SOME INTEGRAL INEQUALITIES FOR CONVEX STOCHASTIC PROCESSES

M. Z. SARIKAYA, H. YALDIZ AND H. BUDAK

Abstract. In this paper, we extend the Hermite-Hadamard-type inequality and Jensen-type inequality for convex stochastic processes. The generalization of Hermite-Hadamard-type inequality for convex stochastic processes is also obtained and some special cases of this result are given.

1. Introduction

The classical Hermite-Hadamard inequality which was first published in [9] gives an estimate of the mean value of a convex function \(f: I \rightarrow \mathbb{R} \),

\[
 f\left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(x)\,dx \leq \frac{f(a) + f(b)}{2} \tag{1.1}
\]

History of this inequality can be found in [8]. Surveys on various generalizations and developments can be found in [1] and [7]. Recently in [3], the author established this inequality for twice differentiable functions. In case \(f \) is convex, there exists an estimation better than (1.1) and that is why the following question was posed.

In [4], Farissi gave the refinement of the inequality (1.1) as follows.

Theorem 1. Assume that \(f: I \rightarrow \mathbb{R} \) is a convex function on \(I \). Then for all \(\lambda \in [0, 1] \), we have

\[
f\left(\frac{a + b}{2} \right) \leq l(\lambda) \leq \frac{1}{b - a} \int_a^b f(x)\,dx \leq L(\lambda) \leq \frac{f(a) + f(b)}{2},
\]

where

\[
l(\lambda) := \lambda f\left(\frac{\lambda b + (2 - \lambda)a}{2} \right) + (1 - \lambda) f\left(\frac{(1 + \lambda)b + (1 - \lambda)a}{2} \right)
\]

and

\[
L(\lambda) := \frac{1}{2} (f(\lambda b + (1 - \lambda)a) + \lambda f(a) + (1 - \lambda)f(b)).
\]
In [5], Gao generalized the above inequalities for convex function using the Jensen inequality.

Let \((\Omega, \mathcal{A}, P)\) be an arbitrary probability space. A function \(X: \Omega \to \mathbb{R}\) is called a random variable if it is \(\mathcal{A}\)-measurable. A function \(X: I \times \Omega \to \mathbb{R}\), where \(I \subset \mathbb{R}\) is an interval, is called a stochastic process if for every \(t \in I\), the function \(X(t, \cdot)\) is a random variable.

Recall that the stochastic process \(X: I \times \Omega \to \mathbb{R}\) is called

(i) continuous in probability in interval \(I\) if for all \(t_0 \in I\), we have

\[
P - \lim_{t \to t_0} X(t, \cdot) = X(t_0, \cdot),
\]

where \(P - \lim\) denotes the limit in probability,

(ii) mean-square continuous in the interval \(I\) if for all \(t_0 \in I\).

\[
\lim_{t \to t_0} E[(X(t) - X(t_0))^2] = 0,
\]

where \(E[X(t)]\) denotes the expectation value of the random variable \(X(t, \cdot)\).

Obviously, mean-square continuity implies continuity in probability, but the converse implication is not true.

Definition 1. Suppose a sequence \(\{\Delta^m\}\) of partitions, \(\Delta^m = \{a_{m,0}, \ldots, a_{m,n_m}\}\) is given. We say that the sequence \(\{\Delta^m\}\) is a normal sequence of partitions if the length of the greatest interval in the \(n\)-th partition tends to zero, i.e.,

\[
\lim_{m \to \infty} \sup_{1 \leq i \leq n_m} |a_{m,i} - a_{m,i-1}| = 0.
\]

Now we would like to recall the concept of the mean-square integral. For the definition and basic properties see [11].

Let \(X: I \times \Omega \to \mathbb{R}\) be a stochastic process with \(E[X(t)^2] < \infty\) for all \(t \in I\). Let \([a, b] \subset I\), \(a = t_0 < t_1 < t_2 < \cdots < t_n = b\) be a partition of \([a, b]\) and \(\Theta_k \in [t_{k-1}, t_k]\) for all \(k = 1, \ldots, n\). A random variable \(Y: \Omega \to \mathbb{R}\) is called the mean-square integral of the process \(X\) on \([a, b]\) if we have

\[
\lim_{n \to \infty} E\left[\left(\sum_{k=1}^{n} X(\Theta_k)(t_k - t_{k-1}) - Y\right)^2\right] = 0
\]

for all normal sequence of partitions of the interval \([a, b]\) and for all \(\Theta_k \in [t_{k-1}, t_k]\), \(k = 1, \ldots, n\). Then, we write

\[
Y(\cdot) = \int_{a}^{b} X(s, \cdot)ds \quad (a.e.).
\]

For the existence of the mean-square integral it is enough to assume the mean-square continuity of the stochastic process \(X\).
Throughout the paper, we frequently use the monotonicity of the mean-square integral. If \(X(t, \cdot) \leq Y(t, \cdot) \) (a.e.) in an interval \([a, b]\), then
\[
\int_a^b X(t, \cdot) dt \leq \int_a^b Y(t, \cdot) dt \quad \text{(a.e.)}
\]
Of course, this inequality is the immediate consequence of the definition of the mean-square integral.

We say that a stochastic process \(X: I \times \Omega \rightarrow \mathbb{R} \) is convex if for all \(\lambda \in [0, 1] \) and \(u, v \in I \), the inequality
\[
X(\lambda u + (1 - \lambda)v, \cdot) \leq \lambda X(u, \cdot) + (1 - \lambda)X(v, \cdot) \quad \text{(a.e.)} \quad (1.2)
\]
is satisfied. If the above inequality is assumed only for \(\lambda = \frac{1}{2} \), then the process \(X \) is Jensen-convex or \(\frac{1}{2} \)-convex. A stochastic process \(X \) is concave if \((-X) \) is convex.

Some interesting properties of convex and Jensen-convex processes are presented in \([2, 11]\).

Now, we present some results proved by Kotrys \([6]\) about Hermite-Hadamard inequality for convex stochastic processes.

Lemma 1. If \(X: I \times \Omega \rightarrow \mathbb{R} \) is a stochastic process of the form \(X(t, \cdot) = A(\cdot) t + B(\cdot) \), where \(A, B: \Omega \rightarrow \mathbb{R} \) are random variables, such that \(E[A^2] < \infty \), \(E[B^2] < \infty \) and \([a, b] \subset I\), then
\[
\int_a^b X(t, \cdot) dt = A(\cdot) \frac{b^2 - a^2}{2} + B(\cdot)(b - a) \quad \text{(a.e.)}
\]

Proposition 1. Let \(X: I \times \Omega \rightarrow \mathbb{R} \) be a convex stochastic process and \(t_0 \in \text{int} \, I \). Then there exists a random variable \(A: \Omega \rightarrow \mathbb{R} \) such that \(X \) is supported at \(t_0 \) by the process \(A(\cdot)(t - t_0) + X(t_0, \cdot) \). That is,
\[
X(t, \cdot) \geq A(\cdot)(t - t_0) + X(t_0, \cdot) \quad \text{(a.e.)}
\]
for all \(t \in I \).

Theorem 2. Let \(X: I \times \Omega \rightarrow \mathbb{R} \) be Jensen-convex stochastic process, mean-square continuous in the interval \(I \). Then for any \(u, v \in I \), we have
\[
X\left(\frac{u + v}{2}, \cdot\right) \leq \frac{1}{v - u} \int_u^v X(t, \cdot) dt \leq \frac{X(u, \cdot) + X(v, \cdot)}{2} \quad \text{(a.e.)} \quad (1.3)
\]

The aim of this paper is to extend the classical Hermite-Hadamard-type and Jensen inequalities to convex stochastic processes.

2. Main Results

Theorem 3 (Hermite-Hadamard-type inequality). Let \(X: I \times \Omega \rightarrow \mathbb{R} \) be Jensen-convex stochastic process, mean-square continuous in the interval \(I \). Then for any
\(u, v \in I \) and for all \(\lambda \in [0, 1] \), we have
\[
X \left(\frac{u + v}{2}, \cdot \right) \leq h(\lambda) \leq \frac{1}{v - u} \int_{u}^{v} X(t, \cdot) dt \leq H(\lambda) \leq \frac{X(u, \cdot) + X(v, \cdot)}{2},
\]
(2.1)

where
\[
h(\lambda) := \lambda X \left(\frac{\lambda v + (2 - \lambda)u}{2}, \cdot \right) + (1 - \lambda) X \left(\frac{(1 + \lambda)v + (1 - \lambda)u}{2}, \cdot \right)
\]
and
\[
H(\lambda) := \frac{1}{2} \left(X(\lambda v + (1 - \lambda)u, \cdot) + \lambda X(u, \cdot) + (1 - \lambda)X(v, \cdot) \right).
\]

Proof. We give two different proofs for the theorem.

Firstly, let \(X \) be a Jensen-convex stochastic process, mean-square continuous in the interval \(I \). Applying (1.3) on the subinterval \([u, \lambda v + (1 - \lambda)u]\) with \(\lambda \neq 0 \), we get
\[
X \left(\frac{\lambda v + (2 - \lambda)u}{2}, \cdot \right) \leq \frac{1}{\lambda(v - u)} \int_{u}^{v} X(t, \cdot) dt \leq \frac{X(u, \cdot) + X(\lambda v + (1 - \lambda)u, \cdot)}{2}.
\]
(2.2)

Applying (1.3) on \([\lambda v + (1 - \lambda)u, v]\) with \(\lambda \neq 1 \) again, we get
\[
X \left(\frac{(1 + \lambda)v + (1 - \lambda)u}{2}, \cdot \right) \leq \frac{1}{(1 - \lambda)(v - u)} \int_{u}^{v} X(t, \cdot) dt \leq \frac{X(\lambda v + (1 - \lambda)u, \cdot) + X(v, \cdot)}{2}.
\]
(2.3)

Multiplying (2.2) by \(\lambda \), (2.3) by \((1 - \lambda) \), and adding the resulting inequalities, we get
\[
h(\lambda) \leq \frac{1}{v - u} \int_{u}^{v} X(t, \cdot) dt \leq H(\lambda),
\]
(2.4)

where \(h(\lambda) \) and \(H(\lambda) \) are defined as in Theorem 3.

In [2], Nikodem proved that every Jensen-convex stochastic process and continuous in probability is convex. Using this fact, we obtain
\[
X \left(\frac{u + v}{2}, \cdot \right) = X \left(\frac{\lambda v + (2 - \lambda)u}{2}, \cdot \right) + (1 - \lambda) X \left(\frac{(1 + \lambda)v + (1 - \lambda)u}{2}, \cdot \right)
\]
\[
\leq \lambda X \left(\frac{\lambda v + (2 - \lambda)u}{2}, \cdot \right) + (1 - \lambda) X \left(\frac{(1 + \lambda)v + (1 - \lambda)u}{2}, \cdot \right)
\]
\[
\leq \frac{1}{2} \left(X(\lambda v + (2 - \lambda)u, \cdot) + \lambda X(u, \cdot) + (1 - \lambda)X(v, \cdot) \right) \leq \frac{X(u, \cdot) + X(v, \cdot)}{2}.
\]
(2.5)
Then by (2.4) and (2.5), we get (2.1).

Secondly, since the process X is mean-square continuous, it is continuous in probability. Nikodem [2] proved that every Jensen-convex probability stochastic continuous in process is convex. Since X is convex, then by Proposition 1, it has a supporting process at any point $t_0 \in \text{int} \ I$. Let us take a support at $t_0 = \frac{u + v}{2}$, then we have

$$X(t, \cdot) \geq A(\cdot) \left(t - \frac{u + v}{2} \right) + X \left(\frac{u + v}{2}, \cdot \right) \quad (a.e.).$$

Using Lemma 1 on the subinterval $[u, \lambda v + (1 - \lambda)u]$ with $\lambda \neq 0$, we can write

$$\int_u^x X(t, \cdot) dt \geq \int_u^{\lambda v + (1 - \lambda)u} \left[A(\cdot) \left(t - \frac{u + \lambda v + (1 - \lambda)u}{2} \right) + X \left(\frac{u + \lambda v + (1 - \lambda)u}{2}, \cdot \right) \right] dt$$

$$= \lambda X \left(\frac{u + \lambda v + (1 - \lambda)u}{2}, \cdot \right) (v - u) \quad (a.e.),$$

and again on $[\lambda v + (1 - \lambda)u, v]$ with $\lambda \neq 1$, we get

$$\int_{\lambda v + (1 - \lambda)u}^v X(t, \cdot) dt \geq \int_{\lambda v + (1 - \lambda)u}^v \left[A(\cdot) \left(t - \frac{v + \lambda v + (1 - \lambda)u}{2} \right) + X \left(\frac{v + \lambda v + (1 - \lambda)u}{2}, \cdot \right) \right] dt$$

$$= (1 - \lambda) X \left(\frac{v + \lambda v + (1 - \lambda)u}{2}, \cdot \right) (v - u) \quad (a.e.).$$

From (2.6) and (2.7), we obtain

$$\frac{1}{v - u} \int_u^x X(t, \cdot) dt \geq \lambda X \left(\frac{\lambda v + (2 - \lambda)u}{2}, \cdot \right) + (1 - \lambda) X \left(\frac{(1 + \lambda)v + (1 - \lambda)u}{2}, \cdot \right)$$

$$\geq X \left(\frac{u + v}{2}, \cdot \right).$$

It finishes the proof of first two inequalities in (2.1).

If we take $t = \lambda u + (1 - \lambda)v$ in inequality (1.2), then $\lambda = \frac{t - u}{u - v}$ and by the convexity of X, we have

$$X(t, \cdot) \leq \frac{t - v}{u - v} X(u, \cdot) + \frac{u - t}{u - v} X(v, \cdot)$$

$$= \frac{X(v, \cdot) - X(u, \cdot)}{v - u} t + \frac{X(v, \cdot)u - X(u, \cdot)v}{u - v} \quad (a.e.).$$
As before, using Lemma 1 on the subinterval \([u, \lambda v + (1 - \lambda)u]\) with \(\lambda \neq 0\), we can write

\[
\int_{u}^{\lambda v + (1 - \lambda)u} X(t, \cdot) \, dt \leq \int_{u}^{\lambda v + (1 - \lambda)u} \left[\frac{X(\lambda v + (1 - \lambda)u, \cdot) - X(u, \cdot)}{\lambda(v - u)} \right] \, dt
\]

\[
+ \frac{X(\lambda v + (1 - \lambda)u, \cdot) u - X(u, \cdot) v}{\lambda(v - u)} \right] \, dt
\]

\[
= \left[X(\lambda v + (1 - \lambda)u, \cdot) - X(u, \cdot) \right] \left(\frac{\lambda v + (2 - \lambda)u}{2} \right)
\]

\[
- X(\lambda v + (1 - \lambda)u, \cdot) u + X(u, \cdot) (\lambda v + (1 - \lambda)u)
\]

and again on \([\lambda v + (1 - \lambda)u, v]\) with \(\lambda \neq 1\), we get

\[
\int_{\lambda v + (1 - \lambda)u}^{v} X(t, \cdot) \, dt \leq \int_{\lambda v + (1 - \lambda)u}^{v} \left[\frac{X(v, \cdot) - X(\lambda v + (1 - \lambda)u, \cdot)}{(1 - \lambda)(v - u)} \right] \, dt
\]

\[
+ \frac{X(\lambda v + (1 - \lambda)u, \cdot) v - X(v, \cdot) (\lambda v + (1 - \lambda)u)}{(1 - \lambda)(v - u)} \right] \, dt
\]

\[
= \left[X(v, \cdot) - X(\lambda v + (1 - \lambda)u, \cdot) \right] \left(\frac{1 + \lambda} {2} \right) v + (1 - \lambda)u
\]

\[
+ X(\lambda v + (1 - \lambda)u, \cdot) v - X(v, \cdot) (\lambda v + (1 - \lambda)u).
\]

From (2.8) and (2.9), we obtain

\[
\frac{1}{v - u} \int_{u}^{v} X(t, \cdot) \, dt \leq \frac{1}{2} (X(\lambda v + (1 - \lambda)u, \cdot) + \lambda X(u, \cdot) + (1 - \lambda)X(v, \cdot))
\]

\[
\leq \frac{X(u, \cdot) + X(v, \cdot)}{2},
\]

which completes the proof. \(\square\)

Now, we start the following important inequality for convex stochastic processes

Theorem 4 (Jensen-type inequality). If \(X: I \times \Omega \to \mathbb{R}\) is a convex stochastic process, then we have

\[
X\left(\frac{1}{b - a} \int_{a}^{b} \varphi(t, \cdot) \, dt, \cdot \right) \leq \frac{1}{b - a} \int_{a}^{b} X \circ \varphi(t, \cdot) \, dt
\]

for an arbitrary non-negative integrable stochastic process \(\varphi: I \times \Omega \to I \subset \mathbb{R}\).
Proof. From Proposition 1, we have

\[
\frac{1}{b-a} \int_a^b X \circ \varphi(t, \cdot)dt - X\left(\frac{1}{b-a} \int_a^b \varphi(t, \cdot)dt, \cdot\right) \\
= \frac{1}{b-a} \int_a^b \left[X \circ \varphi(t, \cdot) - X\left(\frac{1}{b-a} \int_a^b \varphi(t, \cdot)dt, \cdot\right) \right] dt \\
\geq A(\cdot)\left\{ \frac{1}{b-a} \int_a^b \varphi(t, \cdot) dt - \frac{1}{b-a} \int_a^b \varphi(t, \cdot) dt \right\} \\
= A(\cdot)\left\{ \frac{1}{b-a} \int_a^b \varphi(t, \cdot) dt - \frac{1}{b-a} \int_a^b \varphi(t, \cdot) dt \right\} \\
= 0,
\]

which completes the proof. \(\Box\)

Theorem 5 (Generalized Hermite–Hadamard-type inequality). Let \(X: I \times \Omega \to \mathbb{R}\) be a convex stochastic process. If the non-negative integrable stochastic process \(\varphi: I \times \Omega \to I \subset \mathbb{R}\) such that \(X \circ \varphi(t, \cdot)\) is also convex stochastic process, then we have

\[
X\left(\frac{1}{b-a} \int_a^b \varphi(t, \cdot)dt, \cdot\right) \leq h(\lambda_1, \ldots, \lambda_n) \leq \frac{1}{b-a} \int_a^b X \circ \varphi(t, \cdot)dt \\
\leq H(\lambda_1, \ldots, \lambda_n) \leq X \circ \varphi(a, \cdot) + X \circ \varphi(b, \cdot)
\]

for \(n \in \mathbb{N}, \lambda_0 = 0, \lambda_{n+1} = 1\) and arbitrary \(0 \leq \lambda_1 \leq \cdots \leq \lambda_n \leq 1\), where

\[
h(\lambda_1, \ldots, \lambda_n) = \sum_{k=0}^{n} (\lambda_{k+1} - \lambda_k) X\left(\frac{1}{(1-\lambda_{k+1})a+\lambda_{k+1}b} \int_{(1-\lambda_k)a+\lambda_kb}^{(1-\lambda_{k+1})a+\lambda_{k+1}b} \varphi(t, \cdot)dt, \cdot\right),
\]

\[
H(\lambda_1, \ldots, \lambda_n) = \sum_{k=0}^{n} (\lambda_{k+1} - \lambda_k) \left(\frac{X \circ \varphi((1-\lambda_k)a + \lambda_kb, \cdot)}{2} \right. \\
\left. + \frac{X \circ \varphi((1-\lambda_{k+1})a + \lambda_{k+1}b, \cdot)}{2} \right).
\]

Proof. From Theorem 4 and convexity of \(X \circ \varphi(t, \cdot)\), we have

\[
X\left(\frac{1}{b-a} \int_a^b \varphi(t, \cdot)dt, \cdot\right) \leq \frac{1}{b-a} \int_a^b X \circ \varphi(t, \cdot)dt \\
\leq \frac{X \circ \varphi(a, \cdot) + X \circ \varphi(b, \cdot)}{2}.
\]
Applying (2.10) to \([(1 - \lambda_k)a + \lambda_kb, (1 - \lambda_{k+1})a + \lambda_{k+1}b]\), \(k = 0, 1, \ldots, n\), we have

\[
X\left(\frac{1}{(\lambda_{k+1} - \lambda_k)(b - a)} \int_{(1 - \lambda_k)a + \lambda_kb}^{(1 - \lambda_{k+1})a + \lambda_{k+1}b} \varphi(t, \cdot)dt, \cdot \right)
\]

(2.11)

\[
\leq \frac{1}{(\lambda_{k+1} - \lambda_k)(b - a)} \int_{(1 - \lambda_k)a + \lambda_kb}^{(1 - \lambda_{k+1})a + \lambda_{k+1}b} X \circ \varphi(t, \cdot)dt
\]

\[
\leq \frac{X \circ \varphi((1 - \lambda_k)a + \lambda_kb, \cdot) + X \circ \varphi((1 - \lambda_{k+1})a + \lambda_{k+1}b, \cdot)}{2}.
\]

After multiplying each term in (2.11) by \((\lambda_{k+1} - \lambda_k)\) and later summing the result over \(k\) from 0 to \(n\), we have

\[
\sum_{k=0}^{n} (\lambda_{k+1} - \lambda_k) X\left(\frac{1}{(\lambda_{k+1} - \lambda_k)(b - a)} \int_{(1 - \lambda_k)a + \lambda_kb}^{(1 - \lambda_{k+1})a + \lambda_{k+1}b} \varphi(t, \cdot)dt, \cdot \right)
\]

\[
\leq \frac{1}{b - a} \sum_{k=0}^{n} \frac{(1 - \lambda_{k+1})a + \lambda_{k+1}b}{(1 - \lambda_k)a + \lambda_kb} \int_{(1 - \lambda_k)a + \lambda_kb}^{(1 - \lambda_{k+1})a + \lambda_{k+1}b} X \circ \varphi(t, \cdot)dt
\]

\[
\leq \frac{\sum_{k=0}^{n} (\lambda_{k+1} - \lambda_k) X \circ \varphi((1 - \lambda_k)a + \lambda_kb, \cdot) + X \circ \varphi((1 - \lambda_{k+1})a + \lambda_{k+1}b, \cdot)}{2}.
\]

That is,

\[
h(\lambda_1, \ldots, \lambda_n) \leq \frac{1}{b - a} \sum_{k=0}^{n} \frac{(1 - \lambda_{k+1})a + \lambda_{k+1}b}{(1 - \lambda_k)a + \lambda_kb} \int_{(1 - \lambda_k)a + \lambda_kb}^{(1 - \lambda_{k+1})a + \lambda_{k+1}b} X \circ \varphi(t, \cdot)dt \leq H(\lambda_1, \ldots, \lambda_n).
\]

Using the convexity of \(X(t, \cdot)\) and \(X \circ \varphi(t, \cdot)\) for \(\sum_{k=0}^{n} (\lambda_{k+1} - \lambda_k) = 1\), we get

\[
X\left(\frac{1}{b - a} \int_{a}^{b} \varphi(t, \cdot)dt, \cdot \right)
\]

\[
= X\left(\sum_{k=0}^{n} (\lambda_{k+1} - \lambda_k) \frac{1}{(\lambda_{k+1} - \lambda_k)(b - a)} \int_{(1 - \lambda_k)a + \lambda_kb}^{(1 - \lambda_{k+1})a + \lambda_{k+1}b} \varphi(t, \cdot)dt, \cdot \right)
\]

\[
\leq \sum_{k=0}^{n} (\lambda_{k+1} - \lambda_k) X\left(\frac{1}{(\lambda_{k+1} - \lambda_k)(b - a)} \int_{(1 - \lambda_k)a + \lambda_kb}^{(1 - \lambda_{k+1})a + \lambda_{k+1}b} \varphi(t, \cdot)dt, \cdot \right)
\]
\begin{align*}
&\leq \sum_{k=0}^{n}(\lambda_{k+1} - \lambda_k)X \circ \varphi((1 - \lambda_k)a + \lambda_k b, \cdot)\frac{X \circ \varphi((1 - \lambda_{k+1})a + \lambda_{k+1} b, \cdot)}{2} \\
&\leq \sum_{k=0}^{n}(\lambda_{k+1} - \lambda_k)\frac{\lambda_k X \circ \varphi(a, \cdot) + \lambda_k X \circ \varphi(b, \cdot)}{2} \\
&\quad + \frac{(1 - \lambda_{k+1})X \circ \varphi(a, \cdot) + \lambda_{k+1} X \circ \varphi(b, \cdot)}{2} \\
&= \frac{1}{2} \sum_{k=0}^{n}((1 - \lambda_k) - (1 - \lambda_{k+1}))((1 - \lambda_k) + (1 - \lambda_{k+1}))X \circ \varphi(a, \cdot) \\
&\quad + \frac{1}{2} \sum_{k=0}^{n}(\lambda_{k+1} - \lambda_k)(\lambda_{k+1} + \lambda_k)X \circ \varphi(b, \cdot) \\
&= \frac{1}{2} \sum_{k=0}^{n}((1 - \lambda_k)^2 - (1 - \lambda_{k+1})^2)X \circ \varphi(a, \cdot) + \frac{1}{2} \sum_{k=0}^{n}(\lambda_{k+1}^2 - \lambda_k^2)X \circ \varphi(b, \cdot) \\
&= \frac{X \circ \varphi(a, \cdot) + X \circ \varphi(b, \cdot)}{2}.
\end{align*}

This completes the proof. \hfill \Box

Corollary 1. Under assumption of Theorem 5 with $\lambda_k = \lambda$ for $k = 1, 2, \ldots, n$, we have the inequality

$$X\left(\frac{1}{b-a} \int_a^b \varphi(t, \cdot)dt, \cdot\right) \leq h_1(\lambda) \leq \frac{1}{b-a} \int_a^b X \circ \varphi(t, \cdot)dt \\
\leq H_1(\lambda) \leq \frac{X \circ \varphi(a, \cdot) + X \circ \varphi(b, \cdot)}{2},$$

where

$$h_1(\lambda) = \lambda X\left(\frac{1}{\lambda(b-a)} \int_a^b \varphi(t, \cdot)dt, \cdot\right) \\
+ (1 - \lambda)X\left(\frac{1}{(1 - \lambda)(b-a)} \int_a^b \varphi(t, \cdot)dt, \cdot\right)$$

$$H_1(\lambda) = \frac{1}{2} (X(\lambda a + (1 - \lambda)b, \cdot) + \lambda X(a, \cdot) + (1 - \lambda)X(b, \cdot)).$$

Remark 1. If we choose $\varphi(t, \cdot) = t$ in Corollary 1, then inequality (2.12) reduces inequality (2.1).
References

M. Z. Sarikaya, Department of Mathematics, Faculty of Science and Arts, Düzce University, Konuralp Campus, Düzce-Turkey, e-mail: sarikayamz@gmail.com

H. Yaldız, Department of Mathematics, Faculty of Science and Arts, Düzce University, Konuralp Campus, Düzce-Turkey, e-mail: yaldizhatice@gmail.com

H. Budak, Department of Mathematics, Faculty of Science and Arts, Düzce University, Konuralp Campus, Düzce-Turkey, e-mail: hsyn.budak@gmail.com