SOME INTEGRAL INEQUALITIES FOR CONVEX STOCHASTIC PROCESSES

M. Z. SARIKAYA, H. YALDIZ AND H. BUDAK

ABSTRACT. In this paper, we extend the Hermite-Hadamard-type inequality and Jensen-type inequality for convex stochastic proceses. The generalization of Hermite-Hadamard-type inequality for convex stochastic proceses is also obtained and some special cases of this result are given.

1. Introduction

The classical Hermite-Hadamard inequality which was first published in [9] gives an estimate of the mean value of a convex function $f: I \to \mathbb{R}$,

$$(1.1) f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) dx \le \frac{f(a)+f(b)}{2}$$

History of this inequality can be found in [8]. Surveys on various generalizations and developments can be found in [1] and [7]. Recently in [3], the author established this inequality for twice differentiable functions. In case f is convex, there exists an estimation better than (1.1) and that is why the following question was posed.

In [4], Farissi gave the refinement of the inequality (1.1) as follows.

Theorem 1. Assume that $f: I \to \mathbb{R}$ is a convex function on I. Then for all $\lambda \in [0,1]$, we have

$$f\left(\frac{a+b}{2}\right) \le l(\lambda) \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \le L(\lambda) \le \frac{f(a)+f(b)}{2},$$

where

$$l(\lambda) := \lambda f\Big(\frac{\lambda b + (2-\lambda)a}{2}\Big) + (1-\lambda)f\Big(\frac{(1+\lambda)b + (1-\lambda)a}{2}\Big)$$

and

$$L(\lambda) := \frac{1}{2}(f(\lambda b + (1-\lambda)a) + \lambda f(a) + (1-\lambda)f(b)).$$

Received April 29, 2015; revised September 29, 2015. 2010 Mathematics Subject Classification. Primary 26D15, 26A51, 33B20, 52A40, 52A41. Key words and phrases. Hermite-Hadamard inequality; Jensen inequality; convex stochastic process. In [5], Gao generalized the above inequalities for convex function using the Jensen inequality.

In 1980, Nikodem [2] introduced convex stochastic processes and investigated their regularity properties. In 1992, Skwronski [10] obtained some further results on convex functions.

Let (Ω, \mathcal{A}, P) be an arbitrary probability space. A function $X \colon \Omega \to \mathbb{R}$ is called a random variable if it is \mathcal{A} -measurable. A function $X \colon I \times \Omega \to \mathbb{R}$, where $I \subset \mathbb{R}$ is an interval, is called a stochastic process if for every $t \in I$, the function $X(t, \cdot)$ is a random variable.

Recall that the stochastic process $X: I \times \Omega \to \mathbb{R}$ is called

(i) continuous in probability in interval I if for all $t_0 \in I$, we have

$$P - \lim_{t \to t_0} X(t, \cdot) = X(t_0, \cdot),$$

where $P - \lim$ denotes the limit in probability,

(ii) mean-square continuous in the interval I if for all $t_0 \in I$.

$$\lim_{t \to t_0} E\left[(X(t) - X(t_0))^2 \right] = 0,$$

where E[X(t)] denotes the expectation value of the random variable $X(t,\cdot)$. Obviously, mean-square continuity implies continuity in probability, but the converse implication is not true.

Definition 1. Suppose a sequence $\{\Delta^m\}$ of partitions, $\Delta^m = \{a_{m,0}, \ldots, a_{m,n_m}\}$ is given. We say that the sequence $\{\Delta^m\}$ is a normal sequence of partitions if the length of the greatest interval in the *n*-th partition tends to zero, i.e.,

$$\lim_{m \to \infty} \sup_{1 \le i \le n_m} |a_{m,i} - a_{m,i-1}| = 0.$$

Now we would like to recall the concept of the mean-square integral. For the definition and basic properties see [11].

Let $X: I \times \Omega \to \mathbb{R}$ be a stochastic process with $E\left[X(t)^2\right] < \infty$ for all $t \in I$. Let $[a,b] \subset I$, $a=t_0 < t_1 < t_2 < \cdots < t_n = b$ be a partition of [a,b] and $\Theta_k \in [t_{k-1},t_k]$ for all $k=1,\ldots,n$. A random variable $Y:\Omega \to \mathbb{R}$ is called the mean-square integral of the process X on [a,b] if we have

$$\lim_{n \to \infty} E\left[\left(\sum_{k=1}^{n} X(\Theta_{k})(t_{k} - t_{k-1}) - Y\right)^{2}\right] = 0$$

for all normal sequence of partitions of the interval [a, b] and for all $\Theta_k \in [t_{k-1}, t_k]$, k = 1, ..., n. Then, we write

$$Y(\cdot) = \int_{a}^{b} X(s, \cdot) ds$$
 (a.e.).

For the existence of the mean-square integral it is enough to assume the mean-square continuity of the stochastic process X.

Throughout the paper, we frequently use the monotonicity of the mean-square integral. If $X(t,\cdot) \leq Y(t,\cdot)$ (a.e.) in an interval [a,b], then

$$\int_{a}^{b} X(t,\cdot) dt \le \int_{a}^{b} Y(t,\cdot) dt \qquad \text{(a.e.)}.$$

Of course, this inequality is the immediate consequence of the definition of the mean-square integral.

We say that a stochastic process $X \colon I \times \Omega \to \mathbb{R}$ is convex if for all $\lambda \in [0,1]$ and $u, v \in I$, the inequality

$$(1.2) X(\lambda u + (1 - \lambda)v, \cdot) \le \lambda X(u, \cdot) + (1 - \lambda)X(v, \cdot) (a.e.)$$

is satisfied. If the above inequality is assumed only for $\lambda = \frac{1}{2}$, then the process X is Jensen-convex or $\frac{1}{2}$ -convex. A stochastic process X is concave if (-X) is convex. Some interesting properties of convex and Jensen-convex processes are presented in [2, 11].

Now, we present some results proved by Kotrys [6] about Hermite-Hadamard inequality for convex stochastic processes.

Lemma 1. If $X: I \times \Omega \to \mathbb{R}$ is a stochastic process of the form $X(t,\cdot) = A(\cdot)t + B(\cdot)$, where $A, B: \Omega \to \mathbb{R}$ are random variables, such that $E[A^2] < \infty$, $E[B^2] < \infty$ and $[a,b] \subset I$, then

$$\int_{a}^{b} X(t, \cdot) dt = A(\cdot) \frac{b^{2} - a^{2}}{2} + B(\cdot)(b - a)$$
 (a.e.).

Proposition 1. Let $X: I \times \Omega \to \mathbb{R}$ be a convex stochastic process and $t_0 \in \operatorname{int} I$. Then there exists a random variable $A: \Omega \to \mathbb{R}$ such that X is supported at t_0 by the process $A(\cdot)(t-t_0) + X(t_0,\cdot)$. That is,

$$X(t, \cdot) \ge A(\cdot)(t - t_0) + X(t_0, \cdot)$$
 (a.e.)

for all $t \in I$.

Theorem 2. Let $X: I \times \Omega \to \mathbb{R}$ be Jensen-convex stochastic process, mean-square continuous in the interval I. Then for any $u, v \in I$, we have

$$(1.3) \quad X\left(\frac{u+v}{2},\cdot\right) \leq \frac{1}{v-u} \int_{u}^{v} X(t,\cdot) dt \leq \frac{X(u,\cdot) + X(v,\cdot)}{2} \quad \text{(a.e.)}.$$

The aim of this paper is to extend the classical Hermite-Hadamard-type and Jensen inequalities to convex stochastic processes.

2. Main Results

Theorem 3 (Hermite-Hadamard-type inequality). Let $X: I \times \Omega \to \mathbb{R}$ be Jensen-convex stochastic process, mean-square continuous in the interval I. Then for any

 $u, v \in I$ and for all $\lambda \in [0, 1]$, we have

(2.1)
$$X\left(\frac{u+v}{2},\cdot\right) \le h(\lambda) \le \frac{1}{v-u} \int_{u}^{v} X(t,\cdot) dt \\ \le H(\lambda) \le \frac{X(u,\cdot) + X(v,\cdot)}{2},$$

where

$$h(\lambda) := \lambda X \left(\frac{\lambda v + (2 - \lambda)u}{2}, \cdot \right) + (1 - \lambda)X \left(\frac{(1 + \lambda)v + (1 - \lambda)u}{2}, \cdot \right)$$

and

$$H(\lambda) := \frac{1}{2} (X(\lambda v + (1 - \lambda)u, \cdot) + \lambda X(u, \cdot) + (1 - \lambda)X(v, \cdot)).$$

Proof. We give two different proofs for the theorem.

Firstly, let X be a Jensen-convex stochastic process, mean-square continuous in the interval I. Applying (1.3) on the subinterval $[u, \lambda v + (1-\lambda)u]$ with $\lambda \neq 0$, we get

(2.2)
$$X\left(\frac{\lambda v + (2-\lambda)u}{2}, \cdot\right) \leq \frac{1}{\lambda(v-u)} \int_{u}^{\lambda v + (1-\lambda)u} X(t, \cdot) dt$$
$$\leq \frac{X(u, \cdot) + X(\lambda v + (1-\lambda)u, \cdot)}{2}$$

Applying (1.3) on $[\lambda v + (1 - \lambda)u, v]$ with $\lambda \neq 1$ again, we get

(2.3)
$$X\left(\frac{(1+\lambda)v + (1-\lambda)u}{2}, \cdot\right) \leq \frac{1}{(1-\lambda)(v-u)} \int_{\lambda v + (1-\lambda)u}^{v} X(t, \cdot) dt$$
$$\leq \frac{X(\lambda v + (1-\lambda)u, \cdot) + X(v, \cdot)}{2}.$$

Multiplying (2.2) by λ , (2.3) by $(1 - \lambda)$, and adding the resulting inequalities, we get

(2.4)
$$h(\lambda) \le \frac{1}{v-u} \int_{0}^{v} X(t,\cdot) dt \le H(\lambda),$$

where $h(\lambda)$ and $H(\lambda)$ are defined as in Theorem 3.

In [2], Nikodem proved that every Jensen-convex stochastic process and continuous in probability is convex. Using this fact, we obtain

$$\begin{split} X\Big(\frac{u+v}{2},\cdot\Big) &= X\Big(\lambda\frac{\lambda v + (2-\lambda)u}{2} + (1-\lambda)\frac{(1+\lambda)v + (1-\lambda)u}{2},\cdot\Big) \\ (2.5) &\leq \lambda X\Big(\frac{\lambda v + (2-\lambda)u}{2},\cdot\Big) + (1-\lambda)X\Big(\frac{(1+\lambda)v + (1-\lambda)u}{2},\cdot\Big) \\ &\leq \frac{1}{2}(X(\lambda v + (2-\lambda)u,\cdot) + \lambda X(u,\cdot) + (1-\lambda)X(v,\cdot)) \leq \frac{X(u,\cdot) + X(v,\cdot)}{2}. \end{split}$$

Then by (2.4) and (2.5), we get (2.1).

Secondly, since the process X is mean-square continuous, it is continuous in probability. Nikodem [2] proved that every Jensen-convex probability stochastic continuous in process is convex. Since X is convex, then by Proposition 1, it has a supporting process at any point $t_0 \in \operatorname{int} I$. Let us take a support at $t_0 = \frac{u+v}{2}$, then we have

$$X(t,\cdot) \ge A(\cdot)\left(t - \frac{u+v}{2}\right) + X\left(\frac{u+v}{2},\cdot\right)$$
 (a.e.).

Using Lemma 1 on the subinterval $[u, \lambda v + (1 - \lambda)u]$ with $\lambda \neq 0$, we can write

$$(2.6) \int_{u}^{\lambda v + (1-\lambda)u} X(t, \cdot) dt$$

$$\geq \int_{u}^{\lambda v + (1-\lambda)u} \left[A\left(\cdot\right) \left(t - \frac{u + \lambda v + (1-\lambda)u}{2}\right) + X\left(\frac{u + \lambda v + (1-\lambda)u}{2}, \cdot\right) \right] dt$$

$$= \lambda X\left(\frac{u + \lambda v + (1-\lambda)u}{2}, \cdot\right) (v - u) \quad \text{(a.e.)},$$

and again on $[\lambda v + (1 - \lambda)u, v]$ with $\lambda \neq 1$, we get

$$\int_{\lambda v + (1-\lambda)u}^{v} X(t, \cdot) dt$$

$$(2.7) \ge \int_{\lambda v + (1-\lambda)u}^{v} \left[A(\cdot) \left(t - \frac{v + \lambda v + (1-\lambda)u}{2} \right) + X \left(\frac{v + \lambda v + (1-\lambda)u}{2}, \cdot \right) \right] dt$$

$$= (1 - \lambda) X \left(\frac{v + \lambda v + (1-\lambda)u}{2}, \cdot \right) (v - u) \quad \text{(a.e.)}.$$

From (2.6) and (2.7), we obtain

$$\frac{1}{v-u} \int_{u}^{v} X(t,\cdot) dt \ge \lambda X \left(\frac{\lambda v + (2-\lambda)u}{2}, \cdot \right) + (1-\lambda) X \left(\frac{(1+\lambda)v + (1-\lambda)u}{2}, \cdot \right)$$

$$\ge X \left(\frac{u+v}{2}, \cdot \right).$$

It finishes the proof of first two inequalities in (2.1).

If we take $t = \lambda u + (1 - \lambda)v$ in inequality (1.2), then $\lambda = \frac{t-v}{u-v}$ and by the convexity of X, we have

$$X(t,\cdot) \le \frac{t-v}{u-v} X(u,\cdot) + \frac{u-t}{u-v} X(v,\cdot)$$

$$= \frac{X(v,\cdot) - X(u,\cdot)}{v-u} t + \frac{X(v,\cdot)u - X(u,\cdot)v}{u-v} \quad \text{(a.e.)}.$$

As before, using Lemma 1 on the subinterval $[u, \lambda v + (1 - \lambda)u]$ with $\lambda \neq 0$, we can write

$$\int_{u}^{\lambda v + (1-\lambda)u} X(t, \cdot) dt \leq \int_{u}^{\lambda v + (1-\lambda)u} \left[\frac{X(\lambda v + (1-\lambda)u, \cdot) - X(u, \cdot)}{\lambda(v-u)} t + \frac{X(\lambda v + (1-\lambda)u, \cdot)u - X(u, \cdot)v}{\lambda(v-u)} \right] dt$$

$$= \left[X(\lambda v + (1-\lambda)u, \cdot) - X(u, \cdot) \right] \left(\frac{\lambda v + (2-\lambda)u}{2} \right) - X(\lambda v + (1-\lambda)u, \cdot)u + X(u, \cdot)(\lambda v + (1-\lambda)u) \right]$$

and again on $[\lambda v + (1 - \lambda)u, v]$ with $\lambda \neq 1$, we get

$$\int_{\lambda v + (1 - \lambda)u}^{v} X(t, \cdot) dt \le \int_{\lambda v + (1 - \lambda)u}^{v} \left[\frac{X(v, \cdot) - X(\lambda v + (1 - \lambda)u, \cdot)}{(1 - \lambda)(v - u)} t + \frac{X(\lambda v + (1 - \lambda)u, \cdot)v - X(v, \cdot)(\lambda v + (1 - \lambda)u)}{(1 - \lambda)(v - u)} \right] dt$$

$$= \left[X(v, \cdot) - X(\lambda v + (1 - \lambda)u, \cdot) \right] \left(\frac{(1 + \lambda)v + (1 - \lambda)u}{2} \right)$$

$$+ X(\lambda v + (1 - \lambda)u, \cdot)v - X(v, \cdot)(\lambda v + (1 - \lambda)u).$$

From (2.8) and (2.9), we obtain

$$\frac{1}{v-u} \int_{u}^{v} X(t,\cdot) dt \le \frac{1}{2} (X(\lambda v + (1-\lambda)u,\cdot) + \lambda X(u,\cdot) + (1-\lambda)X(v,\cdot))$$
$$\le \frac{X(u,\cdot) + X(v,\cdot)}{2},$$

which completes the proof.

Now, we start the following important inequality for convex stochastic processes

Theorem 4 (Jensen-type inequality). If $X: I \times \Omega \to \mathbb{R}$ is a convex stochastic process, then we have

$$X\left(\frac{1}{b-a}\int\limits_{a}^{b}\varphi(t,\cdot)\mathrm{d}t,\cdot\right)\leq\frac{1}{b-a}\int\limits_{a}^{b}X\circ\varphi(t,\cdot)\mathrm{d}t$$

for an arbitrary non-negative integrable stochastic process $\varphi \colon I \times \Omega \to I \subset \mathbb{R}$.

Proof. From Proposition 1, we have

$$\begin{split} \frac{1}{b-a} \int_{a}^{b} X \circ \varphi(t,\cdot) \mathrm{d}t - X \Big(\frac{1}{b-a} \int_{a}^{b} \varphi(t,\cdot) \mathrm{d}t, \cdot \Big) \\ &= \frac{1}{b-a} \int_{a}^{b} \left[X \circ \varphi(t,\cdot) - X \Big(\frac{1}{b-a} \int_{a}^{b} \varphi(t,\cdot) \mathrm{d}t, \cdot \Big) \right] \mathrm{d}t \\ &\geq A(\cdot) \Big\{ \frac{1}{b-a} \int_{a}^{b} \left[\varphi(t,\cdot) - \frac{1}{b-a} \int_{a}^{b} \varphi(t,\cdot) \mathrm{d}t \right] \mathrm{d}t \Big\} \\ &= A(\cdot) \Big\{ \frac{1}{b-a} \int_{a}^{b} \varphi(t,\cdot) - \frac{1}{b-a} \int_{a}^{b} \varphi(t,\cdot) \mathrm{d}t \Big\} \\ &= 0, \end{split}$$

which completes the proof.

Theorem 5 (Generalized Hermite–Hadamard-type inequality). Let $X: I \times \Omega \to \mathbb{R}$ be a convex stochastic process. If the non-negative integrable stochastic process $\varphi \colon I \times \Omega \to I \subset \mathbb{R}$ such that $X \circ \varphi(t, \cdot)$ is also convex stochastic process, then we have

$$X\left(\frac{1}{b-a}\int_{a}^{b}\varphi(t,\cdot)dt,\cdot\right) \leq h(\lambda_{1},\ldots,\lambda_{n}) \leq \frac{1}{b-a}\int_{a}^{b}X\circ\varphi(t,\cdot)dt$$
$$\leq H(\lambda_{1},\ldots,\lambda_{n}) \leq \frac{X\circ\varphi(a,\cdot)+X\circ\varphi(b,\cdot)}{2}$$

for $n \in \mathbb{N}$, $\lambda_0 = 0$, $\lambda_{n+1} = 1$ and arbitrary $0 \le \lambda_1 \le \cdots \le \lambda_n \le 1$, where

$$h(\lambda_1, \dots, \lambda_n) = \sum_{k=0}^n (\lambda_{k+1} - \lambda_k) X \left(\frac{1}{(\lambda_{k+1} - \lambda_k)(b-a)} \int_{(1-\lambda_k)a + \lambda_k b}^{(1-\lambda_{k+1})a + \lambda_{k+1} b} \varphi(t, \cdot) dt, \cdot \right),$$

$$H(\lambda_1, \dots, \lambda_n) = \sum_{k=0}^n (\lambda_{k+1} - \lambda_k) \left(\frac{X \circ \varphi((1-\lambda_k)a + \lambda_k b, \cdot)}{2} + \frac{X \circ \varphi((1-\lambda_{k+1})a + \lambda_{k+1} b, \cdot)}{2} \right).$$

Proof. From Theorem 4 and convexity of $X \circ \varphi(t, \cdot)$, we have

(2.10)
$$X\left(\frac{1}{b-a}\int_{a}^{b}\varphi(t,\cdot)dt,\cdot\right) \leq \frac{1}{b-a}\int_{a}^{b}X\circ\varphi(t,\cdot)dt$$
$$\leq \frac{X\circ\varphi(a,\cdot)+X\circ\varphi(b,\cdot)}{2}.$$

Appliying (2.10) to $[(1 - \lambda_k)a + \lambda_k b, (1 - \lambda_{k+1})a + \lambda_{k+1}b], k = 0, 1, \dots, n$, we have

$$X\left(\frac{1}{(\lambda_{k+1} - \lambda_k)(b-a)} \int_{(1-\lambda_k)a + \lambda_k b}^{(1-\lambda_{k+1})a + \lambda_k b} \varphi(t, \cdot) dt, \cdot\right)$$

$$(2.11) \qquad \leq \frac{1}{(\lambda_{k+1} - \lambda_k)(b-a)} \int_{(1-\lambda_k)a + \lambda_k b}^{(1-\lambda_{k+1})a + \lambda_{k+1} b} X \circ \varphi(t, \cdot) dt$$

$$\leq \frac{X \circ \varphi((1-\lambda_k)a + \lambda_k b, \cdot) + X \circ \varphi((1-\lambda_{k+1})a + \lambda_{k+1} b, \cdot)}{2}.$$

After multiplying each term in (2.11) by $(\lambda_{k+1} - \lambda_k)$ and later summing the result over k from 0 to n, we have

$$\sum_{k=0}^{n} (\lambda_{k+1} - \lambda_k) X \left(\frac{1}{(\lambda_{k+1} - \lambda_k)(b-a)} \int_{(1-\lambda_k)a + \lambda_k b}^{(1-\lambda_{k+1})a + \lambda_{k+1} b} \varphi(t, \cdot) dt, \cdot \right)$$

$$\leq \frac{1}{b-a} \sum_{k=0}^{n} \int_{(1-\lambda_k)a + \lambda_k b}^{(1-\lambda_{k+1})a + \lambda_{k+1} b} X \circ \varphi(t, \cdot) dt$$

$$\leq \sum_{k=0}^{n} (\lambda_{k+1} - \lambda_k) \frac{X \circ \varphi((1-\lambda_k)a + \lambda_k b, \cdot) + X \circ \varphi((1-\lambda_{k+1})a + \lambda_{k+1} b, \cdot)}{2}.$$

That is,

$$h(\lambda_1, \dots, \lambda_n) \le \frac{1}{b-a} \sum_{k=0}^n \int_{(1-\lambda_k)a+\lambda_k b}^{(1-\lambda_{k+1})a+\lambda_{k+1} b} X \circ \varphi(t, \cdot) dt \le H(\lambda_1, \dots, \lambda_n).$$

Using the convexity of $X(t,\cdot)$ and $X\circ\varphi(t,\cdot)$ for $\sum_{k=0}^{n}(\lambda_{k+1}-\lambda_k)=1$, we grt

$$X\left(\frac{1}{b-a}\int_{a}^{b}\varphi(t,\cdot)dt,\cdot\right)$$

$$=X\left(\sum_{k=0}^{n}(\lambda_{k+1}-\lambda_{k})\frac{1}{(\lambda_{k+1}-\lambda_{k})(b-a)}\int_{(1-\lambda_{k})a+\lambda_{k}b}^{(1-\lambda_{k+1})a+\lambda_{k+1}b}\varphi(t,\cdot)dt,\cdot\right)$$

$$\leq\sum_{k=0}^{n}\left(\lambda_{k+1}-\lambda_{k}\right)X\left(\frac{1}{(\lambda_{k+1}-\lambda_{k})(b-a)}\int_{(1-\lambda_{k})a+\lambda_{k}b}^{(1-\lambda_{k+1})a+\lambda_{k+1}b}\varphi(t,\cdot)dt,\cdot\right)$$

$$\leq \sum_{k=0}^{n} (\lambda_{k+1} - \lambda_{k}) \frac{X \circ \varphi((1 - \lambda_{k})a + \lambda_{k}b, \cdot) + X \circ \varphi((1 - \lambda_{k+1})a + \lambda_{k+1}b, \cdot)}{2}$$

$$\leq \sum_{k=0}^{n} (\lambda_{k+1} - \lambda_{k}) \frac{(1 - \lambda_{k})X \circ \varphi(a, \cdot) + \lambda_{k}X \circ \varphi(b, \cdot)}{2}$$

$$+ \frac{(1 - \lambda_{k+1})X \circ \varphi(a, \cdot) + \lambda_{k+1}X \circ \varphi(b, \cdot)}{2}$$

$$= \frac{1}{2} \sum_{k=0}^{n} ((1 - \lambda_{k}) - (1 - \lambda_{k+1}))((1 - \lambda_{k}) + (1 - \lambda_{k+1}))X \circ \varphi(a, \cdot)$$

$$+ \frac{1}{2} \sum_{k=0}^{n} (\lambda_{k+1} - \lambda_{k})(\lambda_{k+1} + \lambda_{k})X \circ \varphi(b, \cdot)$$

$$= \frac{1}{2} \sum_{k=0}^{n} ((1 - \lambda_{k})^{2} - (1 - \lambda_{k+1})^{2})X \circ \varphi(a, \cdot) + \frac{1}{2} \sum_{k=0}^{n} (\lambda_{k+1}^{2} - \lambda_{k}^{2})X \circ \varphi(b, \cdot)$$

$$= \frac{X \circ \varphi(a, \cdot) + X \circ \varphi(b, \cdot)}{2}.$$

This completes the proof.

Corollary 1. Under assumption of Theorem 5 with $\lambda_k = \lambda$ for k = 1, 2, ..., n, we have the inequality

(2.12)
$$X\left(\frac{1}{b-a}\int_{a}^{b}\varphi(t,\cdot)dt,\cdot\right) \leq h_{1}(\lambda) \leq \frac{1}{b-a}\int_{a}^{b}X\circ\varphi(t,\cdot)dt$$
$$\leq H_{1}(\lambda) \leq \frac{X\circ\varphi(a,\cdot) + X\circ\varphi(b,\cdot)}{2},$$

where

$$h_1(\lambda) = \lambda X \left(\frac{1}{\lambda(b-a)} \int_a^{(1-\lambda)a+\lambda b} \varphi(t,\cdot) dt, \cdot \right)$$

$$+ (1-\lambda)X \left(\frac{1}{(1-\lambda)(b-a)} \int_{(1-\lambda)a+\lambda b}^b \varphi(t,\cdot) dt, \cdot \right)$$

$$H_1(\lambda) = \frac{1}{2} (X(\lambda a + (1-\lambda)b,\cdot) + \lambda X(a,\cdot) + (1-\lambda)X(b,\cdot)).$$

Remark 1. If we choose $\varphi(t,\cdot)=t$ in Corollary 1, then inequality (2.12) reduces inequality (2.1).

References

- Mitrinovic D. S, Pečarič J. E. and Fink A. M., Classical and new inequalities in analysis, ser. Math. Appl. (East European Ser.), vol. 61, Dordrecht: Kluwer Academic Publishers Group, 1993,
- 2. Nikodem K., On convex stochastic processes, Aequat. Math. 20 (1980), 184–197.
- 3. El Farissi A., Latreuch Z. and Belaidi B., *Hadamard-Type inequalities for twice diffrentiable functions*, RGMIA, Research Report collection, **12(1)** (2009), art. 6.
- 4. El Farissi A., Simple proof and refinement of Hermite-Hadamard inequality, JMI Jour. Math. Ineq., 4(3) (2010), 365–369.
- 5. Gao X., A note on the Hermite-Hadamard inequality, JMI Jour. Math. Ineq., $\mathbf{4(4)}$ (2010), 587-591.
- Kotrys D., Hermite-Hadamard inequality for convex stochastic processes, Aequat. Math., 83 (2012), 143–151.
- Dragomir S. S. and Agarwal R. P., Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. lett., 11(5) (1998), 91–95.
- 8. Dragomir S. S. and Pearce C. E. M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
- 9. Hadamard J., Etude sur les proprietes des fonctions entieres et en particulier d'une fonction consideree par Riemann, J. Math. Pures Appl., 58 (1893), 171–215.
- Skowronski A., On some properties of J-convex stochastic processes, Aequat. Math. 44 (1992), 249–258.
- 11. Sobczyk K., Stochastic differential equations with applications to physics and engineering, Kluwer, Dordrecht 1991.
- M. Z. Sarikaya, Department of Mathematics, Faculty of Science and Arts, Düzce University, Konuralp Campus, Düzce-Turkey, e-mail: sarikayamz@gmail.com
- H. Yaldiz, Department of Mathematics, Faculty of Science and Arts, Düzce University, Konuralp Campus, Düzce-Turkey, e-mail: yaldizhatice@gmail.com
- H. Budak, Department of Mathematics, Faculty of Science and Arts, Düzce University, Konuralp Campus, Düzce-Turkey, e-mail: hsyn.budak@gmail.com