ rigging-null hypersurface with a quasi-conformal screen
distribution.

(i) If Λ = 0, then α|M and β|M satisfy the following equation:

στ(ξ) + α|M + β|M
(1

2
g(ζ, ζ)− φ

)
− ξ(σ) = 0.

(ii) If Λ 6= 0, both S (ζ) and M are totally umbilic immersed in M and M.

Proof. Setting Λ = 0 in equation (43), we have item (i).
Now we assume that Λ 6= 0. From equations (33) and (31), we have

B(X,Y ) =
ξ(σ)− στ(ξ)− α|M − β|M

(
1
2g(ζ, ζ)− φ

)
Λ

g(X,Y ),

C(X,Y ) =
[φ

Λ

(
ξ(σ)− στ(ξ)− α|M − β|M

(1

2
g(ζ, ζ)− φ

))
+ σ

]
g(X,Y ),

which means that both S (ζ) and M are totally umbilical. �

Remark 3.16. If ζ = g(ζ,ζ)
2 ξ+N is closed conformal with conformal factor Ψ,

then M is screen integrable. From [1], it follows that
1

2
g(ζ, ζ)

?

AξX +ANX + ΨPX = 0,

X ·
(1

2
g(ζ, ζ)

)
= Ψη(X),

τ(X) = 0.

Thus, ζ has a quasi-conformal screen distribution with conformal factor
(φ, σ) = (− 1

2g(ζ, ζ),−Ψ). Using this in (44), we have

Λ = 2φτ(ξ) + σ − ξ(φ) = −Ψ + ξ ·
(1

2
g(ζ, ζ)

)
= −Ψ + Ψ = 0.
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This leads to the following corollary.

Corollary 3.17. Let (M, g) be a Lorentzian manifold of quasi-constant curva-
ture, and let M be a ζ rigging-null hypersurface such that ζ is closed conformal
with conformal factor Ψ. Then α|M and β|M satisfy the following equation:

(45) α|M + g(ζ, ζ)β|M + ξ(Ψ) = 0.

Moreover, if ζ is closed homothetic, then M is flat along M if either α|M = 0 or
β|M = 0.

Proof. Being ζ closed conformal, we have from Remark 3.16 that ζ has a quasi-
conformal screen distribution with quasi-conformal factor (φ, σ) = (− 1

2g(ζ, ζ),−Ψ)
and Λ = 0. Using this in item (i) of Theorem 3.15, we have equation (45). Now, if ζ
is closed homothetic, i.e, if Ψ is constant, then (45) becomes α|M +g(ζ, ζ)β|M = 0.
From this, the last claim follows. �

If M is conformal screen, then equation (43) becomes

(46) B(X,PZ)
[
Λ1

]
+ g(X,PZ)

[
α|M + β|M

(1

2
g(ζ, ζ)− φ

)]
= 0

for all X,Y ∈ Γ(TM), where Λ1 = 2φτ(ξ)−ξ(φ). From this, we have the following
theorem.

Theorem 3.18. Let (M, g) be a Lorentzian manifold of quasi-constant curva-
ture, and let M be a ζ-rigging null hypersurface with a conformal screen distribu-
tion. We suppose that Ric(ξ, ξ) = 0.

(1) If Λ1 = 0, then M is flat along M .
(2) If Λ1 6= 0, then both S (ζ) and M are totally geodesic immersed in M and

M . Moreover, M is flat along M.

Proof. Since Ric(ξ, ξ) = 0, from Remark 3.16, we have β|M = 0. Now, if Λ1 =

0, then it is worth nothing from (46) that α|M = −β|M
(

1
2g(ζ, ζ)−φ

)
= 0. Which

gives item (1).
Now we assume that Λ1 6= 0. From equation (46) together with the fact that

β|M = 0, we have that

B(X,Y ) = −α|M
Λ1

g(X,Y ),

C(X,PY ) = −φα|M
Λ1

g(X,PY ),(47)

Since M is of constant curvature αM along M , by applying the Theoren 3.12, we
get B = 0 or C = 0, which is equivalent to α|M = 0 or φ = 0. Notice that φ = 0
implies that Λ1 = 0, which is a contradiction to the assumption. Thus we have
α|M = 0 and B = C = 0. �

Corollary 3.19. Let (M, g) be a Lorentzian manifold of quasi-constant curva-
ture, and let M be a ζ-rigging null hypersurface with a conformal screen distribu-
tion. Then Ric(ξ, ξ) = 0 if and only if M is flat along M.
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Remark 3.20. Take K = ζ to be a rigging vector field. Replacing T by N
in (1) together with the fact that θ(N) = 1

2g(ζ, ζ), we have that

(48)

g(R(X,Y )Z,N) = α|M
{
η(X)g(Y,Z)− η(Y )g(X,Z)

}
+ β|M

{
η(Y )η(Z)η(X)− g(X,Z)η(Y )

(1

2
g(ζ, ζ)

)
+ g(Y,Z)η(X)

(1

2
g(ζ, ζ)

)
− η(Y )η(X)η(Z)

}
= α|M

{
η(X)g(Y,Z)− η(Y )g(X,Z)

}
+

1

2
g(ζ, ζ)β|M

{
g(Y,Z)η(X)− g(X,Z)η(Y )

}
=
(
α|M + β|M

1

2
g(ζ, ζ)

)(
g(Y,Z)η(X)− g(X,Z)η(Y )

)
.

From (10), we have

(49) g(R(X,Y )ξ,N) = C(Y,
?

AξX)− C(X,
?

AξY )− 2dτ(X,Y )

for all X,Y ∈ Γ(TM). Due to (48), the left hand side of (49) vanishes. Moreover
if S (ζ) is totally umbilic or ζ has a quasi-conformal screen distribution, then

C(Y,
?

AξX)− C(X,
?

AξY ) = g(ANY,
?

AξX)− g(ANX,
?

AξY )
(37)
= 0.

That is dτ(X,Y ) = 0 for all X,Y ∈ Γ(TM). Therefore, there exists a smooth
function f : M → R such that τ = df whenever M is simply connected. If we
take ζ = γζ, then the corresponding rigged is given by ξ = γ−1ξ. It follows that
τ(X) = τ(X) + X(Ln(γ−1)). Setting γ = exp(f)−1 in this equation, we get that
τ(X) = 0 for any X ∈ Γ(TM).

Lemma 3.21. Let (M, g) be a Lorentzian manifold of quasi-constant curvature,
and let (M, ζ) be a ζ-rigging null hypersurface of M . Then

(50) div
?
∇(ANξ) = ξ(·nHN ) + n(α|M + β|M (

1

2
g(ζ, ζ))).

Proof.

div
?
∇(ANξ) =

n∑
i=1

g
( ?
∇ ?
Ei

(ANξ),
?

Ei
)

=

n∑
i=1

g
(
(
?

∇ ?
Ei

AN )ξ,
?

Ei
)

=

n∑
i=1

g
(
(
?

∇ ?
Ei

AN )ξ + C(
?

∇ ?
Ei

AN , ξ)ξ,
?

Ei
)

=

n∑
i=1

g
(
(∇ ?

Ei

AN )ξ,
?

Ei
)
.

Gauss-Codazzi equation leads to

div
?
∇(ANξ) =

n∑
i=1

g
(
(∇ξAN )

?

Ei,
?

Ei
)

+

n∑
i=1

g
(
R(

?

Ei, ξ)
?

Ei, N
)

=

n∑
i=1

g
(
(∇ξAN )

?

Ei,
?

Ei
)

+ n
(
α|M + β|M (

1

2
g(ζ, ζ)

)
= ξ(·nHN )− n

(
α|M + β|M (

1

2
g(ζ, ζ)

)
. �
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Theorem 3.14 still holds if β is not positive but M is simply connected as shown
in the following theorem.

Theorem 3.22. Let (M
n+2

, g) be a Lorentzian manifold of quasi-constant cur-
vature, and let M be a ζ-rigging null hypersurface of M . If S (ζ) is totally umbilic
with umbilic factor λ constant along the integral curves of ξ and M simply con-
nected, then C = 0 or (B = 0 and M is flat along M).

Proof. Suppose that C 6= 0. As λ is constant along the integral curves of ξ, the
screen mean curvature HN = λ 6= {0} is constant. Using this, (50) leads to

(51) α|M +
1

2
g(ζ, ζ)β|M = 0.

Substituting this in (38), we have that B(X,Y ) = −τ(ξ)g(X,Y ), which implies
that M is either totally umbilic or totally geodesic. Replacing k by −τ(ξ) in (26),
we get

(52) ξ(τ(ξ))+2τ(ξ)2 + β|M = 0.

Since M is simply connected, from Remark 15, we have τ(ξ) = 0, which implies
froom (52) that β|M = 0. Using this in (51), we get α|M = 0. This completes the
proof. �

In the following, we establish sufficient conditions to guarantee that a ζ-rigging
null hypersurface is totally geodesic and that M is flat along the null hypersurface.

Theorem 3.23. Let (M, g) be a Lorentzian manifold of quasi-constant curva-
ture, and let M be a ζ-rigging null hypersurface of M . We suppose that the screen

shape operator
?

Aξ is parallel with respect to ∇. Then M is totally geodesic if and

only if β|M = 0.

Proof. Let X ∈ S(ζ). We have

(53)

g(R(X, ξ)ξ,X) = g(∇X∇ξξ,X)− g(∇ξ∇Xξ,X)− g(∇[X,ξ]ξ,X)

= τ(ξ)g(
?

Aξ(X), X)−g(∇ξ(−τ(X)ξ−
?

Aξ(X)), X)+g(
?

Aξ([X, ξ]), X)

= g(∇ξ
?

Aξ(X), X) + g(
?

Aξ(∇Xξ)− g(
?

Aξ(∇ξX), X)

= g((∇ξ
?

Aξ)(X), X)− g(
?

Aξ(X),
?

Aξ(X)).

But,

g(R(X, ξ)ξ,X)
(9)
= g(R̄(X, ξ)ξ,X)

(1)
= β|Mg(X,X).(54)

If M is
?

Aξ parallel then the above relations imply that

g(
?

Aξ(X),
?

Aξ(X)) = −βM ,

which means that M is totally geodesic if and only if β|M = 0 as the screen
distribution is positive definite. �
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Theorem 3.24. Let (M, g) be a Lorentzian manifold of quasi-constant curva-
ture with β|M non-negative, and let M be a ζ-rigging simply connected compact null

hypersurface of M . If ζ has a quasi-conformal distribution with quasi-conformal
pair (φ, σ), then M is totally geodesic in M and S (ζ) is totally umbilic in M with
umbilic factor σ. Moreover, if σ is constant along the integral curves of ξ, then M
is flat along M .

Proof. Since M is simply connected with a quasi-conformal screen distribution,
then from Remark 3.20, there exists a normalization ζ such that the corresponding
rigged ξ satisfies τ(ξ) = 0. From [2, Remark 3], we have

Ric(ξ) = ξ(Hξ) + τ(ξ)Hξ − |
?

Aξ|2.

But Ric(ξ) = nβ|M and τ(ξ) = 0, it follows that ξ(Hξ)− |
?

Aξ|2−nβ|M = 0. Using

the inequality |
?

Aξ|2≥ 1
nH2

ξ , we obtain ξ(Hξ)− 1
nH2

ξ − nβ|M ≥ 0 , and since ξ is

complete (M being compact), we get that Hξ = 0.

From the relation ξ(Hξ)−|
?

Aξ|2−nβ|M = 0, it follows that |
?

Aξ|2= −nβ|M , which

leads to
?

Aξ = 0 and β|M = 0 on M since β|M is non negative. Being M totally
geodesic together with the fact that ζ has a quasi-conformal screen distribution,
we have from equation (12) that S is totally umbilic with umbilic factor σ. Now,
if σ is constant along the integral curves of ξ, then from equation (38) together
with the fact that M is totally geodesic and β|M = 0, the last claim follows. �

Corollary 3.25. Let (M, g) be a Lorentzian manifold of quasi-constant curva-
ture with β|M non-negative, and let M be a ζ-rigging simply connected compact null

hypersurface of M . If ζ has a conformal screen distribution with conformal factor
φ, then both S (ζ) and M are totally geodesic immersed in M and M. Moreover,
M is flat along M.

In the Theorem 3.26, the hypothesis quasi-conformal screen distribution and
simply connected imply that τ(X) = 0 for all X ∈ TM . Similar conclusion holds
if ζ is closed conformal (see Remark 3.16). This leads to the following theorem.

Theorem 3.26. Let (M, g) be a Lorentzian manifold of quasi-constant curva-
ture with β|M non-negative, and let M be a ζ-rigging compact null hypersurface of

M . If ζ is closed conformal with conformal factor Ψ, then M is totally geodesic in
M , S (ζ) is totally umbilic in M with umbilic factor Ψ. Moreover, if Ψ is constant
along the integral curves of ξ, then M is flat along M .
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