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SOME PROPERTIES OF DIFFERENTIAL ROOT

AND THEIR APPLICATIONS

G. A. GRIGORIAN

Abstract. The definition of differential root as a solution of the Riccati equation

with a special initial value is given. A variety of properties of this solution is
established, some of which generalize properties of the arithmetic square root. By

using these properties, we prove some boundedness and stability criteria for second

order linear ordinary differential equations.

1. Some properties of differential root

Let x(t) and x1(t) be real valued continuous functions on [t0; +∞). Consider
Riccati equations

y′(t) + y2(t) = x(t), t ≥ t0,(1.1)

y′(t) + y2(t) = x1(t), t ≥ t0.(1.2)

Theorem 1.1. Let y0(t) be a real valued solution of Eq. (1.1) on [t0; +∞),
and let x1(t) ≥ x(t), t ≥ t0. Then for every y(0) ≥ y0(t0), Eq. (1.2) has the
solution y1(t) on [t1; +∞), satisfying the initial condition y1(t0) = y(0); moreover
y1(t) ≥ y0(t), t ≥ t0.

The proof of a more general theorem is presented in [1].

Remark 1.1. The following assertion ([2, p. 129]) is a consequence of the The-
orem 1.1.

Theorem 1.2. If K0 > K1 > 0 and y0(t) > 0, y1(t) > 0 are solutions of Eq.
(1.1) and (1.2) on [t0; +∞), where K1 ≤ x1(t) ≤ x(t) < K0, t ≥ t0, y0(t0) ≤

√
K0,

y1(t0) ≥
√
K1, then y1(t) ≥

√
K1, y0(t) ≤

√
K0, t ≥ t0. In particular, if α ∈ (0; 1)

and K1 > αK0, then y1(t) >
√
αy0(t).

Since y0(t) ≡ 0 is a solution of the equation

y′(t) + y2(t) = 0, t ≥ t0,
then from Theorem 1.1, we immediately obtain the following corollary.
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Corollary 1.1. Let x(t) ≥ 0, t ≥ t0. Then for every y(0) ≥ 0, equation (1.1)
has the solution y0(t) on [t0; +∞), satisfying the initial condition y0(t0) = y(0),
and y0(t) ≥ 0, t ≥ t0.

Remark 1.2. Theorem 1.1 does not follow either from Theorem 4.1 (Corol-
lary 4.2) or from Wintners theorem, proved in [3, pp. 40–45] for more general
equations. In particular, in Theorem 4.1, the solution of an equation is compared
with the maximum or minimum solution of another one while in Theorem 1.1,
maximum or minimum conditions are not imposed on any of the compared so-
lutions. Conditions of Wintner theorem for equation (1.1) (may be) cannot be
fulfilled.

Definition 1.3. A solution y(t) of equation (1.1) with nonnegative right hand

side, satisfying the initial value condition y(t0) =
√
x(t0), is said to be a differential

root of x(t) and denoted by yx(t).

Remark 1.3. The definition of differential root is new.

In the sequel the denotation yA(t) mean, that A(t) ≥ 0, t ≥ t0. From Corol-
lary 1.1, it follows that a differential root is defined on [t0; +∞) and is nonnegative.

Theorem 1.4. The differential root has the following properties:

I. If x1(t) ≤ x2(t), t ≥ t0, then yx1
(t) ≤ yx2

(t), t ≥ t0.

II. yx1+x2
(t) ≤ yx1

(t) + yx2
(t), t ≥ t0.

III. yx2−x1(t) ≥ yx2(t)− yx1(t), t ≥ t0.

IV. If α ∈ (0; 1), then yαx1+(1−α)x2
(t) ≥ αyx1

(t) + (1− α)yx2
(t), t ≥ t0.

V. If α ∈ (0; 1), then yαx(t) ≥ αyx(t), t ≥ t0.

VI. If α ∈ Rr [0; 1], then yαx1+(1−α)x2
(t) ≤ αyx1(t) + (1− α)yx2(t), t ≥ t0.

VII. If α > 1, then yαx(t) ≤ αyx(t), t ≥ t0.

VIII. If x(t) is nondecreasing (nonincreasing function) on [t0; +∞) then yx(t)

is the same and yx(t) ≤
√
x(t) (≥

√
x(t)), t ≥ t0.

IX. If x(t) is nondecreasing (nonincreasing function) on [t0; +∞) and
if 0 < α < 1(α > 1), then yαx(t) ≤

√
αyx(t), t ≥ t0.

X. If x(t) is nondecreasing (nonincreasing function) on [t0; +∞) and
if α > 1(0 < α < 1), then yαx(t) ≥

√
αyx(t), t ≥ t0.

Proof. The property I. immediately follows from the Theorem 1.1, the property
III. is a consequence of II., V. is a consequence of IV., VII. is a consequence of
VI., and IX. is a consequence of X. Let us prove II. From the evident equality

[yx1
(t) + yx2

(t)]′ + [yx1
(t) + yx2

(t)]2 = x1(t) + x2(t) + 2yx1
(t)yx2

(t), t ≥ t0,
it follows that the function ỹ(t) ≡ yx1(t) + yx2(t) is a solution of the equation

y′(t) + y2(t) = x̃(t), t ≥ t0,



SOME PROPERTIES OF DIFFERENTIAL ROOT 207

where x̃(t) ≡ x1(t) + x2(t) + 2yx1
(t)yx2

(t), t ≥ t0. Since

ỹ(t0) = yx1
(t0) + yx2

(t0) =
√
x1(t0) +

√
x2(t0) =

√
x̃(t0),

then

(1.3) ỹ(t) = yx̃(t), t ≥ t0.

By virtue of Corollary 1.1, yxj
(t) ≥ 0, t ≥ t0, j = 1, 2. Then x1(t) + x2(t) ≤ x̃(t),

t ≥ t0. By virtue of I. from here and (1.3), it follows II. Let us prove IV. It is
easy to check that for every number α, the following equality holds:

(1.4)
[αyx1

(t) + (1− α)yx2
(t)]′ + [αyx1

(t) + (1− α)yx2
(t)]2

= αx1(t) + (1− α)x2(t)− α(1− α)[yx1
(t)− yx1

(t)]2, t ≥ t0.

So the function y[α](t) ≡ αyx1(t) + (1− α)yx2(t) is a solution of the equation

y′(t) + y2(t) = x[α](t), t ≥ t0,

where x[α](t) ≡ αx1(t) + (1− α)x2(t)− α(1− α)[yx1
(t)− yx1

(t)]2. Let α ∈ (0; 1).
Then

(1.5) x[α](t) ≤ αx1(t) + (1− α)x2(t), t ≥ t0.

Since

y[α](t0) = αyx1(t0) + (1− α)yx2(t0) = α
√
x1(t0) + (1− α)

√
x2(t0)

=

√
αx1(t0) + (1− α)x2(t0)− α(1− α)[

√
x1(t0)−

√
x1(t0)]2

≤
√
αx1(t0) + (1− α)x2(t0),

then by virtue of the Theorem 1.1 from (1.5), it follows IV. To prove VI., we note
that for α ∈ Rr [0; 1], the following inequalities hold:

x[α](t) ≥ αx1(t) + (1− α)x2(t), t ≥ t0, y[α](t0) ≥
√
αx1(t0) + (1− α)x2(t0)

(it is assumed that αx1(t) + (1−α)x2(t), t ≥ t0). By virtue of Theorem 1.1 from
here, it follows VI. Let us prove VIII. First we show that

(1.6) yx(t) ≤
√
x(t)(≥

√
x(t)), t ≥ t0.

Suppose the contrary. Then there exists t1 > t0 such that

(1.7) yx(t1) >
√
x(t1) (<

√
x(t1)).

Let t1 = sup{t ∈ [t0; t1] : yx(t)−
√
x(t)}. By virtue of (1.7) the following inequality

holds:

(1.8) yx(t) >
√
x(t) (<

√
x(t)), t ∈ (t1; t1].

From (1.7), it follows

(1.9) y′x(t∗) > 0 (< 0)
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for some t∗ ∈ (t1; t1]. Indeed, suppose that y′x(t) ≤ 0 (≥ 0). Then since x(t) is a
nondecreasing (nonincreasing) function, then

yx(t1)−
√
x(t1) ≤ yx(t1)−

√
x(t1) =

t1∫
t1

y′x(s)ds ≤ 0

(yx(t1)−
√
x(t1) ≥ yx(t1)−

√
x(t1) =

t1∫
t1

y′x(s)ds ≥ 0),

which contradicts (1.7). This contradiction proves (1.9). From (1.9), it follows

yx(t∗) <
√
x(t∗) (>

√
x(t∗)).

But, on the other hand, the opposite inequality follows from (1.8)

yx(t∗) >
√
x(t∗) (<

√
x(t∗)).

The obtained contradiction proves (1.6). From (1.6), it follows y′x(t) ≥ 0 (≤ 0),
t ≥ t0. It means that yx(t) is a nondecreasing (nonincreasing) function. The
property VIII. is proved. It remains to prove IX. We observe that

√
αy′x(t) + αy2x(t) = αx(t) + (

√
α− α)y′x(t), t ≥ t0, α > 0.

Therefore,
√
αyx(t) is a solution of the equation

y′(t) + y2(t) = x̃[α](t), t ≥ t0,

where

(1.10) x̃[α](t) ≡ αx(t) + (
√
α− αy′x(t)) ≥ αx(t), t ≥ t0,

for α ∈ (0; 1) (for α > 1), since by virtue of VIII. y′x(t) ≥ 0 (≤ 0), t ≥ t0. It
is not difficult to check that

√
αyx(t0) =

√
x̃[α](t0). By virtue of I. from here and

(1.10), it follows IX. The proof of the theorem is completed. �

Let us compare Theorem 1.4 with the following result proved in [2].

Theorem 1.5. If α ∈ (0; 1), 0 < αx(t) < x1(t) < x(t), t ≥ t0, y0(t) and y1(t)
are solutions of (1.1) and (1.2), respectively, then from the inequalities y1(t0) >
αy0(t0) > 0, it follows y1(t) > αy0(t), t ≥ t0 (see [2, p. 130]).

If y1(t0) ≥
√
x1(t0) and 0 < y0(t0) ≤

√
x(t0), then Theorem 1.5 follows from

V. For this case the condition x1(t) < x(t) is no longer required. Indeed, by virtue
of V, for α ∈ (0; 1), the following inequality holds yαx(t) ≥ αyx(t), t ≥ t0. Then
since y1(t0) ≥ yx1(t0) ≥ αyx(t0) and y1(t0) > y0(t0), then by virtue of I. from
relation x1(t) > αx(t), t ≥ t0, it follows y1(t) > y0(t), t ≥ t0.
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2. Preliminary lemmas

Let p(t) be a continuous differentiable function on [t0; +∞) and q(t) be a contin-
uous function on [t0; +∞). Consider the following equation

(2.1) φ′′(t) + p(t)φ′(t) + q(t)φ(t) = 0, t ≥ t0.

Here we establish some properties of specially constructed solutions φ±(t) of
this equation connected with differential root of the “discriminant” D(t) of equa-
tion (2.1) by certain relations and establish some additional properties of differ-
ential root. On the basis of the obtained we establish correlation between bound-
edness and stability of solutions of equation (2.1) and properties of φ±(t). The
preliminary result obtained in this paragraph together with the properties of dif-
ferential root, which were obtained in the previous paragraph, we use in the next
paragraph to prove boundedness and stability criteria for equation (2.1).

In equation (2.1), we make the following change

(2.2) φ(t) = E(t)ψ(t), t ≥ t0,

where E(t) ≡ exp
{
− 1

2

∫ t
t0
p(τ)dτ

}
, t ≥ t0. We get

(2.3) ψ′′(t)−D(t)ψ(t) = 0, t ≥ t0,

where D(t) ≡ p′(t)
2 + p2(t)

4 − q(t), t ≥ t0. In the sequel we assume that D(t) ≥ 0,
t ≥ t0, and without restriction of generalization (not counting the trivial case
D(t) ≡ 0) we take that D(t0) > 0. From (2.2), it follows

(2.4) φ′(t) = −p(t)
2
φ(t) + E(t)ψ′(t), t ≥ t0.

Consider the equation

(2.5) y′(t) + y2(t) = D(t), t ≥ t0.

The following correlation

(2.6) ψ(t) = λ0 exp
{ t∫
t0

y(τ)dτ
}
, t ≥ t0, λ0 = const. 6= 0

connects solutions y(t) to equation (2.3) with solutions ψ(t) to the equation (2.5).
From here and (2.4), it follows

(2.7) φ′(t) =

[
y(t)− p(t)

2

]
φ(t), t ≥ t0.

Consider the integral

ν
D

(t) ≡
+∞∫
t

exp
{
− 2

τ∫
t

y
D

(s)ds
}
dτ, t ≥ t0.
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Lemma 2.1. For every t ≥ t0, the integral ν
D

(t) is convergent and

(2.8) ν
D

(t) ≤ 1

y
D

(t)
, t ≥ t0.

Proof. For every t1 ≥ t0 and for every s ≥ t1, the following inequality holds

(2.9) y
D

(s) ≥ y
D

(t1)

y
D

(t1)(s− t1) + 1

def
= y(t1)(s).

Indeed, the function y(t1)(s) (t1 is fixed) is a solution of equation

y′(s) + y2(s) = 0, s ≥ t1,
and y(t1)(t1) = y

D
(t1). By virtue of the Theorem 1.1 from here, it follows (2.9).

From (2.9), it follows

y
D

(t) ≤
+∞∫
t

exp
{
−

τ∫
t

2y
D

(t)ds

y
D

(t)(s− t) + 1

}
dτ

=

+∞∫
t

exp
{
− 2 ln[y

D
(t)(τ − t) + 1]

}
dτ =

1

y
D

(t)
,

t ≥ t0. The lemma is proved. �

From (2.9), it follows

(2.10)

t∫
t0

y
D

(τ)dτ ≥ ln[1 +
√
D(t0)(t− t0)], t ≥ t0.

It is not difficult to check, that y∗(t) ≡ y
D

(t) − 1
ν
D
(t) , t ≥ t0, is a solution of

equation (2.5) (see. [4]). From (2.8) it follows:

(2.11) y∗(t) ≤ 0, t ≥ t0.
Consider the functions

ψ+(t) ≡ exp
{ t∫
t0

y
D

(τ)dτ
}
, ψ−(t) ≡ exp

{ t∫
t0

y∗(τ)dτ
}
, φ±(t) ≡ E(t)ψ±(t),

where t ≥ t0. By virtue of (2.6), ψ±(t) are solutions of equation (2.3). Therefore,
by virtue of (2.2), φ±(t) are solutions of equation (2.1).

Lemma 2.2. All solutions of equation (2.1) are bounded (vanish on the +∞)
if and only if the solution φ+(t) is bounded (vanishes on the +∞).

Proof. From (2.10) and (2.11), it follows that limt→+∞
ψ−(t)
ψ+(t) = 0. Therefore,

ψ±(t) are linearly independent. By virtue of (2.2), φ±(t) are solutions of equa-
tion (2.1). Since ψ±(t) are linearly independent, then φ±(t) are the same, and
since y∗(t) < y

D
(t), t ≥ t0, then

(2.12) |φ−(t)| < |φ+(t)|, t ≥ t0.
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Let all solutions of equation (2.1) be bounded (vanish on the +∞). Then φ+(t)
is bounded (vanishes on the +∞). Let φ+(t) bounded (vanish on the +∞). Then
by virtue of linear independence of φ±(t) from (2.12), it follows that all solutions
of equation (2.1) are bounded (vanish on the +∞). The lemma is proved. �

Lemma 2.3. Equation (2.1) is stable in the sense of Liapunov (asymptotically)
if and only if the functions φ+(t), φ′+(t) are bounded (vanish on the +∞).

Proof. By virtue of (2.7), the following equalities hold:

(2.13) φ′+(t) =
[
y
D

(t)− p(t)

2

]
φ+(t), t ≥ t0,

(2.14) φ′−(t) =
[
y∗(t)−

p(t)

2

]
φ−(t), t ≥ t0.

From (2.13), it follows

(2.15) |φ′+(t)| ≤
[
y
D

(t) +
|p(t)|

2

]
|φ+(t)|, t ≥ t0,

From (2.14), we have

ψ′−(t) =
[
y
D

(t)− p(t)

2

]
φ−(t)− E(t)

ν
D

(t0)
exp

{ t∫
t0

[
y
D

(τ)− 1

ν
D

(τ)

]
dτ − ln

ν
D

(t)

ν
D

(t0)

}

= φ′+(t) exp
{
−

t∫
t0

dτ

ν
D

(τ)

}
− E(t)

ν
D

(t0)
exp

{ t∫
t0

[
y
D

(τ)− 1

ν
D

(τ)
−
ν′
D

(τ)

ν
D

(τ)

]
dτ
}
,

where t ≥ t0. Hence from the easily verifiable equality
ν′
D
(τ)

ν
D
(τ) = 2y

D
(t) − 1

ν
D
(t) ,

t ≥ t0, it follows

φ′−(t) = exp
{
−

t∫
t0

dτ

ν
D

(τ)

}
φ′+(t)− E(t)

ν
D

(t0)
exp

{
−

t∫
t0

y
D

(τ)dτ
}
, t ≥ t0.

Therefore,

|φ′−(t)| ≤ |φ′+(t)|+ 1

ν
D

(t0)
|φ+(t)|, t ≥ t0.

From here and from Lemma 2.2, it follows that equation (2.1) is Liapunov sta-
ble (asymptotically stable) if and only if the functions φ+(t), φ′+(t) are bounded
(vanish on the +∞). The lemma is proved. �

3. Criteria for the boundedness and stability

For investigation of stability properties of linear systems of ordinary differential
equations (in particular, of equation (2.1)) there are mainly used different estima-
tion methods of solutions of systems (in particular, of solutions of equation (2.1))
as well as some asymptotic methods. The main estimation methods include the Li-
apunov estimate method, the freezing method, and the Bogdanov, Wazevsky and
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Lozinsky estimate methods (see [5, pp. 40–98, 132–145]. The asymptotic methods
include mainly methods based on the Liuville transformation (see [6, pp. 131, 152–
153] of the Russian translation; [7, pp. 32–35, 55–61] WKB estimates. All these
methods and other methods (e.g., see [3], pp. 392, 393; [8]) permit one to single
out wide classes of stable and unstable systems (in particular, equation (2.1)) in
terms of their coefficients. However, none of them can completely describe the
class of stable and unstable systems (in particular, equation (2.1)) in terms of
their coefficients.

Let pj(t) (j = 1, 2) be continuously differentiable, and let qj(t) (j = 1, 2) be
continuous functions on [t0; +∞). Let us consider the equations

φ′′(t) + pj(t)φ
′(t) + qj(t)φ(t) = 0, t ≥ t0,(3.1j)

j = 1, 2. Let Ej(t) ≡ exp
{
− 1

2

∫ t
t0
pj(τ)dτ

}
, Dj(t) ≡

p′j(t)

2 +
p2j (t)

4 − qj(t), t ≥ t0,

j = 1, 2. In the sequel we assume that Dj(t) ≥ 0, t ≥ t0, j = 1, 2.

Theorem 3.1. Let all solutions of equation (3.11) be bounded (vanish on the

+∞), and let D(t) ≤ D1(t), t ≥ t0, Re
∫ t
t0

[p1(τ) − p(τ)]dτ be upper bounded.

Then all solutions of equation (2.1) are bounded (vanish on the +∞). Moreover, if

in addition, the functions D(t) and p(t) exp
{

1
2

∫ t
t0

[p1(τ)−p(τ)]dτ
}

are bounded,

then equation (2.1) is Liapunov stable (asymptotically stable).

Proof. It is evident, that

(3.2) φ+(t) = exp
{ t∫
t0

[y
D

(τ)− y
D1

(τ) +
1

2
(p1(τ)− p(τ))]dτ

}
φ1(t), t ≥ t0.

Since D(t) ≤ D1(t), t ≥ t0, by virtue of I., y
D

(t) ≤ y
D1

(t), t ≥ t0. From here

and (3.2), it follows that

(3.3) |φ+(t)| ≤ exp
{1

2
Re

t∫
t0

[p1(τ)− p(τ)]dτ
}
|φ1(t)|, t ≥ t0.

Let all solutions of equation (3.11) be bounded (vanish on the +∞). Taking

into account that 1
2 Re

∫ t
t0

[p1(τ) − p(τ)]dτ is bounded from above, from here and

(3.3), we get that φ+(t) is bounded (vanishes on +∞). Therefore, by virtue
of Lemma 2.2, all solutions of equation (2.1) are bounded (vanish on the +∞).
Further, from (2.15) and (3.2), it follows

(3.4) |φ′+(t)| ≤
[
y
D

(t) +
|p(t)|

2

]
exp

{1

2
Re

t∫
t0

[p1(τ)− p(τ)]dτ
}
|φ1(t)|, t ≥ t0.

Let D(t) and p(t) exp
{

1
2

t∫
t0

[p1(τ)−p(τ)]dτ
}

are bounded. By virtue of I. from the

boundedness of D(t), it follows y
D

(t) ≤ sup
t≥t0

√
D(t) < +∞. From here, from (3.4)
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and from boundedness of p(t) exp
{

1
2

∫ t
t0

[p1(τ)− p(τ)]dτ
}

, it follows that φ′+(t) is

bounded (vanishes on the +∞). According to Lemma 2.3, it follows from here
that equation (2.1) is Liapunov stable (asymptotically stable). The proof of the
theorem is complete. �

Corollary 3.1. Let the following conditions hold:
a) q(t) ≥ 0 (D(t) ≥ 0), t ≥ t0;

b)
∫ +∞
t0

exp
{
−
∫ τ
t0
p(s)ds

}
dτ < +∞.

Then all solutions of equation (2.1) are bounded. Moreover, if in addition, p(t)
and D(t) are bounded, then equation (2.1) is Liapunov stable.

Proof. We put p1(t) = p(t), t ≥ t0, q1(t) ≡ 0. Then

φ1(t) ≡ 1 and φ2(t) ≡
t∫

t0

exp
{
−

τ∫
t0

p(s)ds
}

dτ, t ≥ t0,

are linearly independent solutions of equation (3.11). From b), it follows that φ2(t)
is bounded. Therefore, all solutions of equation (3.11) are bounded. From the
condition a), it follows that D(t) ≤ D1(t), t ≥ t0. By virtue of the Theorem 3.1
from here and from boundedness of all solutions of equation (3.11), it follows
that boundedness all the solutions of equation (2.1). If besides of a) and b), the
functions p(t) and D(t) are bounded, then (because of p1(t) = p(t), t ≥ t0) by
virtue of Theorem 3.1, equation (2.1) is Liapunov stable. The proof of the corollary
is complete. �

Theorem 3.2. Let all solutions of equation (3.1j) (j = 1, 2) be bounded (all
solutions of equation (3.11) be bounded, and all solutions of equation (3.12) vanish

on the +∞), and let D(t) ≤ D1(t) + D2(t), t ≥ t0, the function Re
∫ t
t0

[p1(τ) +

p2(τ)−p(τ)]dτ be upper bounded. Then all solutions of equation (2.1) are bounded

(vanish on the +∞). Moreover, if in addition, D(t) and p(t) exp
{

1
2

∫ t
t0

[p1(τ) +

p2(τ)− p(τ)]dτ
}

are bounded, then equation (2.1) is Liapunov stable (asymptoti-

cally stable).

Proof. It is evident that

(3.5)
φ+(t) =exp

{ t∫
t0

[1

2

(
p1(τ)+p2(τ)−p(τ)

)
+y

D
(τ)− y

D1
(τ)− y

D2
(τ)
]
dτ
}

× φ1(t)φ2)(t), t ≥ t0.

By virtue of II, from the conditions D(t) ≤ D1(t) + D2(t), t ≥ t0, it follows
y
D

(t)− y
D1

(t)− y
D2

(t) ≤ 0, t ≥ t0. From here and (3.5), we get

(3.6) |φ+(t)| ≤ exp
{1

2
Re

t∫
t0

[p1(τ) + p2(τ)− p(τ)] dτ
}
|φ1(t)||φ2(t)|, t ≥ t0.
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From here and from upper boundedness of function Re
∫ t
t0

[p1(τ) +p2(τ)−p(τ)]dτ ,

it follows that

(3.7) |φ+(t)| ≤M |φ1(t)||φ2(t)|, t ≥ t0, M = const < +∞.

Let all solutions of equations (3.1j) (j = 1, 2) be bounded (all solutions of equa-
tion (3.11) be bounded, and all solutions of equation (3.12) vanish on the t→ +∞).
Then from (3.7)b it follows that φ+(t) is bounded (vanishes on the +∞). By virtue
of Lemma 2.2 from here, it follows that all solutions of equation (2.1) are bounded
(vanish on the +∞). From (2.15) and (3.6), it follows

|φ′+(t)| ≤
[
y
D

(t) +
|p(t)|

2

]
exp

{1

2
Re

t∫
t0

[
p1(τ) + p2(τ)− p(τ)

]
dτ
}
|φ1(t)||φ2(t)|,

t ≥ t0. Let D(t) and p(t) exp
{

1
2

∫ t
t0

[p1(τ) + p2(τ) − p(τ)]dτ
}

be bounded. Then

taking into account I. from the last inequality, we have

|φ′+(t)| ≤M1|φ1(t)||φ2(t)|, t ≥ t0, M1 = const < +∞.

Therefore, φ′+(t) is bounded (vanishes on the +∞). By virtue of the Lemma 2.3
from this and from boundedness of φ+(t) (from the property, that φ+(t)→ 0 when
t tends to +∞), it follows that equation (2.1) is Liapunov stable (asymptotically
stable). The proof of the theorem is complete. �

Theorem 3.3. Let equation (3.11) have unbounded solution, and let for some
α ∈ (0; 1), D(t) ≥ αD1(t) + (1 − α)D2(t), t ≥ t0; the function f[α](t) ≡
Re
∫ t
t0

[αp1(τ) + (1 − α)p2(τ) − p(τ)]dτ be bounded from below, but Re
∫ t
t0
p2(τ)dτ

be bounded from above. Then equation (2.1) has unbounded solution.

Proof. It is evident, that
(3.8)

φ+(t) = exp
{ t∫
t0

[αp1(τ) + (1− α)p2(τ)

2
+y

D
(τ)−αy

D1
(τ)− (1−α)y

D2
(τ)
]
dτ
}

× (φ1(t))α(φ2(t))1−α, t ≥ t0.

Since Re
∫ t
t0
p2(τ)dτ is upper bounded, then for α ∈ (0; 1), the following inequality

holds

(3.9) |φ2(t)|1−α ≥ ε > 0, t ≥ t0.

By virtue of I. and IV. from the inequality D(t) ≥ αD1(t) + (1−α)D2(t), t ≥ t0,
it follows, that y

D
(t)−αy

D1
(t)− (1−α)y

D2
(t) ≥ 0, t ≥ t0. From here, from (3.8)

and (3.9), we get

φ+(t) ≥ ε exp
{

Re

t∫
t0

αp1(τ) + (1− α)p2(τ)− p(τ)

2

}
|φ1(t)|α, t ≥ t0.
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From here and lower boundedness of f[α](t), it follows

(3.10) φ+(t)| ≥ ε1|φ1(t)|α, t ≥ t0,
for some ε1 > 0. Since equation (3.11) has unbounded solution, then by virtue of
the Lemma 2.2, φ1(t) is unbounded. From here and (3.10), it follows that φ+(t)
is unbounded. The proof of the theorem is complete. �

Theorem 3.4. Let all solutions of equation (3.1j) (j = 1, 2) be bounded (vanish
on the +∞), and let for some α > 1, D(t) ≤ αD1(t) + (1 − α)D2(t),

t ≥ t0; f[α](t) and Re
∫ t
t0
p2(τ)dτ be the upper bounded. Then all solutions of

equation (2.1) are bounded (vanish on the +∞). Moreover, if in addition, D(t)

and p(t) exp
{

1
2

∫ t
t0

[αp1(τ) + (1− α)p2(τ)− p(τ)] dτ
}

are bounded, then equation

(2.1) is Liapunov stable (asymptotically stable).

Proof. By virtue of I. and VI. from the inequality D(t) ≤ αD1(t)+(1−α)D2(t),
t ≥ t0, it follows that y

D
(t)− αy

D1
(t)− (1− α)y

D2
(t) ≤ 0, t ≥ t0. From here and

(3.9), we get

(3.11) |φ1(t)| ≤ exp
{1

2
f[α](t)

}
|φ1(t)|α|φ2(t)|1−α, t ≥ t0.

Since y
D2

(t) ≥ 0, t ≥ t0, α > 1 and Re
t∫
t0

p2(τ)dτ are upper bounded, then from

(3.11), it follows

(3.12) |φ+(t)| ≤M2 exp
{1

2
f[α](t)

}
|φ1(t)|α, t ≥ t0, M2 = const < +∞.

Let all solutions of equation (3.11) be bounded (vanish on the +∞). Then φ1(t) is
bounded (vanishes on the +∞). By virtue of Lemma 2.2 from here and (3.12), it
follows that all solutions of equation (2.1) are bounded (vanish on the +∞). From
(2.15) and (3.12), it follows:

|φ′+(t)| ≤M2

[
y
D

(t) +
|p(t)|

2

]
exp
{1

2
f[α](t)

}
|φ1(t)|α, t ≥ t0.

Let p(t) exp
{

1
2

∫ t
t0

[
αp1(τ) + (1−α)p2(τ)− p(τ)

]
dτ
}

and D(t) be bounded. Then

taking into account I. from the last inequality, we will have

|φ′+(t)| ≤M3|φ1(t)|α, t ≥ t0, M3 = const < +∞.
Therefore, φ′+(t) is bounded (vanishes on the +∞). By virtue of Lemma 2.3 from
here and from boundedness of φ+(t) (from the property that φ+(t) → 0 when t
tends to +∞), it follows that equation (2.1) is Liapunov stable (asymptotically
stable). The proof of the theorem is complete. �

Theorem 3.5. Let D(t) be a nondecreasing function, and let f(t) ≡∫ t
t0

[√
D(τ)−Re p(τ)

2

]
dτ , t ≥ t0, is upper bounded

(
I≡
∫ +∞
t0

[√
D(τ)−Re p(τ)

2

]
dτ =

− ∞
)
. Then all solutions of equation (2.1) are bounded (vanish on the +∞). If

f1(t) ≡ f(t) + ln
[ |p(t)|

2 +
√
D(t)

]
is upper bounded (I1 ≡ limt→+∞ f1(t) = −∞),

then equation (2.1) is Liapunov stable (asymptotically stable).
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Proof. Since D(t) is a nondecreasing function on [t0; +∞), then by virtue of

VIII., the following inequality holds y
D

(t) ≤
√
D(t), t ≥ t0. Therefore,

(3.13) |φ+(t)| ≤ exp{f(t)}, t ≥ t0.

From here and from upper boundedness of f(t) (from equality I = −∞), it follows
that φ+(t) is bounded (vanishes on the +∞). By virtue of Lemma 2.2 from here,
it follows that all solutions of equation (2.1) are bounded (vanish on the +∞).

Let f1(t) be bounded from above (I1 = −∞). Then since
√
D(t) is nondecresing

function, then f(t) is bounded from above (I = −∞). Therefore, as proven above,
φ+(t) is bounded (vanishes on the +∞). It means that by virtue of Lemma 2.3
to complete the proof of the theorem, it remains to show that φ′+(t) is bounded

(vanishes on the +∞). From (2.15), (3.13) and from inequality y
D

(t) ≤
√
D(t),

t ≥ t0, it follows

|φ′+(t)| ≤ exp{f1(t)}, t ≥ t0.
Further since f1(t) is upper bounded (I1 = −∞), then φ′+(t) is bounded (vanishes
on the +∞). The proof of the theorem is complete. �

Theorem 3.6. Let D(t) be a non increasing function and let

(3.14) lim
t→+∞

t∫
t0

[√
D(τ)− Re

p(τ)

2

]
dτ = +∞.

Then equation (2.1) has unbounded solution.

Proof. Since D(t) is a non increasing function, then by virtue of VIII., the

following inequality y
D

(t) ≥
√
D(t), t ≥ t0 holds. Therefore,

|φ+(t)| ≥ exp
{ t∫
t0

[√
D(τ)− Re

p(τ)

2

]
dτ
}
, t ≥ t0.

From here and (3.14), it follows that φ+(t) is unbounded. The proof of the theorem
is complete. �

Example 3.1. Consider the equation

(3.15) φ′′(t) + 2(λ+ sin2 t)φ′(t) + (λ2 + sin 2t)φ(t) = 0, t ≥ t0,

λ ≥ 1. Here D(t) = (λ + sin2(t))2 − λ2 ≥ 0, t ≥ t0. It is easy to see that all
the other conditions of the Corollary 3.1 for (3.15) are also satisfied. Therefore,
equation (3.15) is Liapunov stable. Note that the condition

+∞∫
t0

∣∣∣∣ D′′(t)D3/2(t)
− 5

4

(D′(t))2

D5/2(t)

∣∣∣∣dt < +∞

of the WKB approximation method (see [7, p. 55]) in our case is not fulfilled.
Therefore, the last one is not applicable for establishing stability of equation (3.15).
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