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SOME INTEGRAL INEQUALITIES FOR CONVEX
STOCHASTIC PROCESSES

M. Z. SARIKAYA, H. YALDIZ axp H. BUDAK

ABSTRACT. In this paper, we extend the Hermite-Hadamard-type inequality and
Jensen-type inequality for convex stochastic proceses. The generalization of Hermite-
Hadamard-type inequality for convex stochastic proceses is also obtained and some
special cases of this result are given.

1. INTRODUCTION

The classical Hermite-Hadamard inequality which was first published in [9] gives
an estimate of the mean value of a convex function f: I — R,

(L.1) f(a;b>§ia/abf(x)dx§f(a);f(b)

History of this inequality can be found in [8]. Surveys on various generalizations
and developments can be found in [1] and [7]. Recently in [3], the author estab-
lished this inequality for twice differentiable functions. In case f is convex, there
exists an estimation better than (1.1) and that is why the following question was
posed.

In [4], Farissi gave the refinement of the inequality (1.1) as follows.

Theorem 1. Assume that f: I — R is a convex function on I. Then for all
A € [0,1], we have

() <1 < 1 [ rar < ooy < L0,
uhere Mo+ (2 -\ 14+ )b+ (1- A

1) = ap (LAY |y (LA Dey
and

L) = S (FOb+ (1= X)a) + Af(a) + (1 = N)F(0))
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In [5], Gao generalized the above inequalities for convex function using the
Jensen inequality.

In 1980, Nikodem [2] introduced convex stochastic processes and investigated
their regularity properties. In 1992, Skwronski [10] obtained some further results
on convex functions.

Let (92, A, P) be an arbitrary probability space. A function X:  — R is called
a random variable if it is A-measurable. A function X : I x Q — R, where I C R
is an interval, is called a stochastic process if for every ¢ € I, the function X (¢,-)
is a random variable.

Recall that the stochastic process X : I x Q — R is called

(i) continuous in probability in interval I if for all ¢ty € I, we have

P~ lim X(t,) = X(to. ),

where P — lim denotes the limit in probability,
(ii) mean-square continuous in the interval I if for all tg € I.

lim E[(X(2) - X(t0))?] =0,

where E[X (t)] denotes the expectation value of the random variable X (¢, -).
Obviously, mean-square continuity implies continuity in probability, but the
converse implication is not true.

Definition 1. Suppose a sequence {A™} of partitions, A™ = {am.0,-- -, Gm,n,, t
is given. We say that the sequence {A™} is a normal sequence of partitions if the
length of the greatest interval in the n-th partition tends to zero, i.e.,

lim  sup |@m,i — @m,i-1] =0.
m—001<i<n,,

Now we would like to recall the concept of the mean-square integral. For the
definition and basic properties see [11].

Let X: I x © — R be a stochastic process with E [X(¢)?] < oo for all t € I.
Let [a,b] C I, a =ty < t1 < tg < --- < &, = b be a partition of [a,b] and
O € [ti—1,t;] for all k = 1,...,n. A random variable Y: Q@ — R is called the
mean-square integral of the process X on [a,b] if we have

n— oo

lim E[(i){(@k)(tk —tp1) — y)Z} =0
k=1

for all normal sequence of partitions of the interval [a,b] and for all ©y € [ty_1, tx],
k=1,...,n. Then, we write

b
Y()= /X(s,~)ds (a.e.).

For the existence of the mean-square integral it is enough to assume the mean-
square continuity of the stochastic process X.



CONVEX STOCHASTIC PROCESSES 157

Throughout the paper, we frequently use the monotonicity of the mean-square
integral. If X (¢,-) <Y(¢,-) (a.c.) in an interval [a, b], then

b b
/X(t,-)dt < /Y(t,-)dt (a.c.).

Of course, this inequality is the immediate consequence of the definition of the
mean-square integral.

We say that a stochastic process X: I x Q — R is convex if for all A € [0, 1]
and u,v € I, the inequality

(1.2) XAu+ 1 =XNv,) <AX(u,)+(1-NX(v,-) (ae.)

is satisfied. If the above inequality is assumed only for A = %, then the process X
is Jensen-convex or %—convex. A stochastic process X is concave if (—X) is convex.
Some interesting properties of convex and Jensen-convex processes are presented

in [2, 11].
Now, we present some results proved by Kotrys [6] about Hermite-Hadamard
inequality for convex stochastic processes.

Lemma 1. If X: I x Q — R is a stochastic process of the form X(t,-) =
A(-)t + B(:), where A,B: Q — R are random variables, such that E [A?] < oo,
E [B?] < o0 and [a,b] C I, then

b? —a?

b
/X(t,-)dt: AC) L BO)b—a)  (ae).

Proposition 1. Let X: I xQ — R be a convex stochastic process and ty € int I.
Then there exists a random variable A:  — R such that X is supported at ty by
the process A(-)(t —to) + X (to,-). That is,

X(t,) 2 AQ)E—to) + X(to,)  (ae.)
foralltel.

Theorem 2. Let X: I x Q — R be Jensen-convexr stochastic process, mean-
square continuous in the interval I. Then for any u,v € I, we have

(1.3) X(“?’,.)g ! ]X(t,~)dt§)wm (a.e.).

V—U 2

The aim of this paper is to extend the classical Hermite-Hadamard-type and
Jensen inequalities to convex stochastic processes.

2. MAIN RESULTS

Theorem 3 (Hermite-Hadamard-type inequality). Let X : IxQ—R be Jensen-
convex stochastic process, mean-square continuous in the interval I. Then for any
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u,v € I and for all A € [0,1], we have

U+ 1 [
X(0) <h < [

(2.1)
< gy < X+ X
where
h(\) = )\X(w, )+ - )\)X((l + A ; (L= Mu )
and

H\) = %(X()\v (1= Nu, )+ AX () + (1= VX (0, ).

Proof. We give two different proofs for the theorem.

Firstly, let X be a Jensen-convex stochastic process, mean-square continuous
in the interval I. Applying (1.3) on the subinterval [u, Av + (1—X)u] with A #0,
we get

Av+(1=N)u

X(M}Jr (gi)\)u") = )\(vl—u) / Bl

(2.2) u
X(u,) + XA+ (1= Nu,-)
5 .

Applying (1.3) on [Av + (1 — N)u,v] with X # 1 again, we get

3(17 w—u) / X(t

<

X((l—f—A)U—i— (1- )\)u7.)

(2.3) 2 Avt (1= A)u
XAv+(1—=MNu,)+ X(v,-)
< 5 .

Multiplying (2.2) by A, (2.3) by (1 — ), and adding the resulting inequalities, we
get

(2.4) h(\) <

/ X(t,)dt < HON),

v—u

where h(\) and H(\) are defined as in Theorem 3.
In [2], Nikodem proved that every Jensen-convex stochastic process and con-
tinuous in probability is convex. Using this fact, we obtain

X(u;vv.):X()\)\v+ (227)\)u+(1 7/\)(1+)\)v;r (1—)\)u’.)

(25) <AX <W7.)+(1_/\)X((1+A)v;(I—A)u’)

< (X4 (2=Nu, )+ AX (u, )+ (1-N) X (v,-)) <

MO =
>
s
T
S
=
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Then by (2.4) and (2.5), we get (2.1).

Secondly, since the process X is mean-square continuous, it is continuous in
probability. Nikodem [2] proved that every Jensen-convex probability stochastic
continuous in process is convex. Since X is convex, then by Proposition 1, it has
a supporting process at any point ¢y € int I. Let us take a support at tq = %3,

2
then we have

X(t,-)zA(J(t—u;v)+X(u;—v,~) (ae.).

Using Lemma 1 on the subinterval [u, Av + (1 — A)u] with A # 0, we can write

Av+(1=A)u
X(t,-)dt
(2.6) /\uvﬂld)u u+ Av+(1-Nu u+ w+(1-Nu
> [ [0t e (e Jar
:)\X(qu)\v +2(17/\)u,~)(v—u) (ac),
and again on [Av + (1 — A)u,v] with A # 1, we get
U X(t,-)dt
Av+(1-A)u
(2.7)Z f A(_)t_v+)\v+(1—)\)u L x v+)\v+(1—>\)u" gt
] oo g
= (1-x(* A +2(1 —Nu Jo-u) (ae).
From (2.6) and (2.7), we obtain
s (R (0
e

It finishes the proof of first two inequalities in (2.1).
If we take t = Au + (1 — A)v in inequality (1.2), then A = ijj and by the
convexity of X, we have

X(t) < 0K+ P )
7X(U,~)*X(U,~) X(’U, )qu(u, )U

vV—1U u—v
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As before, using Lemma 1 on the subinterval [u, Av + (1 — A)u] with A # 0, we can
write

Aok Avo+(1—-A)u
X+ (1= Nu, Yu— X(u,-)v
(2.8) 4 . ) ]dt
= XMW+ (1 -Nu,) — X(u,-)] (w)

— XM+ (1 =Ny, )u+ X(u,-)(Av+ (1 = Nu)

and again on [Av + (1 — A)u, v] with A #£ 1, we get

X(t,)dt < [X(Ua') (—1X(;\)U(:(1u)— A,
Av+(1-Nu Av+(1-N)u
XAv+ (1= Nu,)v—X(v, )Mo+ (1 = Au)
(2.9) * - N(v—a) Jae

I+XNv+(1-=MNu
)

+ XA+ 1 =Ny, )v—X(v,-)(Av + (1 = Nu).

= [X(v,7) = XOw+ (1= N, )]

From (2.8) and (2.9), we obtain

(XOw+ (1= N, )+ AX (1, ) + (1= N X (v, )

DN =

Vv—Uu

1 v
/X(t, Jdt <

which completes the proof. (I

Now, we start the following important inequality for convex stochastic processes

Theorem 4 (Jensen-type inequality). If X: I x Q — R is a convez stochastic
process, then we have

b b
1 1
X(b_a/go(t, )dt, ) < b_a/Xogo(t, )dt

a

for an arbitrary non-negative integrable stochastic process ¢: I x Q — I C R.
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Proof. From Proposition 1, we have

bia/bXOW(tV)dt_X(b_la/<P(t,-)dt, )
T b a_/b[XosO X(bia/b@(t,‘)dtw)]dt

a

b

[l fsal)

{b a
b
— 0] / (t) = 5y [ el
= b—a p(L, b—a oL,
= 0’
which completes the proof. ]

Theorem 5 (Generalized Hermite-Hadamard-type inequality). Let X: I X
Q — R be a convex stochastic process. If the non-negative integrable stochastic
process w: I x Q — I C R such that X o ¢(t,-) is also convex stochastic process,
then we have
b b

X(bia/go(t,.)dt,-) <A, ) < bia/Xocp(t,.)dt

a a

Xop(a,-) + Xopb,)
2
forme N, A\g =0, \py1 =1 and arbitrary 0 < Ay < --- < A\, <1, where

(1—)\k+1)a+)\k+1b

Bt = Y €Y (e [ el

<HAL, .., ) <

k=0 (1=AR)atAeb
- Xo 1—Ag)a+ A\ib, -
H(A1, .o ) = Z()\k-i-l - Ak)( ull 21@) kb, )
k=0
Xop((1 = Apt1)a + Agqab, ))
+ B .

Proof. From Theorem 4 and convexity of X o o(t,-), we have

(2.10) X<bia/b(p(t")dt"> = bia/onso(t

< Xowpla, )+ Xop()
— 2 .
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Appliying (2.10) to [(1 — Ax)a+ Aib, (1 — Agr1)a + Agp1d], & = 0,1,...,n, we
have

(17)\;@+1)a+)\k+1b

! i,

X
((/\k+1 —AR)(b—a)
(I—=Xg)a+Aid

(1=Xg41)at+Ag41d
X o p(t,)dt

(2.11) 1

<
(A1 — M) (b —a)
(17/\k)a+)\kb

< Xoo(( = Aa+ b, ) + X 0 p((1 = Apy1)a+ Ay, -)
< 5 .

After multiplying each term in (2.11) by (Ax4+1 — Ax) and later summing the result
over k from 0 to n, we have

(17)\k+1)a+/\k+1b

O e Y R

k=0 (1=Ap)a+Apb
(1 =Aeg)atAegib
< 1 Z / X o p(t,)dt
k=0 (1 \p)atAub

n Xop((1—=X)a+Aeb, )+ X op((1—X a+ Agp1b, -
< Zo\kﬂ — k) i k) ) 5 e(( k1) k+1 )
k=0
That is,
1 n (I1=Ags1)a+Ags1b
WA An) < o — Xo(t,)dt < H(Ap,...,\n).

k=0 (1 i) atAub

Using the convexity of X (¢,-) and X o (¢, -) for > (Akt1 — Ag) = 1, we grt
k=0

(17)\;6+1)a+)\k+1b
1

KTy [ e

k=0 (1=AR)a+Axb
(1—Ak+1)a+)\k+1b

<> (Akﬂ — WX (5 ik)(b — / pl(t,-)dt, >

k=0 (1=AR)atAwb
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X o 90((]- — )\k)CL + )\kb, ) + Xo QD((l — )\k_;,_l)a + )\k+1b, )
2

< Z()\k-H — k)

)

bl
il

(1=X)X op(a, )+ A X op(b,-)

NE

(Ak+1 — Ak) >
k=0
4 (= M) X 0 (e, ) + Ausa X 0 p(b, )
2
= 5 D01 = M) = (1= X)) (= M)+ (1= )X o)
k=0
#5300 = Ak )X 00,

3O A~ (L= M) X o () + 5 D (W~ ADX 0 0(0, )
k=0 k=0
Xogp(a,-)+Xo¢(b,~).

2

This completes the proof. O

Corollary 1. Under assumption of Theorem 5 with A\, = X fork=1,2,...,n,
we have the inequality

(2.12) X(bia/b</7(t,')dt, ) <h(\) < bia/bxw(t’,)dt

a

where

(I=X)a+Ab
1

m =X (5 [ et

a

b

(1=X)a+Ab

Hi(\) = %(X()\a (1= A)b,-) + AX(a,) + (1 = \)X(b, ).

Remark 1. If we choose p(t,-) = ¢ in Corollary 1, then inequality (2.12)
reduces inequality (2.1).
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