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SEMI-POSITONE STURM-LIOUVILLE DIFFERENTIAL

SYSTEMS ON UNBOUNDED INTERVALS

S. DJEBALI and K. MEBARKI

Abstract. This work is devoted to proving existence of nontrivial positive solutions

for a system of n second-order differential equations subject to integral boundary
conditions of Riemann-Stieltjes type and posed on the positive half-line. The nov-

elty of the results is that the nonlinearity involved in the system is sign-changing

and depends on both the solution and its derivative. Existence, multiplicity, and
nonexistence results of nontrivial positive solutions are obtained using some fixed

point theorems on suitable cones of a weighted Banach space. A numerical example

is included to illustrate the applicability of our results.

1. Introduction

In this paper, we are concerned with the following Sturm-Liouville boundary value
problem for a system of n second-order equations associated with integral bound-
ary conditions of Riemann-Stieltjes type and posed on the positive half-line:

(1.1)


−(p(t)y′(t))′ = f(t, y(t), y′(t))− h(t), a.e. t > 0

αy(0)− βp(0)y′(0) =
∫ +∞

0
µ(s)y(s)dξ(s),

γ lim
t→+∞

y(t) + δ lim
t→+∞

p(t)y′(t) =
∫ +∞

0
ν(s)y(s)dη(s),

where α, γ ≥ 0, β, δ ≥ 1, p ∈ C[0,+∞) is a real function with p ≥ 1 on R+,∫ +∞
0

1/p(s)ds < +∞, and ρ = γβ + αδ + αγ
∫ +∞

0
1/p(s)ds > 0. By I = (0,+∞),

we denote the set of positive real numbers, R+ = [0,+∞), and Rn+ = (R+)n; also
we use the vector notations:

y =


y1

y2

...
yn

 , h =


h1

h2

...
hn

 , f(t, y, y′) =


f1(t, y1, . . . , yn, y

′
1, . . . , y

′
n)

f2(t, y1, . . . , yn, y
′
1, . . . , y

′
n)

...
fn(t, y1, . . . , yn, y

′
1, . . . , y

′
n)

 ,
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∫ +∞

0

µ(s)y(s)dξ(s) =


∫ +∞

0
µ1(s)y1(s)dξ1(s)∫ +∞

0
µ2(s)y2(s)dξ2(s)

...∫ +∞
0

µn(s)yn(s)dξn(s)

 ,

∫ +∞

0

ν(s)y(s)dη(s) =


∫ +∞

0
ν1(s)y1(s)dη1(s)∫ +∞

0
ν2(s)y2(s)dη2(s)

...∫ +∞
0

νn(s)yn(s)dηn(s)

 .

For i ∈ {1, . . . , n}, the functions fi = fi(t, y, z) : R+ × Rn+ × Rn → R+ are
L1-Carathéodory and the functions hi : R+ → I are Lebesgue integrable. For
i ∈ {1, . . . , n}, the functions ξi, ηi : R → R are nondecreasing and of bounded

variation.
∫ +∞

0
µi(t)yi(t)dξi(t) and

∫ +∞
0

νi(t)yi(t)dηi(t) denote the Riemann-
-Stieltjes integrals of yi with respect to ξi, ηi, respectively, and the functions
µi, νi : R+ → R+ satisfy

0 <

∫ +∞

0

µi(s)dξi(s) <∞ and 0 <

∫ +∞

0

νi(s)dηi(s) <∞.(C0)

Finally, µ(t) = diag(µ1(t), . . . , µn(t)) and ν(t) = diag(ν1(t), . . . , νn(t)). Let
AC(R+,Rn+) be the space of all absolute continuous vector-valued functions on
R+. Throughout this paper, by a positive solution, we understand a function
y = (y1, . . . , yn) ∈ C1(R+,Rn+) such that py′ ∈ AC(R+,Rn+) and y satisfies
(1.1) with y > 0Rn a.e. on [0,+∞), where 0Rn is the null vector of Rn. For
u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Rn+, u ≥ v means that ui ≥ vi for all
i = 1, 2, . . . , n and u > v means that ui > vi, i = 1, 2, . . . , n, i.e., component-wise
inequalities.

Semi-positone boundary value problems (BVPs for short) arise in modeling
steady-state reaction-diffusion systems [1], where the unknown may stand for a
density, a temperature,. . . . The interest in the existence of positive solutions of
such BVPs has been ongoing for many years; we refer the reader to the works
[2, 3, 6, 14] and the references therein. In [16], a nonlocal BVP with integral
conditions is considered whilst a semi-positone BVP on the half-line is investigated
in [17].

In 2009, Zhang [23] investigated the existence of positive solutions of a singu-
lar multi-point boundary value problem for a system of second-order differential
equations on infinite intervals in some Banach space. He used the Mönch fixed
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point theorem and a monotone iterative technique; the system considered reads

x′′(t) + f(t, x(t), x′(t), y(t), y′(t)) = 0, t > 0,
y′′(t) + g(t, x(t), x′(t), y(t), y′(t)) = 0, t > 0,

x(0) =
m−2∑
i=1

αix(ξi), x′(+∞) = x∞,

y(0) =
m−2∑
i=1

βix(ξi), y′(+∞) = y∞.

The same year, Xi, Jia, and Ji [20] studied the existence of positive solutions to
the following boundary value problem

y′′1 (t) + f1(t, y1(t), y2(t)) = 0, t > 0,
y′′2 (t) + f2(t, y1(t), y2(t)) = 0, t > 0,

y1(0) = 0, y′1(+∞) =
∫ +∞

0
g1(s)y1(s)ds,

y2(0) = 0, y′2(+∞) =
∫ +∞

0
g2(s)y2(s)ds.

They used the Krasnosel’skii fixed point theorem. Some of the obtained re-
sults were improved by the same authors in [21] where they employed the three-
functional fixed point theorem in a cone (due to Avery-Henderson) and a fixed
point theorem (due to Avery-Peterson) in order to establish the existence of mul-
tiple positive solutions for a system of n equations.

In 2008, 2010, Webb and Infante [18, 19] studied some semi-positone BVPs
which can be transformed into nonlinear integral equations; the existence of mul-
tiple positive solutions is then established for a Hammerstein equation of the form

y(t) =

∫ 1

0

k(t, s)g(s)f(s, y(s))ds,

where the kernel k may correspond to a Green’s function, the function
g ∈ L1([0, 1],R+) may have pointwise singularities, and the nonlinearity f [0, 1]×
R+ → R is a Carathéodory function satisfying f(t, y) ≥ −A for some A > 0.

More recently, in 2011, Feng and Bai [8] investigated the existence of positive
solutions of the following second order m-point BVP

y′′(t) = λf(t, y(t)), t ∈ (0, 1),

y′(0) =
m−2∑
i=1

αiy
′(ξi), y(1) =

m−2∑
i=1

βiy
′(ξi),

when 0 <
m−2∑
i=1

αiy
′(ξi) < 1, 0 <

m−2∑
i=1

βiy
′(ξi) < 1, the function f : [0, 1]× R+ → R

is continuous, and there exists A > 0 such that f(t, y) ≥ −A for (t, y) ∈ [0, 1] ×
[0,+∞).

In 2013, the authors of [7] using the fixed point index theory on a cone of a
Banach space established the existence and the multiplicity of nontrivial positive
solutions for a boundary value problem consisting of a system posed on the positive
half-line with second-order differential equations and integral boundary conditions.

The aim of this work is to extend these works to the case of a system in which
the nonlinearities also depend on the first derivative and are allowed to change
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sign; moreover these nonlinearities satisfy general growth conditions including the
classical polynomial growth. New existence, nonexistence, and multiplicity results
of nontrivial positive solutions in a suitable cone of some weighted Banach space
are proved using recent fixed point theorems on cones.

Regarding the nonlocalities, we point out that the signed measures are not
considered in this paper. Semi-positone problems with nonlocal BCs involving
signed measures can be found, e.g., in [11] (with linear BCs) and in [9] (with
nonlinear BCs). However, the integral boundary conditions in problem (1.1) cover
special cases with multi-point boundary conditions as it will be shown in the
illustrative example in Section 5. Moreover, if ξi = ηi = Id, the identity operator,
then we get the usual integral boundary conditions.

The organization of this paper is as follows. Some background material is
presented in Section 2. In particular, the corresponding Green’s function and
some useful inequalities are derived. Then problem (1.1) is formulated as a fixed
point problem for a mapping denoted F in Section 3. The main results are then
stated and proved in Section 4. The paper ends with an example of application.

2. Problem setting

2.1. Spaces of solutions

Definition 2.1. A function g : [0,+∞) × Rn+ × Rn → R+ is called L1-Cara-
théodory if

(i) for each u = (u1, . . . , un) ∈ Rn+ and v = (v1, . . . , vn) ∈ Rn, the map
t 7→ g(t, u, v) is measurable on [0,+∞),

(ii) for a.e. t ∈ R+, the map (u, v) 7→ g(t, u, v) is continuous on Rn+ × Rn,

(iii) for each r > 0, there exists ϕr(t) ∈ L1[0,+∞) with ϕr(t) > 0 on (0,+∞)
such that for all i ∈ {1, 2, . . . , n},

max{|ui|, |vi|} ≤ r =⇒ g(t, u, v) ≤ ϕr(t) for a.e. t ∈ R+.

Definition 2.2. A nonempty subset P of a Banach space E is called a cone if
P is convex, closed, and satisfies the conditions:

(i) αx ∈ P for all x ∈ P and any real positive number α,

(ii) x,−x ∈ P imply x = 0.

Every cone P ⊂ E induces in E a partial ordering denoted � and given by

x � y if and only if y − x ∈ P.

More details on cones and their properties can be found in [5, 10, 12, 13, 22]. If
we let

Cl([0,+∞),R) = {y ∈ C([0,+∞),R) | lim
t→+∞

y(t) exists},
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then Cl endowed with the sup-norm ‖y‖l = sup
t∈[0,+∞)

|y(t)| is a Banach space. In

this work, we rather consider the weighted space

X =
{
y = (y1, . . . , yn) | yi ∈ C1(R+,R), lim

t→+∞
yi(t) exists

and lim
t→+∞

p(t)y′i(t) exists for i ∈ {1, . . . , n}
}
,

where the function p is defined as in (1.1). It is easy to prove that X is a Banach
space normed by

‖y‖ =

n∑
i=1

‖yi‖ with ‖yi‖ = max{‖yi‖1, ‖yi‖2},

where

‖yi‖1 = sup
t∈R+

|yi(t)| and ‖yi‖2 = sup
t∈R+

|p(t)y′i(t)|.

Let us consider the constants

A =

∫ +∞

0

1

p(s)
ds, Λ = min

{
1,

1

max{α, γ(β+αA)}

}
, σ =

ρ

(β+αA)(δ+γA)
,

and the function

G(t) =
1

ρ

(
β + α

∫ t

0

1

p(s)
ds
)(
δ + γ

∫ +∞

t

1

p(s)
ds
)

t ∈ R+.

P denotes the positive cone defined in X by

P =
{
y = (y1, . . . , yn) ∈ X | yi(t) ≥ σG(t)‖yi‖1 for all t ∈ R+

and yi(0) ≥ Λ‖yi‖2, i ∈ {1, . . . , n}
}
.

Lemma 2.1. Assume that y ∈ P. Then for all positive t,

yi(t) ≥ σΛG(t)‖yi‖ for all i ∈ {1, . . . , n},

and thus
n∑
i=1

yi(t) ≥ σΛG(t)‖y‖.

Proof. For y = (y1, . . . , yn) ∈ P and i ∈ {1, . . . , n}, we have

‖yi‖1 = sup
t∈R+

|yi(t)| ≥ yi(0) ≥ Λ‖yi‖2,

that is,

‖yi‖ = max{‖yi‖1, ‖yi‖2} ≤ max{‖yi‖1,Λ−1‖yi‖1} = Λ−1‖yi‖1.
Therefore, for all t ≥ 0,

yi(t) ≥ σG(t)‖yi‖1 ≥ σΛG(t)‖yi‖,
and so

n∑
i=1

yi(t) ≥ σΛG(t)

n∑
i=1

‖yi‖ = σΛG(t)‖y‖.

�
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2.2. Green’s function

We first study the linear problem associated with (1.1). Denote

φ1(t) = β + α

∫ t

0

1

p(τ)
dτ and φ2(t) = δ + γ

∫ +∞

t

1

p(τ)
dτ

so that G(t) = 1
ρφ1(t)φ2(t). Let

k
(i)
1 = 1− 1

ρ

∫ +∞

0

µi(t)φ2(t)dξi(t), k
(i)
2 =

1

ρ

∫ +∞

0

µi(t)φ1(t)dξi(t),

k
(i)
3 = 1− 1

ρ

∫ +∞

0

νi(t)φ1(t)dηi(t), k
(i)
4 =

1

ρ

∫ +∞

0

νi(t)φ2(t)dηi(t),

and
k(i) = k

(i)
1 k

(i)
3 − k

(i)
2 k

(i)
4 , i ∈ {1, . . . , n}.

We have

Lemma 2.2. Assume that k(i) 6= 0 for all i ∈ {1, . . . , n}. Then, for any
v = (v1, . . . , vn) ∈ L1(I,Rn), the problem

(2.1)


−(p(t)y′(t))′ = v(t), a.e. t ∈ I

αy(0)− βp(0)y′(0) =
∫ +∞

0
µ(s)y(s)dξ(s),

γ lim
t→+∞

y(t) + δ lim
t→+∞

p(t)y′(t) =
∫ +∞

0
ν(s)y(s)dη(s)

has the unique solution

(2.2) y(t) =

∫ +∞

0

H(t, s) v(s)ds, t ∈ R+,

where H(t, s) = diag(H1(t, s), · · · , Hn(t, s)) and the functions Hi, i ∈ {1, . . . , n},
are defined on R+ × R+ by

(2.3)

Hi(t, s) = G(t, s) +
k

(i)
4 φ1(t) + k

(i)
3 φ2(t)

k(i)ρ

∫ +∞

0

µi(τ)G(τ, s)dξi(τ)

+
k

(i)
1 φ1(t) + k

(i)
2 φ2(t)

k(i)ρ

∫ +∞

0

νi(τ)G(τ, s)dηi(τ),

where

G(t, s) =
1

ρ

{
φ1(s)φ2(t), 0 ≤ s ≤ t < +∞,
φ1(t)φ2(s), 0 ≤ t ≤ s < +∞.

Proof. By integrating twice the equation in problem (2.1) over [0, t] (t > 0), we
get

yi(t) = y(0) + p(0)y′0)

∫ t

0

1

p(s)
ds−

∫ t

0

1

p(s)

(∫ s

0

vi(τ)dτ
)

ds, i ∈ {1, . . . , n}.

Integrating by parts yields
(2.4)

yi(t) = V +W

∫ t

0

1

p(s)
ds+

∫ t

0

(∫ s

0

1

p(τ)
dτ
)
vi(s)ds−

∫ t

0

1

p(τ)
dτ

∫ t

0

vi(τ)dτ,
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where V and W are constants to be determined. Differentiating (2.4) gives

(2.5) y′i(t) =
1

p(t)

(
W −

∫ t

0

vi(s)ds
)
.

From (2.4), (2.5), and the boundary conditions, we find the values

V =
( 1

α
− βγ

αρ

)∫ +∞

0

µi(s)yi(s)dξi(s) +
β

ρ

∫ +∞

0

νi(t)yi(s)dηi(s)

+
βγ

ρ

∫ +∞

0

(∫ +∞

0

1

p(τ)
dτ −

∫ s

0

1

p(τ)
dτ +

δ

γ

)
vi(s)ds,

W = − γ

ρ

∫ +∞

0

µi(s)yi(s)dξi(s) +
α

ρ

∫ +∞

0

νi(s)yi(s)dηi(s)

+
αγ

ρ

∫ +∞

0

(∫ +∞

0

1

p(τ)
dτ −

∫ s

0

1

p(τ)
dτ +

δ

γ

)
vi(s)ds.

By substitution in (2.4), we get

yi(t) =
( 1

α
− βγ

αρ
− γ

ρ

∫ t

0

1

p(τ)
dτ
)∫ +∞

0

µi(s)yi(s)dξi(s)

+
(β
ρ

+
α

ρ

∫ t

0

1

p(τ)
dτ
)∫ +∞

0

νi(s)yi(s)dηi(s)

+
(βγ
ρ

+
αγ

ρ

∫ t

0

1

p(τ)
dτ
)∫ +∞

0

(∫ +∞

0

1

p(τ)
dτ −

∫ s

0

1

p(τ)
dτ +

δ

γ

)
vi(s)ds

−
∫ t

0

(∫ t

0

1

p(τ)
dτ −

∫ s

0

1

p(τ)
dτ
)
vi(s)ds,

i.e.,

yi(t) =
(ρ− βγ − αγ ∫ t

0
1

p(τ)dτ

αρ

)∫ +∞

0

µi(s)yi(s)dξi(s)

+
(β + α

∫ t
0

1
p(τ)dτ

ρ

)∫ +∞

0

νi(s)yi(s)dηi(s)

+
γ

ρ
φ1(t)

∫ +∞

t

(∫ +∞

s

1

p(τ)
dτ +

δ

γ

)
vi(s)ds

+

∫ t

0

[(βγ
ρ

+
αγ

ρ

∫ t

0

1

p(τ)
dτ − 1

)(∫ t

0

1

p(τ)
dτ −

∫ s

0

1

p(τ)
dτ
)

×
(βγ
ρ

+
αγ

ρ

∫ t

0

1

p(τ)
dτ
)(∫ +∞

t

1

p(τ)
dτ +

δ

γ

)]
vi(s)ds.
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Hence

(2.6)

yi(t) =
1

ρ
φ2(t)

∫ +∞

0

µi(s)yi(s)dξi(s) +
1

ρ
φ1(t)

∫ +∞

0

νi(s)yi(s)dηi(s)

+
1

ρ

∫ t

0

φ1(s)φ2(t) vi(s)ds+
1

ρ

∫ +∞

t

φ1(t)φ2(s)vi(s)ds

=

∫ +∞

0

G(t, s) vi(s)ds+
1

ρ
φ2(t)

∫ +∞

0

µi(s)yi(s)dξi(s)

+
1

ρ
φ1(t)

∫ +∞

0

νi(s)yi(s)dηi(s).

In addition,∫ +∞

0

µi(t)yi(t)dξi(t) =
1

ρ

∫ +∞

0

µi(t)yi(t)dξi(t)

∫ +∞

0

µi(t)φ2(t)dξi(t)

+
1

ρ

∫ +∞

0

νi(t)yi(t)dηi(t)

∫ +∞

0

µi(t)φ1(t)dξi(t)

+

∫ +∞

0

µi(t)
(∫ +∞

0

G(t, s) vi(s)ds
)

dξi(t)

and ∫ +∞

0

νi(t)yi(t)dηi(t) =
1

ρ

∫ +∞

0

µi(t)yi(t)dξi(t)

∫ +∞

0

νi(t)φ2(t)dηi(t)

+
1

ρ

∫ +∞

0

νi(t)yi(t)dηi(t)

∫ +∞

0

νi(t)φ1(t)dηi(t)

+

∫ +∞

0

νi(t)
(∫ +∞

0

G(t, s) vi(s)ds
)

dηi(t),

that is,

k
(i)
1

∫ +∞

0

µi(t)yi(t)dξi(t)− k(i)
2

∫ +∞

0

νi(t)yi(t)dηi(t)

=

∫ +∞

0

(∫ +∞

0

µi(τ)G(τ, s)dξi(τ)
)
vi(s)ds

and

k
(i)
4

∫ +∞

0

µi(t)yi(t)dξi(t)− k(i)
3

∫ +∞

0

νi(t)yi(t)dηi(t)

= −
∫ +∞

0

(∫ +∞

0

νi(τ)G(τ, s)dηi(τ)
)
vi(s)ds.

Hence∫ +∞

0

µi(t)yi(t)dξi(t) =
1

k(i)

(
k

(i)
3

∫ +∞

0

(∫ +∞

0

µi(τ)G(τ, s)dξi(τ)
)
vi(s)ds

+ k
(i)
2

∫ +∞

0

(

∫ +∞

0

νi(τ)G(τ, s)dηi(τ)) vi(s)ds
)
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and∫ +∞

0

νi(t)yi(t)dηi(t) =
1

k(i)

(
k

(i)
1

∫ +∞

0

(∫ +∞

0

νi(τ)G(τ, s)dηi(τ)
)
vi(s)ds

+ k
(i)
4

∫ +∞

0

(∫ +∞

0

µi(τ)G(τ, s)dξi(τ)
)
vi(s)ds.

By substitution in (2.6), we finally arrive at the formula

yi(t) =

∫ +∞

0

Hi(t, s) vi(s)ds, i ∈ {1, 2, . . . , n},

where Hi is given by (2.3). Therefore,

y(t) =

∫ ∞
0

H(t, s)v(s)ds, t ∈ R+,

where H(t, s) = diag(H1(t, s), · · · , Hn(t, s)). �

Some fundamental properties of the functions G and H are summarized in the
following lemmas.

Lemma 2.3. The function G satisfies
(a) G(t, s) ≥ 0 for all t, s ∈ R+; G(t, t) = G(t) ≤ σ−1, for all t ∈ R+.

(b) σG(t)G(s) ≤ G(t, s) ≤ G(s), for all t, s ∈ R+.

(c) lim
t→+∞

G(t, s) =
δ

ρ
φ1(s) <∞, for all s ∈ R+.

The proof is omitted. Also we have the following lemma.

Lemma 2.4. The partial derivative ∂G
∂t satisfies

(a)
∣∣∣p(t)∂G

∂t
(t, s)

∣∣∣ ≤ 1

ρ

(
αφ2(s) + γφ1(s)

)
, for all t, s ∈ R+.

(b) If β, δ ≥ 1,
∣∣∣p(t)∂G

∂t
(t, s)

∣∣∣ ≤ max{α, γ(β + αA)}G(0, s), for all t, s ∈ R+.

Proof. Clearly

∂G

∂t
(t, s) =

1

ρ


α

p(t)
φ2(s), 0 ≤ t < s < +∞,

− γ

p(t)
φ1(s), 0 ≤ s < t < +∞.

(a) For all positive t, s, we have:

1. if 0 ≤ t < s < +∞, then
∣∣∣p(t)∂G

∂t
(t, s)

∣∣∣ =
α

ρ
φ2(s) ≤ 1

ρ

(
αφ2(s) + γφ1(s)

)
,

2. if 0 ≤ s < t < +∞, then
∣∣∣p(t)∂G

∂t
(t, s)

∣∣∣ = γ
ρφ1(s) ≤ 1

ρ

(
αφ2(s) + γφ1(s)

)
.

(b) Note that for all positive s, we have

G(0, s) =
1

ρ
φ1(0)φ2(s).

Since β, δ ≥ 1, we consider two cases:
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1. if 0 ≤ t < s < +∞, then∣∣∣p(t)∂G
∂t

(t, s)
∣∣∣ =

α

ρ
φ2(s) ≤ αβ

ρ
φ2(s) =

α

ρ
φ1(0)φ2(s) = αG(0, s),

2. if 0 ≤ s < t < +∞, then∣∣∣p(t)∂G
∂t

(t, s)
∣∣∣ =

γ

ρ
φ1(s) ≤ γβδ

ρ
φ1(s)

≤ γ

ρ
φ1(s)φ1(0)φ2(s) ≤ γ(β + αA)G(0, s).

�

Let

Λ
(i)
1 =

k
(i)
4 (β + αA) + k

(i)
3 (δ + γA)

k(i)ρ
and Λ

(i)
2 =

k
(i)
1 (β + αA) + k

(i)
2 (δ + γA)

k(i)ρ
.

From Lemma 2.3, property (b) and Lemma 2.4, properties (a), (b), we derive the
following properties of the function H = diag(H1, . . . ,Hn).

Lemma 2.5. Assume that

(2.7) k
(i)
1 > 0, k

(i)
3 > 0, k(i) > 0, for all i ∈ {1, . . . , n}.

Then
(a) σG(t)Hi(s) ≤ Hi(t, s) ≤ Hi(s) ≤ Ai for all, t, s ∈ R+, where

Hi(s) = G(s) + Λ
(i)
1

∫ +∞

0

µi(τ)G(τ, s)dξi(τ) + Λ
(i)
2

∫ +∞

0

νi(τ)G(τ, s)dηi(τ),

Ai =
(

1 + Λ
(i)
1

∫ +∞

0

µi(τ)dξi(τ) + Λ
(i)
2

∫ +∞

0

νi(τ)dηi(τ)
)
σ−1.

(b)
∣∣∣p(t)∂Hi

∂t
(t, s)

∣∣∣ ≤ Ki(s) ≤ Bi, for all t, s ∈ R+, where

Ki(s) =
1

ρ

(
αφ2(s) + γφ1(s)

)
+
|αk(i)

4 − γk
(i)
3 |

k(i)ρ

∫ +∞

0

µi(τ)G(τ, s)dξi(τ)

+
|αk(i)

1 − γk
(i)
2 |

k(i)ρ

∫ +∞

0

νi(τ)G(τ, s)dηi(τ),

Bi =
1

ρ

(
α(δ + γA) + γ(β + αA)

)
+
( |αk(i)

4 − γk
(i)
3 |

k(i)ρ

∫ +∞

0

µi(τ)dξi(τ) +
|αk(i)

1 − γk
(i)
2 |

k(i)ρ

∫ +∞

0

νi(τ)dηi(τ)
)
σ−1.

(c) If β, δ≥1, then
∣∣∣p(t)∂Hi

∂t
(t, s)

∣∣∣ ≤ max(α, γ(β+αA))Hi(0, s), for all t, s ∈ R+.
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Proof. (a) By Lemma 2.3, property (b) and the monotonicity of φ1, φ2, we have
Hi(t, s) ≤ Hi(s). Moreover, (2.3) and again the monotonicity of φ1, φ2 guarantee
that for all positive t,

(2.8) φ1(t) =
ρG(t)

φ2(t)
=

ρG(t)

δ + γ
∫ +∞
t

1
p(s)ds

≥ ρG(t)

δ + γA
,

(2.9) φ2(t) =
ρG(t)

φ1(t)
=

ρG(t)

β + α
∫ t

0
1
p(s)ds

≥ ρG(t)

β + αA
·

By (2.3), (2.8) and (2.9) for all t, s ∈ R+, we have

Hi(t, s) ≥ σG(t)G(s)

+
(

Λ
(i)
1

∫ +∞

0

µi(τ)G(τ, s)dξi(τ) + Λ
(i)
2

∫ +∞

0

νi(τ)G(τ, s)dηi(τ)
)
σG(t)

= σG(t)Hi(s).

(b) This property immediately follows from Lemma 2.4, property (a).
(c) Assume that β, δ ≥ 1. By Lemma 2.4, property (b), for all t, s ∈ R+, we have
the estimates∣∣∣p(t)∂Hi

∂t
(t, s)

∣∣∣ ≤ max{α, γ(β+αA)}G(0, s)+
αk

(i)
4 + γk

(i)
3

k(i)ρ

∫ +∞

0

µi(τ)G(τ, s)dξi(τ)

+
αk

(i)
1 +γk

(i)
2

k(i)ρ

∫ +∞

0

νi(τ)G(τ, s)dηi(τ)

≤ max{α, γ(β+αA)}G(0, s)+
αβk

(i)
4 +γδk

(i)
3

k(i)ρ

∫ +∞

0

µi(τ)G(τ, s)dξi(τ)

+
αβk

(i)
1 +γδk

(i)
2

k(i)ρ

∫ +∞

0

νi(τ)G(τ, s)dηi(τ)

≤ max{α, γ(β + αA)}G(0, s)

+ max{α, γ}k
(i)
4 φ1(0) + k

(i)
3 φ2(0)

k(i)ρ

∫ +∞

0

µi(τ)G(τ, s)dξi(τ)

+ max{α, γ}k
(i)
1 φ1(0) + k

(i)
2 φ2(0)

k(i)ρ

∫ +∞

0

νi(τ)G(τ, s)dηi(τ)

= max{α, γ(β + αA)}Hi(0, s).

�

3. Integral formulation

3.1. A fixed point operator

Let Hi be given by (2.3). For i ∈ {1, . . . , n}, set

(3.1) ωi(t) =

∫ +∞

0

Hi(t, s)hi(s)ds.
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Remark 3.1. Lemma 2.2 and Lemma 2.5 guarantee that ωi is well defined and
ωi > 0 for all i ∈ {1, . . . , n}. Moreover, ω = (ω1, . . . , ωn) is the unique solution of
(2.1) when v ≡ h.

Consider the auxiliary boundary value problem

(3.2)


−(p(t)y′(t))′ = g(t, y(t), y′(t))− h(t), a.e. t ∈ I,

αy(0)− βp(0) y′(0) =
∫ +∞

0
µ(s)y(s)dξ(s),

γ lim
t→+∞

y(t) + δ lim
t→+∞

p(t)y′(t) =
∫ +∞

0
ν(s)y(s)dη(s),

where the modified function g is defined in [0,+∞)× Rn+ × Rn by

(3.3) g(t, y, z) =
{ f(t, y, z), y ≥ ω(t),
f(t, ω(t), z), otherwise.

Let Ω ⊂ X be a bounded subset. Then, there exists r0 > 0 such that ‖y‖ ≤ r0

for all y = (y1, . . . , yn) ∈ Ω, that is, for all t ≥ 0 and i ∈ {1, . . . , n}, |yi(t)| ≤
‖y‖ ≤ r0 ≤ r1 = max{r0, ‖ω‖} and |y′i(t)| ≤ |p(t)y′i(t)| ≤ ‖y‖ ≤ r1. Since fi
are L1-Carathéodory functions for i ∈ {1, . . . , n}, there exist functions ϕr1 ∈
L1[0,+∞) such that∫ +∞

0

[
gi(s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s))− hi(s)

]
ds

≤
∫ +∞

0

[
ϕr1(s)− hi(s)

]
ds <∞,

where g = (g1, . . . , gn). Lemma 2.2 implies that the boundary value problem (3.2)
is equivalent to the nonlinear integral equation

y(t) =

∫ +∞

0

H(t, s)
[
g
(
s, y(s), y′(s)

)
− h(s)

]
ds.

Thus, for i ∈ {1, . . . , n}, we can define the integral operators Fi : Ω ∩ P →
C1(R+,R) by

(Fiy)(t) =

∫ +∞

0

Hi(t, s)
[
gi

(
s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s)

)
− hi(s)

]
ds.

Let (Fy)(t) =
(
F1y(t), . . . , Fny(t)

)T
, i.e.,

(3.4)

F : Ω ∩ P → C1(R+,Rn),

y 7→ (Fy)(t) =

∫ +∞

0

H(t, s)
[
g
(
s, y(s), y′(s)

)
− h(s)

]
ds.

Remark 3.2. By Lemma 2.2, if y is a fixed point of F in X, then y is a solution
of problem (3.2). If further y ≥ ω, then y is a solution of problem (1.1).
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3.2. Compactness of the fixed point operator

A mapping is completely continuous if it is continuous and maps bounded sets into
relatively compact sets. A set of functions Y ∈ Ω ⊂ X is almost equi-continuous if
it is equi-continuous on each interval [0, T ], 0 ≤ T < +∞. The following result is an
extension of Arzéla-Ascoli compactness criterion to unbounded intervals (see [4]).

Lemma 3.1. Let M ⊆ Cl(R+,Rn). Then the set M is relatively compact in
Cl(R+,Rn) if the following conditions hold:

(a) M is uniformly bounded in Cl(R+,Rn).

(b) The functions belonging to M are almost equi-continuous on R+.

(c) The functions from M are equi-convergent at +∞, that is, given ε > 0, there
corresponds T (ε) > 0 such that

∑n
i=1 |xi(t) − xi(∞)| < ε for all t ≥ T (ε)

and x ∈M .

As a consequence, we easily derive the following compactness criterion

Lemma 3.2. A subset M ⊆ X is relatively compact in X if the following
conditions hold:

(a) M is uniformly bounded in X.

(b) The functions belonging to the sets

M and B = {z | z(t) = p(t)x′(t), x ∈M}

are almost equi-continuous on R+.

(c) The functions from M and B are equi-convergent at +∞.

Now, we prove the following lemma.

Lemma 3.3. Assume that Assumption (C0) is satisfied and

(3.5) f(t, y, z) ≥ h(t) for t ∈ R+, y ≥ ω(t), and z ∈ Rn.

Then, for any bounded subset Ω ⊂ X, the mapping F given by (3.4) sends Ω ∩ P
into P and is completely continuous.

Proof.
Claim 1. F : Ω ∩ P → X is well defined. First there exists a positive constant r2

such that max{‖y‖, ‖ω‖} ≤ r2 for all y ∈ Ω ∩ P. Since fi, (i ∈ {1, . . . , n}), are
L1-Carathéodory functions, then by Lemma 2.5, we get the estimates for t ≥ 0,

|(Fiy)(t)| ≤
∫ ∞

0

Hi(s)|ϕr2(s)− hi(s)|ds ≤
∫ +∞

0

Ai|ϕr2(s)− hi(s)|ds <∞

and

|p(t)(Fiy)′(t)| ≤
∫ ∞

0

Ki(s)|ϕr2(s)− hi(s)|ds ≤
∫ +∞

0

Bi|ϕr2(s)− hi(s)|ds <∞.

Therefore, Fy ∈ C1([0,+∞),Rn) and F (Ω ∩ P) ⊂ X.



244 S. DJEBALI and K. MEBARKI

Claim 2. F : Ω ∩ P → P. Let y ∈ Ω ∩ P. By Lemma 2.5, for t ≥ 0,

(Fiy)(t) =

∫ +∞

0

Hi(t, s)
[
gi

(
s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s)

)
− hi(s)

]
ds

≥
∫ +∞

0

σG(t)Hi(s)
[
gi

(
s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s)

)
− hi(s)

]
ds

≥
∫ +∞

0

σG(t)Hi(s, τ)
[
gi

(
s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s)

)
− hi(s)

]
ds

= σG(t)(Fiy)(τ)

for all τ ≥ 0. Taking the least upper bound over τ ∈ R+ yields

(Fiy)(t) ≥ σG(t) sup
τ∈R+

|(Fiy)(τ)|, for all t ≥ 0.

Also

(Fiy)(0) =

∫ +∞

0

Hi(0, s)
[
gi

(
s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s)

)
− hi(s)

]
ds

≥
∫ +∞

0

Λ|p(t) ∂
∂t
Hi(t, s)|

[
gi

(
s, y1(s), . . . , yn(s)y′1(s), . . . , y′n(s)

)
− hi(s)

]
ds

= Λ|p(t)(Fiy)′(t)

for all t ≥ 0. Since t ≥ 0 is arbitrary, passing again to the supremum over t, we
get

(Fiy)(0) ≥ Λ sup
t∈R+

|p(t)(Fiy)′(t)|·

Claim 3. A is continuous on Ω∩P. Let a sequence ym =
(
y1,m, . . . yn,m

)
converge to

a limit y =
(
y1, . . . , yn

)
in Ω∩P as m→ +∞. Then there exists r > 0 independent

of n such that max{‖ω‖, ‖y‖, sup
m≥1
‖ym‖} ≤ r. Since, for i ∈ {1, . . . , n}, fi are L1-

Carathéodory functions, then by Lemma 2.5, for t ≥ 0,

|(Fiym)(t)| ≤
∫ ∞

0

Hi(s)|ϕr(s)− hi(s)|ds ≤
∫ +∞

0

Ai|ϕr(s)− hi(s)|ds <∞

and

|p(t)(Fiym)′(t)| ≤
∫ ∞

0

Ki(s)|ϕr(s)− hi(s)|ds ≤
∫ +∞

0

Bi|ϕr(s)− hi(s)|ds <∞.

In addition, the functions fi (i ∈ {1, . . . , n}) are continuous in the second and
third arguments, thus

lim
m→+∞

|g(s, ym(s), y′m(s))− g(s, y(s), y′(s))| = 0.
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Hence for each i ∈ {1, . . . , n}, the Lebesgue dominated convergence theorem guar-
antees that

‖Fiym − Fiy‖1 = sup
t∈R+

∣∣∣(Fiym)(t)− (Fiy)(t)
∣∣∣

≤ sup
t∈R+

∫ +∞

0

Ai|gi(s, y1,m(s), . . . , yn,m(s), y′1,m(s), . . . , y′n,m(s))

− gi(s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s))|ds→ 0, as m→ +∞

and

‖Fiym − Fiy‖2 = sup
t∈R+

∣∣∣p(t)((Fiym)′(t)− (Fiy)′(t))
∣∣∣

≤ sup
t∈R+

∫ +∞

0

Bi|gi(s, y1,m(s), . . . , yn,m(s), y′1,m(s), . . . , y′n,m(s))

− gi(s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s))|ds→ 0, as m→ +∞.

As a result

‖Fym − Fy‖ =

n∑
i=1

max{‖Fiym − Fiy‖1, ‖Fiym − Fiy‖2} → 0, as m→ +∞.

Claim 4. F maps bounded sets into relatively compact sets. Let Ω be a bounded
subset of X; then there exists r > 0 such that max{‖y‖, ‖ω‖} ≤ r, for all y ∈ Ω∩P.
It is easy to prove that F (Ω ∩ P) is uniformly bounded.

(a) The family of functions {Fy | y ∈ Ω ∩ P} are almost equi-continuous on R+.
Indeed, for any y ∈ Ω ∩ P, T > 0, t1, t2 ∈ [0, T ] (t1 < t2), and for i ∈ {1, . . . , n},
we have the estimates∣∣∣(Fiy)(t1)− (Fiy)(t2)

∣∣∣ ≤ ∫ +∞

0

∣∣∣Hi(t1, s)−Hi(t2, s)
∣∣∣

×
∣∣∣gi(s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s))− hi(s)

∣∣∣ds
=

∫ t1

0

∣∣∣Hi(t1, s)−Hi(t2, s)
∣∣∣

×
∣∣∣gi(s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s))− hi(s)

∣∣∣ds
+

∫ t2

t1

∣∣∣Hi(t1, s)−Hi(t2, s)
∣∣∣

×
∣∣∣gi(s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s))− hi(s)

∣∣∣ds
+

∫ +∞

t2

∣∣∣Hi(t1, s)−Hi(t2, s)
∣∣∣

×
∣∣∣gi(s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s))− hi(s)

∣∣∣ds.
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Each of the terms in the right-hand side is estimated as follows:∫ t1

0

∣∣∣Hi(t1, s)−Hi(t2, s)
∣∣∣ ∣∣∣gi(s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s))− hi(s)

∣∣∣ds
≤ 1

ρ
|φ2(t1)− φ2(t2)|

∫ t1

0

φ1(s)|ϕr(s)− hi(s)|ds

+
1

k(i)ρ2
(β + αA)(δ + γA)

∫ +∞

0

µi(τ)dξi(τ)

×
[
k

(i)
3 |φ2(t1)− φ2(t2)|+ k

(i)
4 |φ1(t1)− φ1(t2)|

] ∫ t1

0

|ϕr(s)− hi(s)|ds

+
1

k(i)ρ2
(β + αA)(δ + γA)

∫ +∞

0

νi(τ)dηi(τ)

×
[
k

(i)
1 |φ1(t1)− φ1(t2)|+ k

(i)
2 |φ2(t1)− φ2(t2)|

] ∫ t1

0

|ϕr(s)− hi(s)|ds
→ 0, as |t1 − t2| → 0

and∫ t2

t1

∣∣∣Hi(t1, s)−Hi(t2, s)
∣∣∣ × gi(s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s))− hi(s)ds

≤ 1

ρ
φ1(t1)

∫ t2

t1

φ2(s)|ϕr(s)− hi(s)|ds+
1

ρ
φ2(t2)

∫ t2

t1

φ1(s)|ϕr(s)− hi(s)|ds

+
1

k(i)ρ2
(β + αA)(δ + γA)

∫ +∞

0

µi(τ)dξi(τ)

×
[
k

(i)
3 |φ2(t1)− φ2(t2)|+ k

(i)
4 |φ1(t1)− φ1(t2)|

] ∫ t2

t1

|ϕr(s)− hi(s)|ds

+
1

k(i)ρ2
(β + αA)(δ + γA)

∫ +∞

0

νi(τ)dηi(τ)

×
[
k

(i)
1 |φ1(t1)− φ1(t2)|+ k

(i)
2 |φ2(t1)− φ2(t2)|

] ∫ t2

t1

|ϕr(s)− hi(s)|ds

→ 0, as |t1 − t2| → 0.

Finally,∫ +∞

t2

∣∣∣Hi(t1, s)−Hi(t2, s)
∣∣∣gi(s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s))ds

≤ 1

ρ
|φ1(t1)− φ1(t2)|

∫ +∞

t2

φ2(s)|ϕr(s)− hi(s)|ds

+
1

k(i)ρ2
(β + αA)(δ + γA)

∫ +∞

0

µi(τ)dξi(τ)

×
[
k

(i)
3 |φ2(t1)− φ2(t2)|+ k

(i)
4 |φ1(t1)− φ1(t2)|

] ∫ +∞

t2

|ϕr(s)− hi(s)|ds

+
1

k(i)ρ2
(β + αA)(δ + γA)

∫ +∞

0

νi(τ)dηi(τ)

×
[
k

(i)
1 |φ1(t1)− φ1(t2)|+ k

(i)
2 |φ2(t1)− φ2(t2)|

] ∫ +∞

t2

|ϕr(s)− hi(s)|ds

→ 0, as |t1 − t2| → 0.
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Then

‖(Fy)(t1)− (Fy)(t2)‖ =

n∑
i=1

∣∣∣(Fiy)(t1)− (Fiy)(t2)
∣∣∣→ 0, as |t1 − t2| → 0,

proving equi-continuity of the family {z| z(t) = (Fy)(t), y ∈ Ω ∩ P}. Simi-
larly, we obtain that for any i ∈ {1, . . . , n} and for all y ∈ Ω ∩ P, the difference∣∣∣p(t1)(Fiy)′(t1)− p(t2)(Fiy)′(t2)

∣∣∣ tends to 0 as |t1 − t2| → 0. Then

‖p(t1)(Fy)′(t1)− p(t2)(Fy)′(t2)‖ =

n∑
i=1

∣∣∣p(t1)(Fiy)′(t1)− p(t2)(Fiy)′(t2)
∣∣∣

tends to 0 as |t1 − t2| → 0. This shows that the functions {z| z(t) = p(t)(Fy)′(t),
y ∈ Ω∩P} are almost equi-continuous on R+. Consequently, the family {Fy| y ∈
Ω ∩ P} is equi-continuous.

(b) The functions {Fy | y ∈ Ω ∩ P} are equi-convergent at +∞. Indeed, since fi
are L1-Carathéodory functions, then for y ∈ Ω ∩ P, t ≥ 0, and i ∈ {1, . . . , n}, we
have

|(Fiy)(t)| ≤
∫ +∞

0

Hi(s)|ϕr(s)− hi(s)|ds ≤
∫ +∞

0

Ai|ϕr(s)− hi(s)|ds <∞

and

|p(t)(Fiy)′(t)| ≤
∫ +∞

0

Ki(s)|ϕr(s)− hi(s)|ds ≤
∫ +∞

0

Bi|ϕr(s)− hi(s)|ds <∞.

Hence for all i ∈ {1, . . . , n},

lim
t→+∞

Fiy(t) = lim
t→+∞

∫ +∞

0

Hi(t, s)
[
gi

(
s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s)

)
−hi(s)

]
ds

=

∫ +∞

0

[ δ
ρ
φ1(s) +

k
(i)
4 (β + αA) + k

(i)
3 δ

k(i)ρ

∫ +∞

0

µi(τ)G(τ, s)dξi(τ)

+
k

(i)
1 (β + αA) + k

(i)
2 δ

k(i)ρ

∫ +∞

0

νi(τ)G(τ, s)dηi(τ)
]

×
[
gi

(
s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s)

)
− hi(s)

]
ds <∞

and

lim
t→+∞

p(t)(Fiy)′(t)

= lim
t→+∞

∫ +∞

0

p(t)
∂

∂t
Hi(t, s)

[
gi

(
s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s)

)
− hi(s)

]
ds

=

∫ +∞

0

[
− γ

ρ
φ1(s) +

k
(i)
4 α− k(i)

3 γ

k(i)ρ

∫ +∞

0

µi(τ)G(τ, s)dξi(τ)

+
k

(i)
1 α− k(i)

2 γ

k(i)ρ

∫ +∞

0

νi(τ)G(τ, s)dηi(τ)
]

×
[
gi

(
s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s)

)
− hi(s)

]
ds <∞.
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Therefore, the integrals involved in the definitions of Fiy(t), p(t)(Fiy)′(t), on the
one hand, and in the limits lim

t→+∞
Fiy(t) and lim

t→+∞
p(t)(Fiy)′(t), on the other one,

are convergent uniformly for y ∈ Ω ∩ P. As a consequence, we have

lim
t→+∞

(
Fiy(t)− lim

x→+∞
Fiy(x)

)
= lim
t→+∞

∫ +∞

0

(
Hi(t, s)− lim

t→+∞
Hi(t, s)

)
×
[
gi

(
s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s)

)
− hi(s)

]
ds

=

∫ +∞

0

lim
t→+∞

(
Hi(t, s)− lim

t→+∞
Hi(t, s)

)
×
[
gi

(
s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s)

)
− hi(s)

]
ds = 0.

Similarly, we can check that

lim
t→+∞

(
p(t)(Fiy)′(t)− lim

x→+∞
p(x)(Fiy)′(x)

)
= 0.

Hence

lim
t→+∞

‖Fy(t)− lim
x→+∞

Fy(x)‖ =

n∑
i=1

lim
t→+∞

|Fiy(t)− lim
x→+∞

Fiy(x)| = 0

and

lim
t→+∞

‖p(t)(Fy)′(t)− lim
x→+∞

p(x)(Fy)′(x)‖ = 0,

uniformly in y ∈ Ω ∩ P. This means that the family {y| y ∈ F (Ω ∩ P)} is equi-
convergent at +∞. Using Lemma 3.2, we conclude that the range F (Ω ∩ P) is
relatively compact, ending the proof of the lemma. �

4. Main Results

4.1. General Assumptions

This section deals with problem (3.2). The notations y1, . . . , yn, z1, . . . , zn, ω1, . . . ,
. . . , ωn stand for y1(t), . . . , yn(t), z1(t), . . . , zn(t), ω1(t), . . . , ωn(t), respectively. For
each i ∈ {1, . . . , n}, we set the main assumptions:
(C1) fi : R+ × Rn+ × Rn → R+ is an L1-Carathéodory function, nondecreasing

with respect to the second argument, and there exist continuous functions
ai, bi ∈ C(Rn+,R+), ci, di ∈ C(Rn,R+) and qi ∈ C(I,R+) such that for all
t ∈ R+, yi ≥ ωi, and zi ∈ R,

fi(t, y1, . . . , yn, z1, . . . , zn)≤ qi(t)
[
ai

(
y1, . . . , yn

)
+ bi

(
y1, . . . , yn

)]
×
[
ci

(
p(t)z1, . . . , p(t)zn

)
+di

(
p(t)z1, . . . , p(t)zn

)]
,

where ci are nonincreasing, bi
ai
, di
ci

are nondecreasing functions, and the func-
tions Hiqi are Lebesgue integrable functions in R+.
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(C2) There exists R > 0 such that for y1, . . . , yn, satisfying
n∑
i=1

ωi ≤
n∑
i=1

yi ≤ R,

we have

(4.1)
ai(y1, . . . , yn)

n∑
i=1

yi

≤Mi

and

(4.2) RGi + Hi ≤ RΛ/n,

where

Gi =

∫ +∞

0

Hi(s)qi(s)ds, Hi =

∫ +∞

0

Hi(s)hi(s)ds,

and

M−1
i =

(
1 +

bi(R, . . . , R)

ai(R, . . . , R)

)(
1 +

di(R, . . . , R)

ci(R, . . . , R)

)
ci

(
−R, . . . ,−R

)
.

(C′2) There exists R > 0 such that

(4.3)
(

1 +
bi(R, . . . , R)

ai(R, . . . , R)

)(
1 +

di(R, . . . , R)

ci(R, . . . , R)

)
ci

(
−R, . . . ,−R

)
Ki + Hi ≤ R

Λ

n
,

where

Ki =

∫ +∞

0

Hi(s)qi(s)ai
(
ω1(s), . . . , ωn(s)

)
ds.

(C3) There exist positive constants r, µ, η with ρ
σΛβδ < r < min

{
R
n ,

σΛβδ
ρ

R
n

}
and 0 < µ < η such that for all t ∈ [µ, η], σΛβδ

ρ r ≤
n∑
i=1

yi ≤ R
n and zi ∈ R, we

have

(4.4) fi(t, y1, . . . , yn, z1, . . . , zn) ≥ h(t) + Li,

where the constant Li satisfies
n∑
i=1

Li
∫ η
µ
Hi(s)ds ≥ ρ

σβδ r.

Remark 4.1.
(a) The constant r in (C3) exists if, e.g.,

R > nmax
{ ρ

σβδΛ
,
( ρ

σβδΛ

)2}
.

(b) Monotonic functions defined on Rn are understood in the following sense

Definition 4.1. Let P be a cone in a real Banach space X and � be the partial
ordering defined by P. Let D be a subset of X and F : D → X be a mapping.
Then the operator F is said to be nondecreasing on D (resp., nonincreasing on D)
provided x1, x2 ∈ D with x1 � x2 that implies Fx1 � Fx2 (resp., Fx1 � Fx2).

We are now ready to state and prove our first existence result.
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Theorem 4.1. Assume that Assumptions (C0)–(C)2 and (C3) hold together with
(3.5) and

(4.5) f
(
t, ω(t), z

)
≥ 2h(t) for all t ∈ R+, z ∈ [−R,R]n,

where R is given as in (C2).
Then problem (1.1) has at least one positive solution y ∈ P satisfying

0 < ‖y‖ ≤ R,
n∑
i=1

yi(t) ≥
σΛβδ

ρ
r, and y(t) ≥ ω(t) > 0Rn for all t ∈ R+.

Let ψ be a nonnegative continuous concave functional on P. For positive num-
bers τ1, τ2, define the following subsets

Pτ = P ∩B(0, τ) = {x ∈ P | ‖x‖ ≤ τ},
P(ψ, τ1, τ2) = {x ∈ P | ψ(x) ≥ τ1 and ‖x‖ ≤ τ2}.

The following fixed point theorem is needed in the proof of our main results.

Lemma 4.1. [15, Theorem 3.2] Let F : Pλ → P be a completely continuous
operator. Assume that there exists a concave functional ψ satisfying ψ(x) ≤ ‖x‖
for all x ∈ P as well as real numbers λ ≥ ν1 > ν2 > 0 such that
(1) {x ∈ P(ψ, ν2, ν1) | ψ(x) > ν2} 6= ∅ and ψ(Fx) > ν2 if x ∈ P(ψ, ν2, ν1).

(2) Fx ∈ Pλ if x ∈ P(ψ, ν2, λ).

(3) ψ(Fx) > ν2 for any x ∈ P(ψ, ν2, λ) with ‖Fx‖ > ν1.
Then F has at least one positive fixed point in P(ψ, ν2, λ).

Proof of Theorem 4.1. Define the nonnegative continuous concave function ψ
by

ψ(y) = inf
t∈[0,+∞)

n∑
i=1

yi(t).

It is clear that ψ(y) ≤ ‖y‖ for all y ∈ P, and the mapping F : PR → P is com-

pletely continuous by Lemma 3.3. Let r be such that ρ
σΛβδ < r < min

{
R
n ,

σΛβδ
ρ

R
n

}
.

In Claims 1–4, we check the validity of the assumptions of Lemma 4.1, and then
we prove the existence of solutions to problem (3.2).
Claim 1: F (PR) ⊂ PR. Let y ∈ PR then for all, t ≥ 0

n∑
i=1

yi(t) ≤
n∑
i=1

‖yi‖1 ≤ ‖y‖ ≤ R and p(t)y′i(t) ≥ −‖y‖ ≥ −R.
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Assumptions (C1), (C2), and the definition of the function g in (3.3) guarantee
that for all positive t,

|(Fiy)(t)| =
∫ +∞

0

Hi(t, s)
∣∣∣gi(s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s)

)
− hi(s)

∣∣∣ds
≤
∫ +∞

0

Hi(s)(qi(s)
[
ai

(
y1(s), . . . , yn(s)

)
+ bi

(
y1(s), . . . , yn(s)

)]
×
[
ci

(
p(s)y′1(s), . . . , p(s)y′n(s)

)
+ di

(
p(s)y′1(s), . . . , p(s)y′n(s)

)]
ds

+

∫ +∞

0

Hi(s)hi(s)ds

≤
(

1 +
bi(‖y‖, . . . , ‖y‖)
ai(‖y‖, . . . ‖y‖)

)(
1 +

di(‖y‖, . . . , ‖y‖)
ci(‖y‖, . . . ‖y‖)

)
× ci(−‖y‖, . . . ,−‖y‖)

×
∫ +∞

0

Hi(s)(qi(s)ai
(
y1(s), . . . , yn(s)

)
ds+

∫ +∞

0

Hi(s)hi(s)ds

≤ 1

Mi

∫ +∞

0

Hi(s)qi(s)Mi

n∑
i=1

yi(s)ds+

∫ +∞

0

Hi(s)hi(s)ds

≤ RGi + Hi ≤ Λ
R

n
·

Passing to the supremum over t, we get

‖Fiy‖1 ≤ Λ
R

n
.

Moreover,

‖Fiy‖ ≤ Λ−1‖Fiy‖1 ≤
R

n
.

As a consequence

‖Fy‖ =

n∑
i=1

‖Fiy‖ ≤ R for all y ∈ PR.

Claim 2: The set
{
y ∈ P(ψ, r, Rn ) | ψ(y) > r

}
is nonempty because it contains

the constant function y0 ≡ ( Rn2 , . . . ,
R
n2 ). Indeed, ‖y0‖ =

n∑
i=1

‖yi,0‖1 = R
n and

ψ(y0) = inf
t∈[0,+∞)

n∑
i=1

yi,0(t) = R
n > r.

Claim 3: ψ(Fy) > r if y ∈ P(ψ, r, Rn ). Let y ∈ P(ψ, r, Rn ) then
n∑
i=1

yi(t) ≤ ‖y‖ ≤
R
n · Moreover, Lemma 2.1 yields

n∑
i=1

yi(t) ≥ σΛG(t)‖y‖ ≥ σΛ
βδ

ρ
ψ(y) ≥ σΛβδ

ρ
r.
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From inequality (4.4), we derive the estimates

ψ(Fy) = inf
t∈R+

n∑
i=1

(Fiy)(t)

≥ inf
t∈R+

n∑
i=1

∫ η

µ

Hi(t, s)×
(
gi

(
s, y1(s), . . . , yn, y

′
1(s), . . . , y′n(s)

)
− hi(s)

)
ds

≥ inf
t∈R+

n∑
i=1

∫ η

µ

σ(t)Hi(s)Lids =
σβδ

ρ

n∑
i=1

Li
∫ η

µ

Hi(s)ds > r.

Claim 4: ψ(Fy) > r for all y ∈ P(ψ, r,R) with ‖Fy‖ > R
n . Let y be an element

of P(ψ, r,R). By Lemma 3.3, Fy ∈ P. Therefore, Lemma 2.1 implies that
n∑
i=1

(Fiy)(t) ≥ σΛG(t)‖Fy‖ ≥ σΛβδ
ρ ‖Fy‖ for all t ∈ R+. Consequently, the

following lower bounds hold

ψ(Fy) = inf
t∈[0,+∞)

n∑
i=1

(Fiy)(t) ≥ σΛG(t)‖Fy‖ > σΛ
βδ

ρ

R

n
≥ r.

Therefore, all of the conditions of Lemma 4.1 are satisfied with λ = R, ν1 = R
n ,

and ν2 = r. Hence, F has at least one positive fixed point y = (y1, . . . , yn) ∈
P(ψ, r,R). More precisely, problem (3.2) has at least one positive solution y
satisfying

‖y‖ ≤ R and

n∑
i=1

yi(t) ≥
σΛβδ

ρ
r for all t ≥ 0.

Claim 5: For the fixed point y, we have that Fy(t) ≥ ω(t) for all t ≥ 0. Otherwise,
there would exist some i0 ∈ {1, . . . , n} and t0 ∈ R+ such that

ωi0(t0)− (Fi0y)(t0) > 0.

Since Fy = y and ‖y‖ ≤ R, taking into account (3.3), (4.5), and the fact that
f is nondecreasing with respect to the second argument, we have yi0(t0) <
ωi0(t0) and

0 < ωi0(t0)− (Fi0y)(t0)

=

∫ +∞

0

Hi0(t0, s)
[
hi0(s)− gi0(s, y(s), y′(s)) + hi0(s)

]
ds

≤ −
∫ +∞

0

Hi0(t0, s)
[
fi0(s, ω(s), y′(s))− 2hi0(s)

]
ds ≤ 0,

which is contradictory. Indeed, at every point s ∈ [0,∞),

• either there exists some i1 ∈ {1, . . . , n} such that yi1(s) < ωi1(s), and
so, by (3.3),

gi0(s, y1(s), y′1(s)) = fi0(s, ωi1(s), y′1(s)),
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• or y(s) ≥ ω(s) where

gi0(s, y(s), y′(s)) = fi0(s, y(s), y′(s)) ≥ fi0(s, ω(s), y′(s))

for f nondecreasing with respect to the second argument.

We have proved that Fy ≥ ω > 0Rn . Therefore, y = F (y) and y is a positive
solution to problem (1.1) and satisfies

0 < ‖y‖ ≤ R,
n∑
i=1

yi(t) ≥
σΛβδ

ρ
r and y(t) ≥ ω(t) > 0Rn for all t ∈ R+.

�

Theorem 4.2. Assume that (C1) holds with nondecreasing functions ai,
i ∈ {1, . . . , n}, and that (C0), (C′2), and (C3) hold together with (3.5) and (4.5).

Then problem (1.1) has at least one positive solution y ∈ P satisfying the same
properties as in Theorem 4.1.

Proof. The proof is similar to that of Theorem 4.1 with slight modifications in
Claim 1. The other steps are identical. Given y ∈ PR, for all positive t, we have
n∑
i=1

yi(t) ≤ ‖y‖ ≤ R and p(t)y′i(t) ≥ −‖y‖ ≥ −R. Thus, for all positive t, from

Assumptions (C1), (C′2), and the definition of g, we get the estimates

|(Fiy)(t)| =
∫ +∞

0

Hi(t, s)
∣∣∣gi(s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s)

)
− hi(s)

∣∣∣ds
≤
∫ +∞

0

Hi(s)(qi(s)
[
ai

(
y1(s), . . . , yn(s)

)
+ bi

(
y1(s), . . . , yn(s)

)]
×
[
ci

(
p(s)y′1(s), . . . , p(s)y′n(s)

)
+ di

(
p(s)y′1(s), . . . , p(s)y′n(s)

)]
ds

+

∫ +∞

0

Hi(s)hi(s)ds

≤ (1 +
bi(R, . . . , R)

ai(R, . . . R)
)(1 +

di(R, . . . , R)

ci(R, . . . R)
)× ci(−R, . . . ,−R)Ki + Hi

≤ Λ
R

n
.

�

Next, we apply the Leggett-Williams fixed point theorem to prove the existence
of three nonnegative solutions to problem (1.1). This a variant of Lemma 4.1.

Lemma 4.2. [15, Theorem 3.3] Let F : Pλ → Pλ be a completely continu-
ous operator. Assume that there exists a concave positive functional ψ satisfying
ψ(x) ≤ ‖x‖ for all x ∈ P, and the constants ν1, ν2 and ν3 with 0 < ν3 < ν2 <
ν1 ≤ λ satisfy the following conditions:
(1) {x ∈ P(ψ, ν2, ν1) | ψ(x) > ν2} 6= ∅ and ψ(Fx) > ν2 if x ∈ P(ψ, ν2, ν1).

(2) ‖Fx‖ < ν3 if x ∈ Pν3 .

(3) ψ(Fx) > ν2 for all x ∈ P(ψ, ν2, λ) with ‖Fx‖ > ν1.
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Then F has at least three fixed points x1, x2, x3 in Pλ such that

‖x1‖ < ν3, ψ(x2) > ν2, and ‖x3‖ > ν3 with ψ(x3) < ν2.

We have the following theorem.

Theorem 4.3. Suppose that (C0)-(C2) and (C3) hold and there exists a constant

0 < R̃ < r, where r is defined as in (C3) such that

R̃Gi + Hi ≤ R̃Λ/n,(4.6)

and

ai(y1, . . . , yn)
n∑
i=1

yi

≤ Ni for all

n∑
i=1

ωi ≤
n∑
i=1

yi ≤ R̃,(4.7)

where

N−1
i =

(
1 +

bi(R̃, . . . , R̃)

ai(R̃, . . . , R̃)

)(
1 +

di(R̃, . . . , R̃)

ci(R̃, . . . , R̃)

)
ci

(
− R̃, . . . ,−R̃

)
.

Then problem (1.1) has at least three positive solutions y1, y2, y3 ∈ P such that

0 < ‖y1‖ ≤ R̃, and for all positive t, yi(t) ≥ ω(t) > 0Rn , (i = 1, 2, 3),

n∑
i=1

y2,i(t) ≥ r and ‖y3‖ ≥ R̃ with

n∑
i=1

y3,i(t) ≤ r.

Proof. The proof of these results follows from Lemma 4.2 and Theorem 4.1,

with λ = R, ν1 = R
n , ν2 = r and ν3 = R̃ by following the same arguments as in

Claims 1–5. �

Remark 4.2. Notice that all of solutions in Theorems 4.1, 4.2, and 4.3 are
positive, hence nontrivial; indeed,

y(t) ≥ ω(t), for all t ∈ R+

for every solution y.

We close this section with a nonexistence result.

Theorem 4.4. For each i ∈ {1, . . . , n}, assume that

fi(t, y1, . . . , yn, z1, . . . , zn) ≥ h(t) for all t∈R+, yi∈R+ and zi ∈ R.

fi(t, y1, . . . , yn, z1, . . . , zn)− h(t) ≥ Li
n∑
i=1

yi for all t ∈ [µ, η], yi∈R+ and zi∈R,

where Li =
ρ

σβδ

( ∫ η
µ
Hi(s)ds

)−1
.

Then problem (1.1) has no positive solution.
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Proof. On the contrary, assume that system (1.1) has a positive solution y ∈ X.

Then for all t ∈ [µ, η],
n∑
i=1

yi ≥ 0, zi ∈ R (i ∈ {1, . . . , n}), we have

n∑
i=1

yi(t) ≥ yi(t)

=

∫ +∞

0

Hi(t, s)
(
fi

(
s, y1(s), . . . , yn(s), y′1(s), . . . , y′n(s)

)
− hi(s)

)
ds

>
σβδ

ρ

∫ η

µ

Hi(s)Li
n∑
i=1

yi(s)ds

≥ min
t∈[µ,η]

n∑
i=1

yi(t),

contradicting the continuity of the functions yi on the compact interval [µ, η]. �

Remark 4.3. The results of this paper still hold true if in problem (1.1), we
replace the four parameters α, β, γ, and δ by diag(α1, . . . , αn), diag(β1, . . . βn),
diag(γ1, . . . , γn), and diag(δ1, . . . , δn), respectively.

5. Example

Consider the six-point boundary value problem

(5.1)



−(p(t)y′1(t))′ = f1(t, y1(t), y2(t), y′1(t), y′2(t))− h1(t), t > 0,

−(p(t)y′2(t))′ = f2(t, y1(t), y2(t), y′1(t), y′2(t))− h2(t), t > 0,

3
2y1(0)− p(0)y′1(0) = 1

4y1( 1
2 ) + 1

8y1(1),

1
2 lim
t→+∞

y1(t) + 3
2 lim
t→+∞

p(t)y′1(t) = 1
9y1( 1

2 ) + 1
3y1(1),

3
2y2(0)− p(0)y′2(0) = 1

4y2( 1
3 ) + 1

9y2( 2
3 ),

1
2 lim
t→+∞

y2(t) + 3
2 lim
t→+∞

p(t)y′2(t) = 3
8y2( 1

3 ) + y2( 2
3 ),

where

f1(t, y1, y2, z1, z2) = q1(t)
[
a1

(
y1, y2

)
+ b1

(
y1, y2

)]
× [c1

(
p(t)z1, p(t)z2

)
+ d1

(
p(t)z1, p(t)z2

)
],

f2(t, y1, y2, z1, z2) = q2(t)
[
a2

(
y1, y2

)
+ b2

(
y1, y2

)]
× [c2

(
p(t)z1, p(t)z2

)
+ d2

(
p(t)z1, p(t)z2

)
],

p(t) = 100 + t2, q1(t) = e−8t, q2(t) = e−8t, h1(t) = e−12t, h2(t) = e−14t,
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a1

(
y1, y2

)
= e−

11
2 (y1 + y2)

4
3 , a2

(
y1, y2

)
= e−10(y1 + y2)

5
4 ,

b1

(
y1, y2

)
= e−6(y1 + y2 + e9)

5
3 , b2(y2, y2) = e−10(y1 + y2 + e8)2,

c1

(
z1, z2

)
=

e−10

(z1 + z2 + e10)2
, d1

(
z1, z2

)
=

e−5

(z1 + z2 + e10)4
+

1

40
,

c2(z1, z2) =
e−2

(z1 + z2)2
, d1

(
z1, z2

)
=

e−10

(z1 + z2 + 100)4
+

1

60
·

Then problem (5.1) has at least one positive solution.

Proof. BVP (5.1) can be regarded as a boundary value problem of the form
(1.1). Obviously (C1) holds and α = 3

2 , β = 1, γ = 1
2 , δ = 3

2 , and µi ≡ νi ≡ 1,
i = 1, 2. Moreover,

ξ1(t) =


0, t ∈

[
0,

1

2

)
,

1

4
, t ∈

[1

2
, 1
)
,

3

8
, t ∈ [1,+∞),

η1(t) =


0, t ∈

[
0,

1

2

)
,

1

9
, t ∈ [

1

2
, 1),

4

9
, t ∈ [1,+∞),

ξ2(t) =


0, t ∈

[
0,

1

3

)
,

1

4
, t ∈

[1

3
,

2

3

)
,

13

36
, t ∈

[2

3
,+∞

)
,

η2(t) =


0, t ∈

[
0,

1

3

)
,

3

8
, t ∈

[1

3
,

2

3

)
,

11

8
, t ∈

[2

3
,+∞

)
.

Then∫ +∞

0

µ1(s)y1(s)dξ1(s) = y1

(1

2

)(
ξ1

(1+

2

)
− ξ1

(1−

2

))
+ y1(1)(ξ1(1+)− ξ1(1−))

= y1

(1

2

)(1

4
− 0
)

+ y1(1)
(3

8
− 1

4

)
=

1

4
y1

(1

2

)
+

1

8
y1(1),∫ +∞

0

µ2(s)y2(s)dξ2(s) = y2

(1

3

)(
ξ2(

1+

3

)
−ξ2

(1−

3

))
+y2

(2

3

)
(ξ2

(2+

3

)
−ξ2

(2−

3

))
= y2

(1

2

)(1

4
− 0
)

+ y2(1)
(13

36
− 1

4

)
=

1

4
y2

(1

3

)
+

1

9
y2

(2

3

)
,∫ +∞

0

ν1(s)y1(s)dη1(s) = y1

(1

2

)(
η1

(1+

2

)
− η1

(1−

2

))
+ y1(1)(η1(1+)− η1(1−))

= y1

(1

2

)(1

9
− 0
)

+ y1(1)
(4

9
− 1

9

)
=

1

9
y1

(1

2

)
+

1

3
y1(1),
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∫ +∞

0

ν2(s)y2(s)dη2(s) = y2

(1

3

)(
η2(

1+

3

)
−η2

(1−

3

))
+y2

(2

3

)(
η2

(2+

3

)
−η2

(2−

3

))
= y2

(1

2

)(3

8
− 0
)

+ y2(1)
(11

8
− 3

8

)
=

3

8
y2

(1

3

)
+ y2

(2

3

)
,

and so∫ +∞

0

µ1(s)dξ1(s) =
1

4
+

1

8
=

3

8
<∞,

∫ +∞

0

µ2(s)dξ2(s) =
1

4
+

1

9
=

13

36
<∞,∫ +∞

0

ν1(s)dη1(s) =
1

9
+

1

3
=

4

9
<∞,

∫ +∞

0

ν2(s)dη2(s) =
3

8
+ 1 =

11

8
<∞.

Therefore, (C0) holds true. We can also compute

k
(1)
1 ' 0.3847, k

(1)
3 ' 0.2933, k(1) ' 0, 0892,

and

k
(2)
1 ' 0.3707, k

(2)
3 ' 0.9033, k(2) ' 0.2641,

so that (2.7) is satisfied.
In order to check (4.2) and (4.1) in Assumption (C2), we calculate A ' 0.1571,

ρ ' 2.8678, σ ' 1.4703, Λ = 2/3, and

2 max
{ ρ

σβδΛ
,
( ρ

σβδΛ

)2}
' 76.0870.

Then we can choose R = 100. Moreover, we have(
G1, G2

)
≤
(
A1

∫ +∞

0

q1(s)ds, A2

∫ +∞

0

q2(s)ds
)
' (0.1381, 0.2964),

(
H1, H2

)
≤
(
A1

∫ +∞

0

q1(s)ds, H2

∫ +∞

0

q2(s)ds
)
' (0.0921, 0.1694).

Hence (
G1R+ H1,G2R+ H2

)
≤ (13.9014, 29.8064)

≤ (100/3, 100/3) = (RΛ
2 , R

Λ
2 )·

In addition, for y1 + y2 ≤ R,

a1(y1, y2)
2∑
i=1

yi

=
e−

11
2 (y1 + y2)

4
3

(y1 + y2)
≤ 0.0190 ≤M1 = 0.0218

and

a2(y1, y2)
2∑
i=1

yi

=
e−10(y1 + y2)

5
4

(y1 + y2)
≤ 1.1404× 10−4 ≤M2 = 4.9546× 10−4.
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Consequently, (4.2) and (4.1) in Assumption (C2) are both satisfied. Since
ρ

σΛβδ ' 1.9505 and min
{
R
2 ,

σΛβδ
ρ

R
2

}
' 25.6348, we can choose r = 2. Then for

all t ∈ [µ, η] = [ 1
10 ,

1
3 ], σΛβδ

ρ r ≤
2∑
i=1

yi ≤ R
2 and (z1, z2) ∈ R2, we have

(5.2)
(
f1(t, y1, y2, z1, z2)− h1(t), f2(t, y1, y2, z1, z2)− h2(t)

)
≥
(
L1, L2

)
,

where (L1, L2) ' (13.7746, 0.2206). Hence (4.4) in Assumption (C3) is satisfied.
Also

2∑
i=1

ξi

∫ η

µ

Hi(s)ds ≥ 2.6883 ≥ 2.6006 ' r ρ

σβδ
.

Finally, for all t ∈ I, we have (y1, y2) ∈ R2
+, and (z1, z2) ∈ R2,(

f1(t, y1, y2, z1, z2), f2(t, y1, y2, z1, z2)
)
≥
( 1

40
e−8t+9,

1

60
e−8t+6

)
≥
(

2h1(t), 2h2(t)
)
.

Therefore, (3.5), (4.5) together with Assumptions (C0), (C1), (C2), and (C3) in The-
orem 4.1 are fulfilled. All the computations have been performed using Matlab 7.9.
As a consequence, the boundary value problem (5.1) has at least one nontrivial
positive solution y = (y1, y2) such that 0 < ‖y‖ ≤ 100 and y1(t) + y2(t) ≥ 1.0254
for all positive t. �
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