
Acta Math. Univ. Comenianae
Vol. LXXXV, 2 (2016), pp. 261–275

261

THERE ARE FINITELY MANY EVEN PERFECT

POLYNOMIALS OVER Fp WITH p+ 1 IRREDUCIBLE DIVISORS

L. H. GALLARDO and O. RAHAVANDRAINY

Abstract. For a fixed prime number p, we give necessary conditions for the ex-
istence of products of p + 1 distinct monic irreducible polynomials in one variable

over the finite field Fp, each raised to an arbitrary positive power. The polynomials

are even perfect polynomials; i.e., they have at least one root in Fp and are equal to
the sum of all their monic divisors. As a consequence, we prove that the set of such

polynomials is finite, and if q = p−1
2

is also prime, so that q is a Sophie Germain

prime and p is a safe prime, then it is empty. This is the first known finiteness result

for perfect polynomials. We might consider it as an analogue of Dickson’s result
that proves the finiteness of the set of odd perfect numbers with a fixed number of

distinct prime divisors, each raised to an arbitrary positive power.

1. Introduction

Let p be a prime number. For a monic polynomial A ∈ Fp[x], let

σ(A) =
∑

d |A, d monic

d

be the sum of all monic divisors of A (1 and A included). The restriction to monic
polynomials is necessary since the sum of all divisors of A with a given degree
is zero. Observe that A and σ(A) have the same degree. Let us call ω(A) the
number of distinct monic irreducible polynomials that divide A. The function
σ is multiplicative on co-prime polynomials while the function ω is additive (on
co-prime polynomials), a fact that is used many times without more reference in
the rest of the paper.

Throughout the paper, we assume that “a polynomial” means a monic polyno-
mial and the notion of irreducibility is defined over the ground field Fp.

We say that a polynomial A is perfect if σ(A) = A. It is even if it has at least
one root in Fp, and odd if it is not even (see [10] for more details).

The first and most important results about perfect polynomials appear in the
work of Canaday [4] and Beard et al. ([1], [2]). We obtained (see [7], [8], [9],
[10] and the references therein) some results about even, odd or splitting perfect
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polynomials that generalize the work of Canaday and Beard et al.. For an odd
prime p, we began [10] to study, perfect polynomials over Fp with p+1 irreducible
factors, since the case p = 2 was already resolved in ([4, Theorem 9 ], [8, Theorem
3.1]). Moreover, we completely solved the case p = 3 (see [10, Theorem 1.1 and
Theorem 1.2]). In this paper, we substantially improve [10] for the case of even
perfect polynomials and get the following result.

Theorem 1.1. Let p be an odd prime number. Then the even perfect polynomi-
als A(x) over Fp with ω(A(x)) = p+ 1 irreducible factors form a finite set (which
may be empty). Then for some ξ ∈ Fp,

A(x+ ξ) =

p∏
j=1

(x+ j)Nj−1 ·Q,

where Np - p− 1, Nj | p− 1 for any j 6= p. Moreover, the Nj’s and Q also satisfy
one of the following conditions:
(1) Np = 4, Q = 1+x2, Nj1 = 2 for a unique j1, Nj ≥ 3 if j 6= j1, p ≡ 3 mod 8,

(2) Np is an odd prime, Q = σ(xNp−1) is irreducible, 1 +Q splits over Fp,
Nj1 = Np − 1 for a unique j1, 3 ≤ Np ≤ p−3

2 , Nj > Np if j 6∈ {j1, p},
(3) Np is an odd prime, Q = σ(xNp−1) is irreducible, 1 +Q splits over Fp,

5 ≤ Np ≤ p−3
2 , Nj > Np for any j 6= p.

Remark 1.2. In (1) (resp., in (2) with Np = 3), the irreducibility condition
on Q and the splitting of 1 + Q are equivalent to the congruence: p ≡ 3 mod 8
(see Lemma 3.19) (resp. p ≡ 2, 8 or 11 mod 21). Moreover, if p = 3, our present
result in (1) immediately implies our [10, Theorem 1.2].

Remark 1.3. The core of our proof of Theorem 1.1 (see Section 3) is to prove
that the set of the Nj ’s above is finite.

Observe that for any given positive integer w, there are infinitely many polyno-
mials A ∈ Fp[x] with ω(A) = w, so potentially an infinity of perfect polynomials
with ω(A) = w may exist. However, for example, if p = 2 and w = 3, ([4, Theorem
9 ], [8, Theorem 3.1]), we get exactly four polynomials:

x(x+ 1)2(x2 + x+ 1), x2(x+ 1)(x2 + x+ 1),

x3(x+ 1)4(x4 + x3 + 1), x4(x+ 1)3(x4 + x3 + x2 + x+ 1).

If p is odd and w = p, we know only (see [9, Theorem 1.2]) a unique odd perfect
polynomial L ∈ Fp[x]. More precisely, one has L =

∏
a∈Fp((x+ a)2− 3/8)2, where

p ≡ 11, 17 mod 24. We do not know whether or not there are more odd perfect
polynomials.

Nevertheless, albeit concerning the special case w = p+ 1, the finiteness result
given by Theorem 1.1 is a new important result that might be considered as a
kind of “analogue” to the Dickson’s result [5] over the integers. No other finite-
ness results for perfect polynomials seem known. The best one that we obtained
concerns only the exponents of the irreducible polynomials dividing odd perfect
polynomials over Fp with w = p (see [9, Theorem 1.1]).
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We get (Corollary 1.4) a more precise result if p is a safe primedefined as a
prime number of the form 2r + 1, where r is also a prime. In this case, the prime
r is called a Sophie Germain prime. The sequence of safe primes is A005385 in
the OEIS [15], whereas that of Sophie Germain primes is A005384 and begins

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293.

A recent theoretical paper on Sophie Germain primes is [14]. Most papers on
this subject are computational ones, e.g., [6], [11], [17]. It is believed that both
sequences (Sophie Germain and safe primes) are infinite.

Our second main result is the following corollary.

Corollary 1.4. If p is a safe prime, then there exists no even perfect polynomial
over Fp with p+ 1 irreducible divisors.

In (2) and (3) of Theorem 1.1, the only irreducible odd divisor Q = σ(xNp−1)
of A must satisfy: 1 + Q splits over Fp. For a given polynomial, the splitting
condition over Fp, may be satisfied for infinitely many values of p as it is explained
in a paper of J. P. Serre ([16, Theorem 1, part (a)]). But it is more difficult to
find examples of irreducible Q’s with the condition 1 +Q splits over Fp. However,
this may occur. Indeed, one has

(x− 1)(1 +Q) = xNp + x− 2,

so 1 + Q splits if and only if xNp + x − 2 splits. Below, we give some numerical
values of Np and p (obtained by Maple computations) for which this is possible.
For instance, there are only four such primes p < 109 when Np = 11.

Np 5 5 5 5 7 7 11 11 11 11

p 227 313 467 613 8069 10601 220316791 239909909 435731447 758471447

2. Useful facts

By N (resp. by N∗) as usual, we denote the set of nonnegative integers (resp., of
positive integers). For a set Λ, we denote the cardinal of Λ by #Λ.

For polynomials A,B ∈ Fp[x], we write An‖B if An | B but An+1 - B.

Definition 2.1. We say that a polynomial P is a minimal irreducible divisor of
A if P is irreducible, P divides A and deg(P ) ≤ deg(R) for any irreducible divisor
R of A.

Basic but important results are the following ones.

Lemma 2.2. Let p be a prime number and A ∈ Fp[x] be a perfect polynomial.
Then

i) for any ξ ∈ Fp, A(x+ ξ) is also perfect,

ii) the number of minimal irreducible divisors of A is a multiple of p,

iii) if ω(A) = p+ 1, then A may be written as

A = P a11 · · ·P app ·Qb, where aj , b ∈ N∗ and deg(Pj) = deg(P1) < deg(Q).
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Proof. i) is obvious, ii) is [7, Lemma 2.5 ] and iii) follows from ii). �

We also recall some known necessary conditions on A (see [10, Theorem 1.1])
that we improve for A even.

Proposition 2.3. Let p be an odd prime number. Let A = P a11 · · ·P
ap
p Qb be a

perfect polynomial over Fp with p+ 1 irreducible factors and deg(Q) > deg(Pj) =
deg(P1) for any j. Then

i) A is even or at least one of the numbers aj, j ∈ {1, . . . , p} is even,

ii) for at least one j ∈ {1, . . . , p}, aj is of the form Njp
nj − 1 with Nj , nj ∈ N,

Nj ≥ 1, p - Nj and Nj - p− 1,

iii) either p - b+ 1, or b ∈ {p− 1, 2p− 1} and deg(P1) | deg(Q).

Notation 2.4. In the rest of the paper, we fix an odd prime number p. Accord-
ing to Lemma 2.2-iii) for an even perfect polynomial A ∈ Fp[x] with ω(A) = p+ 1,
we put

A =

p∏
i=1

P aii ·Q
b, where Pi := x+ i, ai, b ∈ N∗ and deg(Q) ≥ 2,

ai = Nip
ni − 1, b = Mpm − 1, Ni, ni,M,m ∈ N, Ni,M ≥ 1, p - Ni, p -M.

However, if a more precision is necessary, we sometimes write x+ i instead of Pi.

Remark 2.5. From the perfectness of A and the multiplicativity of σ, we get
p∏
i=1

σ(Pi
ai)σ(Qb) = σ(A) = A =

p∏
i=1

Pi
aiQb =

p∏
i=1

(x+ i)aiQb.(2.1)

In Section 3, we often use Lemma 2.6 and some properties of cyclotomic poly-
nomials (for more details, see [12, Definition 2.44, Theorems 2.45 and 2.47]).

Lemma 2.6. ([10, Lemma 2.6]) Let p,N ∈ N such that p is an odd prime and
p - N . Let U ∈ Fp[x] be an irreducible polynomial. If σ(UN−1) = Qc11 · · ·Q

ct
t ,

where each Ql is irreducible, gcd(U,Ql) = 1 and deg(U) ≤ deg(Ql) for any l, then
cl ∈ {0, 1} for any l.

By QN (x) ∈ Fp[x], we denote the Nth cyclotomic polynomial over Fp for a
positive integer N not divisible by p.

Lemma 2.7.
i) One has xN − 1 =

∏
d|N

Qd(x) and σ(xN−1)=
∏

d|N, d6=1

Qd(x).

ii) The polynomial QN (x) in Fp[x] factorizes into
ϕ(N)

d
distinct monic irre-

ducible polynomials of the same degree d, where ϕ is the Euler totient func-
tion and d is the least positive integer such that pd ≡ 1 mod N .

Immediate consequences follow.

Corollary 2.8.
i) If d 6= v are divisors of N , then gcd(Qd(x),Qv(x)) = 1.
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ii) The polynomial QN (x) splits over Fp if and only if N | p− 1.

iii) If QN (x) is reducible and does not split over Fp, then QN (x) has at least
two irreducible odd factors.

iv) If N is prime, then QN (x) is irreducible over Fp if and only if p is of order
ϕ(N) = N − 1 modulo N .

Proof. We get i) since xN − 1 =
∏
d|N

Qd(x) is square free.

ii), iii) and iv) come from Lemma 2.7-ii) with d = 1, d ≥ 2 and d = N − 1,
respectively. �

3. The proof of Theorem 1.1

We refer to Notation 2.4.

3.1. Necessary conditions on the aj’s, Q and b

According to Proposition 2.3, Q and b must satisfy

either p - b+ 1, or b ∈ {p− 1, 2p− 1},

and at least one of the Nj ’s does not divide p − 1. In this section, we prove the
following proposition.

Proposition 3.1. If A is an even perfect polynomial with ω(A) = p+ 1, then
for some ξ ∈ Fp,

A(x+ ξ) =

p∏
j=1

(x+ j)Njp
nj−1 ·Qb,

where Q is irreducible, 1 + Q splits over Fp, np = nj = 0, Nj | p − 1 for any
j 6= p, b = 1 and
either Np = 4, Q = 1 + x2, or Np is prime, Np - p− 1, Q = σ(xNp−1).

We consider the following subsets of {1, . . . , p}:

Λ := {i : ni = 0}, Σ1 := {i : Q | σ(P aii )}, Σ2 := {i : Q - σ(P aii )}.

Lemma 3.2. One has Σ1 ∩ Σ2 = ∅, Σ1 ∪ Σ2 = {1, . . . , p} and Σ1 6= ∅.

Proof. The first two equalities are obviously true. Now, if Σ1 = ∅, then for any
i, Q - σ(P aii ). Since Q - σ(Qb), from Equalities (2.1) in Remark 2.5, we see that
Q does not divide A, which is impossible. �

From Lemma 2.2-i), without loss of generality, we may suppose that p ∈ Σ1.
Put

N := Np, n := np and a := ap = Npn − 1.
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3.1.1. First reductions.

Lemma 3.3.
i) If j ∈ Λ r Σ1, then aj ≤ p− 2.

ii) If j ∈ Λ r Σ1 and if Pj | σ(Pk
ak), then k ∈ Λ.

Proof. i) One has

aj = Nj − 1, p - Nj , σ(Pj
aj ) =

∏
l 6=j

Pl
αlj ,

where αlj ∈ {0, 1} by Lemma 2.6.
Thus aj =

∑
l 6=j αlj ≤ p− 1 and aj = Nj − 1 6= p− 1 since p - Nj .

ii) If nk ≥ 1, then the exponent of Pj in σ(Pk
ak) is at least pnk − 1. Hence, from

i), pnk − 1 ≤ aj ≤ p− 2. It is impossible. �

Lemma 3.4.
i) If j 6∈ Σ1, then Nj | p− 1.

ii) If j − 1, j 6∈ Σ1 and if nj ≥ 1, then nj−1 ≥ 1.

Proof. Again, we consider equalities (2.1) in Remark 2.5.
i) If Q - σ(Pj

aj ), then σ(Pj
aj ) must split over Fp, and thus Nj | p− 1.

ii) If nj ≥ 1, then (Pj−1)p
nj−1 | σ(Pj

aj ), and thus aj−1 ≥ pnj − 1 ≥ p− 1. Hence,
we must have nj−1 ≥ 1, by Lemma 3.3-i). �

Proposition 3.5. The polynomial Q is exactly QN (x), and for any proper
divisor l of N , the l-th cyclotomic polynomial Ql(x) splits over Fp.

Proof. Equalities (2.1) (Remark 2.5) imply that σ(Pp
ap) divides A. Moreover,

σ(Pp
ap) = σ(xa) = σ(xNp

n−1) and

σ(xNp
n−1) = (x− 1)p

n−1(1 + x+ · · ·+ xN−1)p
n

= (x− 1)p
n−1(σ(xN−1))p

n

.

If Q divides σ(xa), then σ(xN−1) is of the form P1
α1 . . . Pp

αpQα, where by
Lemma 2.6, each αj ∈ {0, 1} and α = 1. By Corollary 2.8, we get∏

d|N, d6=1

Qd(x) = σ(xN−1) = P1
α1 · · ·Ppαp ·Q.

If both d and v divide N with d 6= v, then gcd(Qd(x),Qv(x)) = 1 and there
exists a unique divisor m of N such that Qm(x) = Q and Ql(x) splits for any
divisor l of N , distinct from m. We claim that m = N . If m 6= N , then QN (x)
splits, so N | p − 1, and thus xN − 1 and σ(xN−1) split. It is impossible because
Q | σ(xN−1). �

Corollary 3.6. The integer N and the prime number p satisfy

N = qu, where q is a prime number and u ∈ N∗, p = qu−1v + 1 with q - v.

Proof. If we write N = q1
u1 . . . qr

ur with each qj prime and uj ∈ N∗, and
if r ≥ 2, then for any j, qj

uj 6= N . So Qqjuj (x) splits, and thus qj
uj divides

p − 1. Hence N = q1
u1 . . . qr

ur divides p − 1, which is impossible. So, r = 1 and
N = q1

u1 .
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Again, as above, q1
u1−1 divides p − 1, whereas q1

u1 = N does not. So p =
q1
u1−1 · v + 1, where q1 - v. �

Corollary 3.7.
i) If u = 1, then N = q is prime, N - p− 1 and Q = σ(xN−1).

ii) If u ≥ 2, then q = 2, u = 2, so that N = 4, Q = Q4(x) = 1 + x2.

Proof. i) Proposition 3.5 and Lemma 2.7-i) imply Q = QN (x) = σ(xN−1) since
N is prime.
ii) If q is odd, then q ≥ 3. Since p = 1 + qu−1v ≡ 1 mod qu−1, one has

pq = (1 + qu−1v)q = 1 +

q−1∑
l=1

(
q

l

)
vlq(u−1)l + vqq(u−1)q.

But (u− 1)q ≥ u and for any 1 ≤ l ≤ q − 1, q |
(
q
l

)
and 1 + (u− 1)l ≥ u, we get

qu |
(
q

l

)
· q(u−1)l and qu | q(u−1)q.

Thus,

pq ≡ 1 mod N and p
ϕ(N)

2 ≡ 1 mod N since q divides qu−1 · q − 1

2
=
ϕ(N)

2
.

Hence, QN (x) is reducible, which is impossible. So, q = 2 and N = 2u.
Now, p ≡ 1 mod 2u−1, and thus p2 ≡ 1 mod N . Since p 6≡ 1 mod N , QN (x)

has ϕ(N)
2 irreducible divisors of degree 2 and from its irreducibility, one has

2u−2 =
ϕ(N)

2
= 1, u = 2 and p = 2v + 1 with v odd.

Therefore, N = 4 and Q = Q4(x) = 1 + x2. �

Lemma 3.8. ([10, Lemma 4.13]) Let p be an odd prime number. If σ(xa) is
irreducible over Fp and if σ(xa) = σ((x+ µ)a) for some µ ∈ Fp, then µ = 0.

Corollary 3.9.
i) One has: #Σ1 = 1 and b = pnl if Σ1 = {l}.

ii) The polynomial 1 +Q must split over Fp.

Proof. i) If #Σ1 ≥ 2, then we may suppose that {j, p} ⊂ Σ1 for some j 6= p.
Hence, by Corollary 3.7 and by Lemma 3.8

Q ∈ {1 + x2, σ(xN−1)} ∩ {1 + (x+ j)2, σ((x+ j)Nj−1)} = ∅, which is impossible.

So, we may put Σ1 = {l}. One has

Qp
nl ‖ σ((x+ l)al), Qp

nl ‖ σ(A) = A, and b = pnl .

ii) b is odd by i), so 1+Q divides σ(Qb), and hence it divides σ(A) = A. Therefore,
1 +Q must split over Fp. �
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3.1.2. Consequences of the splitting condition on 1+Q. We have just seen
that 1 +Q must split over Fp. If N = 4 so that Q = 1 + x2, then (−2) is a square
in Fp. If N is an odd prime number, then

1 +Q = 1 + σ(xN−1) =
xN + x− 2

x− 1
.

So, 1 +Q splits if and only if xN + x− 2 splits.
In this section, we give some properties obtained from the splitting condition

over Fp on the polynomial xN + x− 2, where N is an odd prime number.

Put

S := xN + x− 2

and suppose that S splits (here, S may not be square free)

S = (x− ξ1) . . . (x− ξN ), where each ξj ∈ Fp r {0} and ξ1 = 1.

Consider the elementary symmetric polynomials of these N roots of S

s1 :=

N∑
j=1

ξj , s2 :=
∑

1≤j<k≤N

ξj · ξk, . . . ,

sN := ξ1 · · · ξN , sm := 0 if m > N,

and Newton’s Formula (see, e.g., [13])

Tm :=

N∑
j=1

(ξj)
m

=

m−1∑
j=1

(−1)j−1 · sj · Tm−j + (−1)m−1 ·m · sm for m ∈ N.

Lemma 3.10. One has

T0 = N, Tj = 0 if 1 ≤ j ≤ N − 2,
TN−1 = −(N − 1)sN−1 = −N + 1, TN+j = −Tj+1 + 2Tj for any j ∈ N.

In particular,

TN = 2N, Tj = 0 if N + 1 ≤ j ≤ 2N − 3,
T2N−2 = N − 1, T2N−1 = −4N + 2,
T2N = 4N, Tp−1 = −Tp−N + 2Tp−1−N .

Proof. We get

xN + x− 2 = xN − s1xN−1 + · · ·+ (−1)N−1sN−1 x+ (−1)NsN ,

and since N is odd

s1 = · · · = sN−2 = 0, sN−1 = 1, sN = 2, sm = 0 if m ≥ N + 1.

Therefore, Newton’s formula gives

T0 = N, Tj = 0 if 1 ≤ j ≤ N − 2,
TN−1 = −(N − 1)sN−1 = −N + 1, TN+j = −Tj+1 + 2Tj for any j ∈ N.
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Thus
TN = 2N,

TN+j = 0 if 1 ≤ j ≤ N − 3,
T2N−2 = −TN−1 + 2TN−2 = −(−N + 1) + 0 = N − 1,
T2N−1 = −2N + 2(−N + 1) = −4N + 2,
T2N = −0 + 2(2N) = 4N,

T2N+1 = −TN+2 + 2 · 0 = −TN+2,
Tp−1 = TN+p−N−1 = −Tp−N + 2Tp−1−N .

�

Corollary 3.11. If N is an odd prime number such that N - p − 1 and if
S = xN + x− 2 splits over Fp, then

N = 3 and (−7) is a square in Fp, or 5 ≤ N ≤ p− 3

2
≤ p− 2.

In particular, p ≥ 2N + 3.

Proof.
• If N = 3, then S = x3 + x − 2 = (x − 1)(x2 + x + 2) and the discriminant

of x2 + x + 2 is −7. So, (−7) must be a square in Fp. Therefore, p ≡ 1, 2, 4
mod 7 (use Legendre symbol). So, p ≥ 11 ≥ 2 · 3 + 3.

• Now, we suppose that N ≥ 5. We remark that

Tp−1 =

N∑
j=1

(ξj)
p−1

=

N∑
j=1

1 = N.

Since both p and N are odd (and prime), we must have

p 6∈ {N − 1, N + 1}, and thus (p ≤ N − 2) or (p ≥ N + 2).

From Lemma 3.10, we get the following contradictions (modulo p):
– If p ≤ N − 2, then p− 1 ≤ N − 3, so 0 = Tp−1 = N.
– If N + 2 ≤ p ≤ 2N − 2, then 1 ≤ p− 1−N ≤ p−N ≤ N − 2, so

0 = −Tp−N + 2Tp−N−1 = Tp−1 = N.

– If p = 2N − 1, then N − 1 = T2N−2 = Tp−1 = N.
– If p = 2N + 1, then 4N = T2N = Tp−1 = N with N ≥ 5, p ≥ 11.
We conclude that p ≥ 2N + 3.

�
Corollary 3.12. One has #Λ ∈ {0, p}.

Proof. By Corollary 3.9 and Lemma 2.2-i) and suppose without loss of gener-
ality, we may that Σ1 = {p}.

– If np−1 ≥ 1, then by Lemma 3.4, one has np−2 ≥ 1. Again by the same
lemma, we get np−3 ≥ 1 and so on np−4, . . . , n1 ≥ 1.

Since Np = N ≤ p− 2 by Corollary 3.11 and since xp
n1−1‖σ(P1

a1), we get

N · pnp − 1 = ap ≥ pn1 − 1 ≥ p− 1, and thus np ≥ 1.

So, nj ≥ 1 for any j, and Λ = ∅.
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– If np−1 = 0, since p− 1 6∈ Σ1, we get

p− 2 ≥ Np−1 − 1 ≥ pnp − 1, and thus n = np = 0.

By the same argument, one has n1 = 0, . . . , np−2 = 0.
So for any j, nj = 0 and #Λ = p.

�

Lemma 3.13. Let U be an irreducible polynomial over Fp and v ∈ N. Then

i) gcd(1 + U, 1 + (U2)1 + · · ·+ (U2)
pv−1

2 ) = 1.

ii) If σ(Up
v

) splits over Fp, then v = 0.

Proof. i) If T is a common irreducible divisor of 1 + U and 1 + (U2)1 + · · · +
(U2)

pv−1
2 , then one has modulo T

U ≡ −1, U2 ≡ 1 and
pv + 1

2
≡ 1 + (U2)1 + · · ·+ (U2)

pv−1
2 ≡ 0.

Thus
pv + 1

2
≡ 0 mod p, which is impossible since p does not divide pv + 1.

ii) Put
Up

v+1 − 1

U − 1
= σ(Up

v

) =
∏
j

(x− ξj)αj ,

where each ξj lies on Fp and αj ∈ N∗.
If v ≥ 1, then one has∏

j

(x− ξj)αj = σ(Up
v

) = (1 + U) ·
(

1 + (U2)1 + · · ·+ (U2)
pv−1

2

)
,

where gcd
(

1 + U, 1 + (U2)1 + · · ·+ (U2)
pv−1

2

)
= 1 by i).

We obviously remark that U(ξj) 6= 1 for any j. So

U(ξj) + 1 =
(U(ξj))

2 − 1

U(ξj)− 1
=

(U(ξj))
pv · U(ξj)− 1

U(ξj)− 1
= (σ(Up

v

))(ξj) = 0.

Thus
∏
j(x − ξj) divides 1 + U . It follows that 1 + (U2)1 + · · · + (U2)

pv−1
2 = 1,

which is impossible because v ≥ 1. �

Corollary 3.14. If A = P1
a1 · · ·Ppap · Qb is perfect, then b = 1 and for any

j ∈ {1, . . . , p},
nj = 0, aj = Nj − 1 ≤ p− 2, where Nj | p− 1 if j 6∈ Σ1.

Proof. We also need Corollary 3.9 and Lemma 2.2-i) in order to suppose that
Σ1 = {p}. We apply Lemma 3.13 with U = Q and v = np. We get

np = 0 and b = pnp = 1.

Therefore, Λ 6= ∅, and thus Λ = {1, . . . , p} by Corollary 3.12.
We know that Np ≤ p − 2 and for any j 6= p, Nj | p − 1 by Lemma 3.4-i), since
j 6∈ Σ1. �

We obtain Proposition 3.1 from Proposition 3.5, Corollaries 3.7, 3.9 and 3.14.



THERE ARE FINITELY MANY EVEN PERFECT POLYNOMIALS 271

3.2. More precisions about the Nj’s

We recall that for some ξ ∈ Fp, A(x+ ξ) =
∏p
j=1(x+ j)Nj−1 ·Q, Nj | p−1 if j 6= p

and either (Np = 4, Q = 1 + x2) or (Np odd prime, Q = σ(xNp−1)).
We would like to give more details about the Nj ’s. We are mainly inspired by the
proof of [2, Theorem 1].
Put

B :=

p∏
j=1

(x+ j)Nj−1 and m := min{Nj : 1 ≤ j ≤ p}.

First, by Lemma 2.2-ii), one has m ≥ 2. We prove that #{j : Nj = m} = 1
and m ∈ {2, Np − 1, Np} which corresponds to the conditions (1), (2) and (3),
respectively, described in Theorem 1.1.

For l, λ ∈ N such that l ≤ deg(B), λ | p − 1 and 2 ≤ λ ≤ m, B(l) denotes
the sum of all distinct monic divisors of B degree deg(B) − l, where τB(l) is the
number of distinct summands of B(l) and Bλ := (xp−x)λ−1. We get next lemmas.

Lemma 3.15. Any polynomial of degree at most equal to λ − 1 divides B if
and only if it divides Bλ.

Proof. We may write B = Bλ ·
∏
Nj>λ

(x+ j)Nj−λ.

We obviously get D | Bλ ⇒ D | B.
Now, if D | B with deg(D) ≤ λ − 1, then D = xl0 . . . (x + p − 1)lp−1 , where
l0 + · · · + lp−1 ≤ λ − 1. So, for any j, 0 ≤ lj ≤ λ − 1, D divides xλ−1 . . .
(x+ p− 1)λ−1 = Bλ. �

Lemma 3.16.
i) The polynomial Bλ is perfect over Fp,

ii) τB
(λ)
λ ≡ 0 mod p,

iii) τB(λ) ≡ −k mod p, where k := #{j : Nj = λ} ≤ p.

Proof. i) It immediately follows from [1, Theorem 4].

ii) Every summand of B
(λ)
λ is of the form Bλ

xl0 ···(x+p−1)lp−1
, where l0+· · ·+lp−1 =

λ and 0 ≤ lj ≤ λ− 1.

So, the counting gives (see [3, p. 23]) τB
(λ)
λ = p(p+1)···(p+λ−1)

λ! − p, which is con-
gruent to 0 modulo p since λ ≤ p− 1.

iii) Let C be a summand of B(λ). Then C ∈ Γ1 ∪ Γ2, where

Γ1 =

{
B

xl0 · · · (x+ p− 1)lp−1
:

p−1∑
i=0

li = λ, li ≤ λ− 1

}
,

Γ2 =

{
B

(x+ j)λ
: Nj > λ

}
.
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If C ∈ Γ1, then B divides CBλ and
CBλ
B

is a summand of B
(λ)
λ .

Conversely, any summand of B
(λ)
λ may be written as

CBλ
B

with C ∈ Γ1.

It follows that

#Γ1 = τB
(λ)
λ and τB(λ) = #(Γ1 ∪ Γ2) = #Γ1 + #Γ2 = τB

(λ)
λ + (p− k).

Thus, from ii) τB(λ) ≡ −k mod p. �

Proposition 3.17. One has #{j : Nj = m} = 1. Moreover,
– if m 6= Np, then m | p− 1 and m = deg(Q) ∈ {2, Np − 1},
– if m = Np, then Np is a prime number and Np ≥ 5.

Proof. The proof is also inspired by that of Theorem 1 in [2]. One has

A = B ·Q = (xp − x)m−1 ·
∏

Nj>m

(x+ j)Nj−m ·Q = Bm ·
∏

Nj>m

(x+ j)Nj−m ·Q.

• If m 6= Np, then m divides p− 1 because Nj | p− 1 whenever j 6= p. We apply
Lemmas 3.15 and 3.16 with λ = m. So,

Bm is perfect over Fp and τB(m)
m ≡ 0 mod p (Lemma 3.16, parts i) and ii)).

If D is a polynomial with deg(D) ≤ m−1, then by Lemma 3.15, D | B if and only
if D | Bm. Therefore, for any 1 ≤ l ≤ m− 1,

B(l) =
∑

deg(D)=l

D|B

B

D
=

B

Bm
·B(l)

m .

The fact: τB
(m)
m ≡ 0 mod p implies that deg(B

(m)
m ) < deg(Bm)−m. So,

deg

( (m−1)p∑
l=m

B(l)
m

)
= deg

(
B(m)
m +

(m−1)p∑
l=m+1

B(l)
m

)
< deg(Bm)−m.

From the perfectness of Bm we get
∑(m−1)p
l=1 B

(l)
m = σ(Bm)−Bm = 0. Therefore,

m−1∑
l=1

B(l) =
B

Bm
·
m−1∑
l=1

B(l)
m −

B

Bm
·
(m−1)p∑
l=1

B(l)
m = − B

Bm
·
(m−1)p∑
l=m

B(l)
m ,

deg

(m−1∑
l=1

B(l)

)
= deg(B)− deg(Bm) + deg

( (m−1)p∑
l=m

B(l)
m

)
< deg(B)−m.

Put
k := #{j : Nj = m}.

We have
k ≥ 1, k ≤ p− 1 since m 6= Np and by Lemma 3.16-iii), τB(m) ≡ −k mod p.

Thus τB(m) 6≡ 0 mod p.
We claim that τB(m) ≡ −1 mod p. Since σ(Q) = 1 +Q, we get

σ(A) = σ(B) · σ(Q) = (B +B(m) + V ) · (1 +Q),
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where V =
∑m−1
l=1 B(l) +

∑deg(B)
l=m+1B

(l), deg(V ) < deg(B)−m.
Hence

W := B + (1 +Q)(B(m) + V ) = (B +B(m) + V ) · (1 +Q)−BQ
= σ(A)−A = 0.

Since τB(m) 6≡ 0 mod p, we have

deg(B) = deg((1 +Q)(B(m) + V )) = deg(Q) + deg(B)−m.
Hence m = deg(Q).

From the nullity of W , we deduce that the coefficient of xdeg(B) in W must be
equal to 0, that is 1 + τB(m) ≡ 0 mod p. So, τB(m) ≡ −1 mod p.

We have just seen that m = deg(Q). It remains to show that m ∈ {2, Np − 1}:
– If Np = 4, then Q = 1 + x2 so that m = deg(Q) = 2.
– If Np is a prime number, then Q = σ(xNp−1) and m = deg(Q) = Np − 1.

Finally, we have k = 1 because −k ≡ τB(m) ≡ −1 mod p and 1 ≤ k ≤ p− 1.

• If m = Np, then m does not divide p − 1, and thus m ≥ 3. Since Nj divides
p− 1 for any j 6= p, one has #{j : Nj = m} = #{p} = 1.

Let v be the greatest integer such that v | p − 1 and v < m. One has v ≥ 2.

We apply Lemmas 3.15 and 3.16 with λ = v. So, Bv is perfect over Fp, τB(v)
v ≡ 0

mod p, and τB(v) ≡ −k mod p, where k = #{j : Nj = v}.
Since k = 0, we get τB(v) ≡ 0 mod p and deg(B(v)) < deg(B)− v. Therefore,

G := B + (1 +Q)(B(v) + E) = (B +B(v) + E) · (1 +Q)−BQ
= σ(A)−A = 0,

where E =
∑v−1
l=1 B

(l) +
∑deg(B)
l=v+1 B

(l), deg(E) < deg(B)− v.
Since G = 0, we have

deg(B) = deg(Q) + deg(B(v) + E) < deg(Q) + deg(B)− v.
It follows that deg(Q) ≥ v + 1 ≥ 3.

Hence, by Corollary 3.7, Np 6= 4 and Np is a prime number.
Thus Np − 1 = deg(σ(xNp−1)) = deg(Q) ≥ 3 and Np ≥ 5, Np being prime. �

Corollary 3.18. One has #{j : 1 ≤ j ≤ p,Nj = 2} ≤ 1.

Proof. From Proposition 3.17, m ∈ {2, Np, Np − 1} and #{j : Nj = m} = 1.
Thus, m ≥ 2 and we are done. �

3.2.1. Case Np = 4. Proposition 3.17 implies that there exists a unique j1 6= p
such thatNj1 = 2 < Nj for any j 6= j1. So, we get the condition (1) of Theorem 1.1.

Lemma 3.19 below (obtained by considering the Legendre symbol
(
p

)
) gives the

necessary condition on the prime p.

Lemma 3.19. Let p be an odd prime number. The polynomial 1 + x2 is irre-
ducible over Fp and 2 +x2 splits over Fp if and only if ((−1) is not a square in Fp
and (−2) is a square) if and only if p ≡ 3 mod 8.
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3.2.2. Case where Np is an odd prime such that Np - p−1. From Corollaries
3.14 and 3.11, we recall that

σ(xap) = σ(xNp−1) = Q, σ(Q) = 1 +Q splits over Fp, and p ≥ 2Np + 3.

Lemma 3.20. If there exists j1 6= p such that Nj1 = Np − 1, then j1 is unique
and Nj > Nj1 for any j 6= j1.

Proof. Since Np is a prime number, we get Np − 1 = deg(σ(xNp−1)) = deg(Q).
Thus, Proposition 3.17 implies that

1 = #{j ∈ Fp : Nj = m} = #{j ∈ Fp : Nj = deg(Q) = Np − 1}.
�

We get more precisions when Np = 3:
♦ Q = 1 + x+ x2 is irreducible,

♦ σ(Q) = 2 + x + x2 splits over Fp, so that the discriminant of Q, −3, is not
a square in Fp and −7 is a square.

Again, by using the Legendre symbol, we obtain that p must satisfy: p ≡ 2, 8 or 11
mod 21.

4. Proof of Corollary 1.4

In this section, from Lemma 4.1, we prove that if the Nj ’s lie on some special set
of divisors of p − 1 (in particular, if p is a safe prime), then there does not exist
any even perfect polynomial A over Fp with p+ 1 irreducible factors.

Lemma 4.1. For any u ∈ Fp, one has

#{j ∈ Fp : (j − u) 6= 1, (j − u)Nj = 1} = Nu − 1 if x+ u - σ(Q),
#{j ∈ Fp : (j − u) 6= 1, (j − u)Nj = 1} = Nu − 2 if x+ u | σ(Q).

In particular, #{j ∈ Fp : j 6= 1, jNj = 1} = Np − 1.

Proof. It suffices to remark that for a fixed u ∈ Fp, x+u divides σ((x+ j)aj ) if
and only if (j − u)Nj = 1 and (j − u) 6= 1. Compare then the exponents of x+ u
in A and in σ(A). �

Corollary 4.2.
i) If for any j 6= p, Nj ∈ {2, p−12 , p− 1}, then A is not perfect.

ii) If p is a safe prime, then there exist no such perfect polynomials over Fp.

Proof. Put H := {j ∈ Fp : j 6= 1, jNj = 1} and Fp2 := {t2 : t ∈ Fp}.
We have #H = Np − 1 by Lemma 4.1, and

{j ∈ Fp : jNj 6= 1} ⊂ {j ∈ Fp : Nj = 2} ∪
{
j 6∈ Fp2 : Nj =

p− 1

2

}
.

So Fp rH is contained in {1} ∪ {j ∈ Fp : Nj = 2} ∪ (Fp r Fp2), and

p− (Np − 1) = #(Fp rH) ≤ 1 + 1 +
p− 1

2
, by Corollary 3.18.

Hence, p ≤ 2Np + 1, which contradicts Corollary 3.11. �
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