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SOME INTEGRAL INEQUALITIES FOR CONVEX

STOCHASTIC PROCESSES

M. Z. SARIKAYA, H. YALDIZ and H. BUDAK

Abstract. In this paper, we extend the Hermite-Hadamard-type inequality and

Jensen-type inequality for convex stochastic proceses. The generalization of Hermite-
Hadamard-type inequality for convex stochastic proceses is also obtained and some

special cases of this result are given.

1. Introduction

The classical Hermite-Hadamard inequality which was first published in [9] gives
an estimate of the mean value of a convex function f : I → R,

f
(a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
(1.1)

History of this inequality can be found in [8]. Surveys on various generalizations
and developments can be found in [1] and [7]. Recently in [3], the author estab-
lished this inequality for twice differentiable functions. In case f is convex, there
exists an estimation better than (1.1) and that is why the following question was
posed.

In [4], Farissi gave the refinement of the inequality (1.1) as follows.

Theorem 1. Assume that f : I → R is a convex function on I. Then for all
λ ∈ [0, 1], we have

f
(a+ b

2

)
≤ l(λ) ≤ 1

b− a

b∫
a

f(x)dx ≤ L(λ) ≤ f(a) + f(b)

2
,

where

l(λ) := λf
(λb+ (2− λ)a

2

)
+ (1− λ)f

( (1 + λ)b+ (1− λ)a

2

)
and

L(λ) :=
1

2
(f(λb+ (1− λ)a) + λf(a) + (1− λ)f(b)).

Received April 29, 2015; revised September 29, 2015.
2010 Mathematics Subject Classification. Primary 26D15, 26A51, 33B20, 52A40, 52A41.
Key words and phrases. Hermite-Hadamard inequality; Jensen inequality; convex stochastic pro-

cess.



156 M. Z. SARIKAYA, H. YALDIZ and H. BUDAK

In [5], Gao generalized the above inequalities for convex function using the
Jensen inequality.

In 1980, Nikodem [2] introduced convex stochastic processes and investigated
their regularity properties. In 1992, Skwronski [10] obtained some further results
on convex functions.

Let (Ω,A, P ) be an arbitrary probability space. A function X : Ω→ R is called
a random variable if it is A-measurable. A function X : I × Ω→ R, where I ⊂ R
is an interval, is called a stochastic process if for every t ∈ I, the function X(t, ·)
is a random variable.

Recall that the stochastic process X : I × Ω→ R is called
(i) continuous in probability in interval I if for all t0 ∈ I, we have

P − lim
t→t0

X(t, ·) = X(t0, ·),

where P − lim denotes the limit in probability,

(ii) mean-square continuous in the interval I if for all t0 ∈ I.

lim
t→t0

E
[
(X(t)−X(t0))2

]
= 0,

where E[X(t)] denotes the expectation value of the random variable X(t, ·).
Obviously, mean-square continuity implies continuity in probability, but the

converse implication is not true.

Definition 1. Suppose a sequence {∆m} of partitions, ∆m = {am,0, . . . , am,nm
}

is given. We say that the sequence {∆m} is a normal sequence of partitions if the
length of the greatest interval in the n-th partition tends to zero, i.e.,

lim
m→∞

sup
1≤i≤nm

|am,i − am,i−1| = 0.

Now we would like to recall the concept of the mean-square integral. For the
definition and basic properties see [11].

Let X : I × Ω → R be a stochastic process with E
[
X(t)2

]
< ∞ for all t ∈ I.

Let [a, b] ⊂ I, a = t0 < t1 < t2 < · · · < tn = b be a partition of [a, b] and
Θk ∈ [tk−1, tk] for all k = 1, . . . , n. A random variable Y : Ω → R is called the
mean-square integral of the process X on [a, b] if we have

lim
n→∞

E
[( n∑

k=1

X(Θk

)
(tk − tk−1)− Y )2

]
= 0

for all normal sequence of partitions of the interval [a, b] and for all Θk ∈ [tk−1, tk],
k = 1, . . . , n. Then, we write

Y (·) =

b∫
a

X(s, ·)ds (a.e.).

For the existence of the mean-square integral it is enough to assume the mean-
square continuity of the stochastic process X.
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Throughout the paper, we frequently use the monotonicity of the mean-square
integral. If X(t, ·) ≤ Y (t, ·) (a.e.) in an interval [a, b], then

b∫
a

X(t, ·)dt ≤
b∫
a

Y (t, ·)dt (a.e.).

Of course, this inequality is the immediate consequence of the definition of the
mean-square integral.

We say that a stochastic process X : I × Ω → R is convex if for all λ ∈ [0, 1]
and u, v ∈ I, the inequality

X(λu+ (1− λ)v, ·) ≤ λX(u, ·) + (1− λ)X(v, ·) (a.e.)(1.2)

is satisfied. If the above inequality is assumed only for λ = 1
2 , then the process X

is Jensen-convex or 1
2 -convex. A stochastic process X is concave if (−X) is convex.

Some interesting properties of convex and Jensen-convex processes are presented
in [2, 11].

Now, we present some results proved by Kotrys [6] about Hermite-Hadamard
inequality for convex stochastic processes.

Lemma 1. If X : I × Ω → R is a stochastic process of the form X(t, ·) =
A(·)t + B(·), where A,B : Ω → R are random variables, such that E

[
A2
]
< ∞,

E
[
B2
]
<∞ and [a, b] ⊂ I, then

b∫
a

X(t, ·)dt = A(·)b
2 − a2

2
+B(·)(b− a) (a.e.).

Proposition 1. Let X : I×Ω→ R be a convex stochastic process and t0 ∈ int I.
Then there exists a random variable A : Ω→ R such that X is supported at t0 by
the process A(·)(t− t0) +X(t0, ·). That is,

X(t, ·) ≥ A(·)(t− t0) +X(t0, ·) (a.e.)

for all t ∈ I.

Theorem 2. Let X : I × Ω → R be Jensen-convex stochastic process, mean-
square continuous in the interval I. Then for any u, v ∈ I, we have

X
(u+ v

2
, ·
)
≤ 1

v − u

v∫
u

X(t, ·)dt ≤ X(u, ·) +X(v, ·)
2

(a.e.).(1.3)

The aim of this paper is to extend the classical Hermite-Hadamard-type and
Jensen inequalities to convex stochastic processes.

2. Main Results

Theorem 3 (Hermite-Hadamard-type inequality). Let X : I×Ω→R be Jensen-
convex stochastic process, mean-square continuous in the interval I. Then for any
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u, v ∈ I and for all λ ∈ [0, 1], we have

X
(u+ v

2
, ·
)
≤ h(λ) ≤ 1

v − u

v∫
u

X(t, ·)dt

≤ H(λ) ≤ X(u, ·) +X(v, ·)
2

,

(2.1)

where

h(λ) := λX
(λv + (2− λ)u

2
, ·
)

+ (1− λ)X
( (1 + λ)v + (1− λ)u

2
, ·
)

and

H(λ) :=
1

2
(X(λv + (1− λ)u, ·) + λX(u, ·) + (1− λ)X(v, ·)).

Proof. We give two different proofs for the theorem.
Firstly, let X be a Jensen-convex stochastic process, mean-square continuous

in the interval I. Applying (1.3) on the subinterval [u, λv + (1−λ)u] with λ 6= 0,
we get

X
(λv + (2− λ)u

2
, ·
)
≤ 1

λ(v − u)

λv+(1−λ)u∫
u

X(t, ·)dt

≤ X(u, ·) +X(λv + (1− λ)u, ·)
2

.

(2.2)

Applying (1.3) on [λv + (1− λ)u, v] with λ 6= 1 again, we get

X
( (1 + λ)v + (1− λ)u

2
, ·
)
≤ 1

(1− λ)(v − u)

v∫
λv+(1−λ)u

X(t, ·)dt

≤ X(λv + (1− λ)u, ·) +X(v, ·)
2

.

(2.3)

Multiplying (2.2) by λ, (2.3) by (1− λ), and adding the resulting inequalities, we
get

h(λ) ≤ 1

v − u

v∫
u

X(t, ·)dt ≤ H(λ),(2.4)

where h(λ) and H(λ) are defined as in Theorem 3.
In [2], Nikodem proved that every Jensen-convex stochastic process and con-

tinuous in probability is convex. Using this fact, we obtain

X
(u+ v

2
, ·
)

=X
(
λ
λv + (2−λ)u

2
+(1− λ)

(1 + λ)v + (1−λ)u

2
, ·
)

≤ λX
(λv + (2−λ)u

2
, ·
)

+(1−λ)X
( (1 + λ)v + (1−λ)u

2
, ·
)

≤ 1

2
(X(λv + (2−λ)u, ·)+λX(u, ·)+(1−λ)X(v, ·)) ≤ X(u, ·)+X(v, ·)

2
.

(2.5)
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Then by (2.4) and (2.5), we get (2.1).
Secondly, since the process X is mean-square continuous, it is continuous in

probability. Nikodem [2] proved that every Jensen-convex probability stochastic
continuous in process is convex. Since X is convex, then by Proposition 1, it has
a supporting process at any point t0 ∈ int I. Let us take a support at t0 = u+v

2 ,
then we have

X(t, ·) ≥ A(·)
(
t− u+ v

2

)
+X

(u+ v

2
, ·
)

(a.e.).

Using Lemma 1 on the subinterval [u, λv + (1− λ)u] with λ 6= 0, we can write

λv+(1−λ)u∫
u

X(t, ·)dt

≥
λv+(1−λ)u∫

u

[
A
(
·)(t− u+ λv+(1−λ)u

2

)
+X

(u+ λv+(1−λ)u

2
, ·
)]

dt

= λX
(u+ λv + (1− λ)u

2
, ·
)

(v − u) (a.e.),

(2.6)

and again on [λv + (1− λ)u, v] with λ 6= 1, we get

v∫
λv+(1−λ)u

X(t, ·)dt

≥
v∫

λv+(1−λ)u

[
A(·)

(
t− v + λv + (1− λ)u

2

)
+X

(v + λv + (1− λ)u

2
, ·
)]

dt

= (1− λ)X
(v + λv + (1− λ)u

2
, ·
)

(v − u) (a.e.).

(2.7)

From (2.6) and (2.7), we obtain

1

v − u

v∫
u

X(t, ·)dt ≥ λX
(λv + (2− λ)u

2
, ·
)

+ (1− λ)X
( (1 + λ)v + (1− λ)u

2
, ·
)

≥ X
(u+ v

2
, ·
)
.

It finishes the proof of first two inequalities in (2.1).
If we take t = λu + (1 − λ)v in inequality (1.2), then λ = t−v

u−v and by the
convexity of X, we have

X(t, ·) ≤ t− v
u− v

X(u, ·) +
u− t
u− v

X(v, ·)

=
X(v, ·)−X(u, ·)

v − u
t+

X(v, ·)u−X(u, ·)v
u− v

(a.e.).
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As before, using Lemma 1 on the subinterval [u, λv + (1− λ)u] with λ 6= 0, we can
write

λv+(1−λ)u∫
u

X(t, ·)dt ≤
λv+(1−λ)u∫

u

[X(λv + (1− λ)u, ·)−X(u, ·)
λ(v − u)

t

+
X(λv + (1− λ)u, ·)u−X(u, ·)v

λ(v − u)

]
dt

= [X(λv + (1− λ)u, ·)−X(u, ·)]
(λv + (2− λ)u

2

)
−X(λv + (1− λ)u, ·)u+X(u, ·)(λv + (1− λ)u)

(2.8)

and again on [λv + (1− λ)u, v] with λ 6= 1, we get

v∫
λv+(1−λ)u

X(t, ·)dt ≤
v∫

λv+(1−λ)u

[X(v, ·)−X(λv + (1− λ)u, ·)
(1− λ)(v − u)

t

+
X(λv + (1− λ)u, ·)v −X(v, ·)(λv + (1− λ)u)

(1− λ)(v − u)

]
dt

= [X(v, ·)−X(λv + (1− λ)u, ·)]
( (1 + λ)v + (1− λ)u

2

)
+X(λv + (1− λ)u, ·)v −X(v, ·)(λv + (1− λ)u).

(2.9)

From (2.8) and (2.9), we obtain

1

v − u

v∫
u

X(t, ·)dt ≤ 1

2
(X(λv + (1− λ)u, ·) + λX(u, ·) + (1− λ)X(v, ·))

≤ X(u, ·) +X(v, ·)
2

,

which completes the proof. �

Now, we start the following important inequality for convex stochastic processes

Theorem 4 (Jensen-type inequality). If X : I × Ω→ R is a convex stochastic
process, then we have

X

(
1

b− a

b∫
a

ϕ(t, ·)dt, ·
)
≤ 1

b− a

b∫
a

X ◦ ϕ(t, ·)dt

for an arbitrary non-negative integrable stochastic process ϕ : I × Ω→ I ⊂ R.
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Proof. From Proposition 1, we have

1

b− a

b∫
a

X ◦ ϕ(t, ·)dt−X
( 1

b− a

b∫
a

ϕ(t, ·)dt, ·
)

=
1

b− a

b∫
a

[
X ◦ ϕ(t, ·)−X

( 1

b− a

b∫
a

ϕ(t, ·)dt, ·
)]

dt

≥ A(·)
{

1

b− a

b∫
a

[
ϕ(t, ·)− 1

b− a

b∫
a

ϕ(t, ·)dt
]
dt

}

= A(·)
{

1

b− a

b∫
a

ϕ(t, ·)− 1

b− a

b∫
a

ϕ(t, ·)dt
}

= 0,

which completes the proof. �

Theorem 5 (Generalized Hermite–Hadamard-type inequality). Let X : I ×
Ω → R be a convex stochastic process. If the non-negative integrable stochastic
process ϕ : I × Ω → I ⊂ R such that X ◦ ϕ(t, ·) is also convex stochastic process,
then we have

X
( 1

b− a

b∫
a

ϕ(t, ·)dt, ·
)
≤ h(λ1, . . . , λn) ≤ 1

b− a

b∫
a

X ◦ ϕ(t, ·)dt

≤ H(λ1, . . . , λn) ≤ X ◦ ϕ(a, ·) +X ◦ ϕ(b, ·)
2

for n ∈ N, λ0 = 0, λn+1 = 1 and arbitrary 0 ≤ λ1 ≤ · · · ≤ λn ≤ 1, where

h(λ1, . . . , λn) =

n∑
k=0

(λk+1 − λk)X

(
1

(λk+1 − λk)(b− a)

(1−λk+1)a+λk+1b∫
(1−λk)a+λkb

ϕ(t, ·)dt, ·
)
,

H(λ1, . . . , λn) =

n∑
k=0

(λk+1 − λk)

(
X ◦ ϕ((1− λk)a+ λkb, ·)

2

+
X ◦ ϕ((1− λk+1)a+ λk+1b, ·)

2

)
.

Proof. From Theorem 4 and convexity of X ◦ ϕ(t, ·), we have

X

(
1

b− a

b∫
a

ϕ(t, ·)dt, ·
)
≤ 1

b− a

b∫
a

X ◦ ϕ(t, ·)dt

≤ X ◦ ϕ(a, ·) +X ◦ ϕ(b, ·)
2

.

(2.10)
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Appliying (2.10) to [(1− λk)a+ λkb, (1− λk+1)a+ λk+1b], k = 0, 1, . . . , n, we
have

X

(
1

(λk+1 − λk)(b− a)

(1−λk+1)a+λk+1b∫
(1−λk)a+λkb

ϕ(t, ·)dt, ·
)

≤ 1

(λk+1 − λk)(b− a)

(1−λk+1)a+λk+1b∫
(1−λk)a+λkb

X ◦ ϕ(t, ·)dt

≤ X ◦ ϕ((1− λk)a+ λkb, ·) +X ◦ ϕ((1− λk+1)a+ λk+1b, ·)
2

.

(2.11)

After multiplying each term in (2.11) by (λk+1−λk) and later summing the result
over k from 0 to n, we have

n∑
k=0

(λk+1 − λk)X

(
1

(λk+1 − λk)(b− a)

(1−λk+1)a+λk+1b∫
(1−λk)a+λkb

ϕ(t, ·)dt, ·
)

≤ 1

b− a

n∑
k=0

(1−λk+1)a+λk+1b∫
(1−λk)a+λkb

X ◦ ϕ(t, ·)dt

≤
n∑
k=0

(λk+1 − λk)
X ◦ ϕ((1− λk)a+ λkb, ·) +X ◦ ϕ((1− λk+1)a+ λk+1b, ·)

2
.

That is,

h(λ1, . . . , λn) ≤ 1

b− a

n∑
k=0

(1−λk+1)a+λk+1b∫
(1−λk)a+λkb

X ◦ ϕ(t, ·)dt ≤ H(λ1, . . . , λn).

Using the convexity of X(t, ·) and X ◦ ϕ(t, ·) for
n∑
k=0

(λk+1 − λk) = 1, we grt

X

(
1

b− a

b∫
a

ϕ(t, ·)dt, ·
)

= X

( n∑
k=0

(λk+1 − λk)
1

(λk+1 − λk)(b− a)

(1−λk+1)a+λk+1b∫
(1−λk)a+λkb

ϕ(t, ·)dt, ·
)

≤
n∑
k=0

(
λk+1 − λk)X(

1

(λk+1 − λk)(b− a)

(1−λk+1)a+λk+1b∫
(1−λk)a+λkb

ϕ(t, ·)dt, ·
)
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≤
n∑
k=0

(λk+1 − λk)
X ◦ ϕ((1− λk)a+ λkb, ·) +X ◦ ϕ((1− λk+1)a+ λk+1b, ·)

2

≤
n∑
k=0

(λk+1 − λk)
(1− λk)X ◦ ϕ(a, ·) + λkX ◦ ϕ(b, ·)

2

+
(1− λk+1)X ◦ ϕ(a, ·) + λk+1X ◦ ϕ(b, ·)

2

=
1

2

n∑
k=0

((1− λk)− (1− λk+1))((1− λk) + (1− λk+1))X ◦ ϕ(a, ·)

+
1

2

n∑
k=0

(λk+1 − λk)(λk+1 + λk)X ◦ ϕ(b, ·)

=
1

2

n∑
k=0

((1− λk)2 − (1− λk+1)2)X ◦ ϕ(a, .) +
1

2

n∑
k=0

(λ2k+1 − λ2k)X ◦ ϕ(b, ·)

=
X ◦ ϕ(a, ·) +X ◦ ϕ(b, ·)

2
.

This completes the proof. �

Corollary 1. Under assumption of Theorem 5 with λk = λ for k = 1, 2, . . . , n,
we have the inequality

X

(
1

b− a

b∫
a

ϕ(t, ·)dt, ·
)
≤ h1(λ) ≤ 1

b− a

b∫
a

X ◦ ϕ(t, ·)dt

≤ H1(λ) ≤ X ◦ ϕ(a, ·) +X ◦ ϕ(b, ·)
2

,

(2.12)

where

h1(λ) = λX

(
1

λ(b− a)

(1−λ)a+λb∫
a

ϕ(t, ·)dt, ·
)

+ (1− λ)X

(
1

(1− λ)(b− a)

b∫
(1−λ)a+λb

ϕ(t, ·)dt, ·
)

H1(λ) =
1

2
(X(λa+ (1− λ)b, ·) + λX(a, ·) + (1− λ)X(b, ·)).

Remark 1. If we choose ϕ(t, ·) = t in Corollary 1, then inequality (2.12)
reduces inequality (2.1).
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