NORMAL CR-SUBMANIFOLDS
OF A NEARLY KAELHERIAN MANIFOLD

AI HAIHUA, XIE LI AND WAN YONG

Abstract. In this paper, we give some sufficient and necessary conditions for normal CR-submanifold of a nearly Kaehlerian manifold, and generalize Bejancu’s research work.

1. Introduction

Let \overline{M} be a real differentiable manifold. An almost complex structure on \overline{M} is a tensor field J of type (1, 1) on \overline{M} such that at every point $x \in \overline{M}$, we have $J^2 = -I$, where I denotes the identify transformation of $T_x \overline{M}$. A manifold \overline{M} endowed with an almost complex structure is called an almost complex manifold.

A linear connection ∇ on \overline{M} is said to be a Riemannian connection if Riemannian metric g satisfies
\begin{equation}
Xg(Y, Z) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z)
\end{equation}
for any $X, Y \in \Gamma(T \overline{M})$. More, we define the torsion tensor of J or the Nijenhuis tensor of J by
\begin{equation}
[J, J](X, Y) = [JX, JY] - [X, Y] - J[JX, Y] - J[X, JY]
\end{equation}
for any $X, Y \in \Gamma(T \overline{M})$, where $[X, Y]$ is the Lie bracket of vector fields X and Y, that is, $[X, Y] = \nabla_X Y - \nabla_Y X$.

A Hermitian metric on an almost complex manifold \overline{M} is a Riemannian metric g satisfying
\begin{equation}
g(JX, JY) = g(X, Y)
\end{equation}
for any $X, Y \in \Gamma(T \overline{M})$.

Received June 11, 2015; revised September 16, 2015.
2010 Mathematics Subject Classification. Primary 53C25, 58A30.
Key words and phrases. nearly Kaehlerian manifold; CR-submanifold, normal; connection.
Supported by Foundation of Department of Science and Technology of Hunan Province (No. 2010SK3023).
An almost complex manifold endowed with a Hermitian metric is said to be an almost Hermitian manifold.

Definition 1.1 ([1]). An almost Hermitian manifold \mathcal{M} with Levi-Civita connection ∇ is called a nearly Kaehlerian manifold if we have
\begin{equation}
(\nabla_X J)Y + (\nabla_Y J)X = 0 \tag{1.5}
\end{equation}
for any $X, Y \in \Gamma(T\mathcal{M})$.

Definition 1.2 ([1]). An almost Hermitian manifold \mathcal{M} with Levi-Civita connection ∇ is called a Kaehlerian manifold if we have
\begin{equation}
\nabla_X J = 0 \tag{1.6}
\end{equation}
for any $X \in \Gamma(T\mathcal{M})$.

Obviously, a Kaehlerian manifold is a nearly Kaehlerian manifold.

Let M be an m-dimensional Riemannian submanifold of an n-dimensional Riemannian manifold \mathcal{M}. By $T^\perp M$, we denote the normal bundle to M and by g metric on M and \mathcal{M}. Also, we denote the Levi-Civita connection on M by ∇, the induced connection on M by ∇, and the induced normal connection on M by ∇^\perp.

Then, for any $X, Y \in \Gamma(TM)$, we have
\begin{equation}
\nabla_X Y = \nabla_X Y + h(X, Y), \tag{1.7}
\end{equation}
where $h: \Gamma(TM) \times \Gamma(TM) \to \Gamma(TM^\perp)$ is a normal bundle valued symmetric bilinear form on $\Gamma(TM)$. The equation (1.7) is called the Gauss formula and h is called the second fundamental form of M.

Now, for any $X \in \Gamma(TM)$ and $V \in \Gamma(TM^\perp)$ by $-A_V X$ and $\nabla^\perp_X V$, we denote the tangent part and normal part of $\nabla_X V$, respectively. Then we have
\begin{equation}
\nabla_X V = -A_V X + \nabla^\perp_X V. \tag{1.8}
\end{equation}
Thus, for any $V \in \Gamma(TM^\perp)$, we have a linear operator satisfying
\begin{equation}
g(A_V X, Y) = g(X, A_V Y) = g(h(X, Y), V). \tag{1.9}
\end{equation}
The equation (1.8) is called the Weingarten formula.

An m-dimensional distribution on a manifold \mathcal{M} is a mapping D defined on \mathcal{M}, which assigns to each point x of \mathcal{M} an m-dimensional linear subspace D_x of $T_x \mathcal{M}$. A vector field X on \mathcal{M} belongs to D if we have $X_x \in D_x$ for each $x \in \mathcal{M}$. When this happens, we write $X \in \Gamma(D)$. The distribution D is said to be differentiable if for any $x \in \mathcal{M}$, there exist m differentiable linearly independent vector fields $X_i \in \Gamma(D)$ in a neighborhood of x. From now on, all distributions are supposed to be differentiable of class C^∞.

Definition 1.3 ([1]). Let \mathcal{M} be a real n-dimensional almost Hermitian manifold with almost complex structure J and with Hermitian metric g. Let M be a real m-dimensional Riemannian manifold isometrically immersed in \mathcal{M}. Then M is called a CR-submanifold of \mathcal{M} if there exists a differentiable distribution
\[D: x \to D_x \subset T_x M\]
on M satisfying the following conditions:
(1) D is holomorphic, that is, $J(D_x) = D_x$ for each $x \in M$,
(2) the complementary orthogonal distribution

$$D^\perp : x \rightarrow D^\perp_x \subset T_x M$$

is anti-invariant, that is, $J(D^\perp_x) \subset T_x M^\perp$, for each $x \in M$.

Now let M be an arbitrary Riemannian manifold isometrically immersed in an almost Hermitian manifold \overline{M}. For each vector field X tangent to M, we put

$$(1.10) \quad JX = \phi X + \omega X,$$

where ϕX and ωX, respectively, are the tangent part and the normal part of JX. Also, for each vector field V normal to M, we put

$$(1.11) \quad JV = BV + CV,$$

where BV and CV are respectively the tangent part and the normal part of JV.

We take account of the decomposition $T\overline{M} = D \oplus D^\perp \oplus JD^\perp \oplus \nu$. Obviously, we have $\phi X \in \Gamma(D)$, $\omega X \in \Gamma(JD^\perp)$, $BV \in \Gamma(D^\perp)$, $CV \in \Gamma(\nu)$ for any $X \in \Gamma(TM)$, $V \in \Gamma(JD^\perp \oplus \nu)$.

The covariant derivative of ϕ is defined by

$$(1.12) \quad (\nabla_X \phi)Y = \nabla_X \phi Y - \phi \nabla_X Y$$

for any $X, Y \in \Gamma(TM)$. On the other hand, the covariant derivative of ω is defined by

$$(1.13) \quad (\nabla_X \omega)Y = \nabla_X \omega Y - \omega \nabla_X Y$$

for any $X, Y \in \Gamma(TM)$.

The exterior derivative of ω is defined by

$$(1.14) \quad d\omega(X,Y) = \frac{1}{2} \{ \nabla_X \omega Y - \nabla_Y \omega X - \omega([X,Y]) \}$$

for any $X, Y \in \Gamma(TM)$. The Nijenhuis tensor of ϕ is defined by

$$(1.15) \quad [\phi, \phi](X,Y) = [\phi X, \phi Y] + \phi^2[X,Y] - \phi[\phi X, Y] - \phi[X, \phi Y]$$

for any $X, Y \in \Gamma(TM)$, where $[X,Y]$ is the Lie bracket of vector fields X and Y.

We define two tensor fields S and S^*, respectively, by

$$(1.16) \quad S(X,Y) = [\phi, \phi](X,Y) - 2Bd\omega(X,Y)$$

and

$$(1.17) \quad S^*(Y,X) = (L_Y \phi)X = [Y, \phi X] - \phi[Y, X]$$

for any $X, Y \in \Gamma(TM)$.

Definition 1.4 ([1]). The CR-submanifold M is said to be normal if the tensor fields S vanishes identically on M.

NORMAL CR-SUBMANIFOLDS OF A NEARLY KAHLERIAN MANIFOLD

279

$J(D_x) = D_x$ for each $x \in M$,

$J(D^\perp_x) \subset T_x M^\perp$, for each $x \in M$.

ϕX and ωX, respectively, are the tangent part and the normal part of JX.

$\phi X \in \Gamma(D)$, $\omega X \in \Gamma(JD^\perp)$, $BV \in \Gamma(D^\perp)$, $CV \in \Gamma(\nu)$ for any $X \in \Gamma(TM)$, $V \in \Gamma(JD^\perp \oplus \nu)$.

$JX = \phi X + \omega X,$

$BV + CV,$

$\nabla_X \phi Y = \nabla_X \phi Y - \phi \nabla_X Y$

$\nabla_X \omega Y - \omega \nabla_X Y$

$\frac{1}{2} \{ \nabla_X \omega Y - \nabla_Y \omega X - \omega([X,Y]) \}$

$[\phi, \phi](X,Y) = [\phi X, \phi Y] + \phi^2[X,Y] - \phi[\phi X, Y] - \phi[X, \phi Y]$

$S(X,Y) = [\phi, \phi](X,Y) - 2Bd\omega(X,Y)$

$(L_Y \phi)X = [Y, \phi X] - \phi[Y, X]$

M is said to be normal if the tensor fields S vanishes identically on M.

2. Main Results

Lemma 2.1 ([1]). Let M be a CR-submanifold of an almost Hermitian manifold \overline{M}. Then we have

$$J = \begin{bmatrix} 0 & J \end{bmatrix}$$

for any $X, Y \in \Gamma(TM)$.

Lemma 2.2 ([1]). Let \overline{M} be a nearly Kaehlerian manifold. Then we have

$$\nabla_X J Y = \frac{1}{4} J [J, J](X, Y)$$

for any $X, Y \in \Gamma(T\overline{M})$.

Lemma 2.3 (Frobenius [1, 2]). The distribution D^\perp is integrable if and only if

$$[X, Y] \in \Gamma(D^\perp)$$

for any $X, Y \in \Gamma(D^\perp)$.

Lemma 2.4 (Urbano [1]). Let M be a CR-submanifold of a nearly Kaehlerian manifold \overline{M}. Then the distribution D^\perp is integrable if and only if

$$g(\nabla_X J Y, Z) = 0$$

for any $X, Y \in \Gamma(D^\perp), Z \in \Gamma(D)$.

Lemma 2.5. Let M be a CR-submanifold of a nearly Kaehlerian manifold \overline{M}. Then we have

$$(\nabla_X \phi) Y = A_\omega Y X + Bh(X, Y) + \frac{1}{4} (J [J, J](X, Y))^\perp$$

and

$$(\nabla_X \omega) Y = -h(X, \phi Y) + Ch(X, Y) + \frac{1}{4} (J [J, J](X, Y))^\perp$$

for any $X, Y \in \Gamma(TM)$.

Proof. For any $X, Y \in \Gamma(TM)$, using (1.7), (1.8), (1.10) and (1.11) in (1.2), we have

$$(\nabla_X J Y) = \nabla_X \phi Y + h(X, \phi Y) - A_\omega Y X + \nabla_X \omega Y - \phi \nabla_X Y - \omega \nabla_X Y - Bh(X, Y) - Ch(X, Y).$$

Taking into account (1.12) and (1.13), (2.6) becomes

$$(\nabla_X J Y) = (\nabla_X \phi Y) + h(X, \phi Y) - A_\omega Y X + (\nabla_X \omega) Y - Bh(X, Y) - Ch(X, Y).$$

Taking account of (2.2) and (2.7), we obtain

$$\frac{1}{4} J [J, J](X, Y) = (\nabla_X \phi Y) + h(X, \phi Y) - A_\omega Y X + (\nabla_X \omega) Y - Bh(X, Y) - Ch(X, Y).$$
By comparing the tangent part and the normal part in (2.8), we get (2.4) and (2.5).

Theorem 2.1. Let M be a CR-submanifold of a nearly Kaehlerian manifold \mathcal{M}. Then M is normal if and only if we have

$$0 = A_{\omega Y} \phi X - \phi A_{\omega Y} X - A_{\omega X} \phi Y + \phi A_{\omega X} Y + \frac{1}{4} (J[J, J]([\phi X, Y]))^\top$$

$$- \frac{1}{4} (J[J, J]([\phi Y, X]))^\top - \frac{1}{2} \phi (J[J, J](X, Y))^\top - \frac{1}{2} B(J[J, J](X, Y))^\bot,$$

(2.9)

for any $X, Y \in \Gamma(TM)$.

Proof. For any $X, Y \in \Gamma(TM)$, using (2.4) and (2.5), (2.1) becomes

$$S(X, Y) = A_{\omega Y} \phi X - \phi A_{\omega Y} X - A_{\omega X} \phi Y + \phi A_{\omega X} Y$$

$$+ \frac{1}{4} (J[J, J]([\phi X, Y]))^\top - \frac{1}{4} (J[J, J]([\phi Y, X]))^\top$$

$$- \frac{1}{2} \phi (J[J, J](X, Y))^\top - \frac{1}{2} B(J[J, J](X, Y))^\bot.$$

(2.10)

Taking account of Definition 1.4, M is normal if and only if (2.9) holds.

Theorem 2.2. Let M be a CR-submanifold of a nearly Kaehlerian manifold \mathcal{M} and

$$[J, J](X, Y) \in \Gamma(\nu),$$

(2.11)

for any $X, Y \in \Gamma(TM)$. Then M is normal if and only if we have

$$A_{\omega Y} \phi X = \phi A_{\omega Y} X$$

for any $X \in \Gamma(D), Y \in \Gamma(D^\bot)$.

Proof. By using (2.11) in (2.10), we obtain

$$S(X, Y) = A_{\omega Y} \phi X - \phi A_{\omega Y} X - A_{\omega X} \phi Y + \phi A_{\omega X} Y$$

(2.13)

for any $X, Y \in \Gamma(TM)$.

Suppose M is normal CR-submanifold of \mathcal{M}. Then (2.12) follows from (2.13) since $A_{\omega X} = 0$ for any $X \in \Gamma(D)$.

Now, if (2.12) is satisfied, we prove $S = 0$ by means of the decomposition $TM = D \oplus D^\bot$.

First, for any $X, Y \in \Gamma(D)$, from (2.13), we have

$$S(X, Y) = 0.$$

Next, for any $X \in \Gamma(D), Y \in \Gamma(D^\bot)$, using (2.12) in (2.13), we obtain

$$S(X, Y) = A_{\omega Y} \phi X - \phi A_{\omega Y} X = 0.$$

(2.14)

Finally, for any $X, Y \in \Gamma(D^\bot)$, from (2.11), Lemma 2.2 and Lemma 2.4, the distribution D^\bot is integrable.

Next, from (1.8) and (1.2), we have

$$g(A_{\omega X} Y - A_{\omega Y} X, Z) = g(J\nabla_X Y, Z) + g((\nabla_X J) Y, Z)$$

$$- g(J\nabla_Y X, Z) - g((\nabla_Y J) X, Z).$$

(2.15)
for any $X, Y \in \Gamma(D^\perp)$, $Z \in \Gamma(TM)$.

Using (2.2) in (2.15), we get

$$g(A_\omega XY - A_\omega YX, Z) = g(J\nabla_X Y, Z) - g(J\nabla_Y X, Z) + g(\frac{1}{2}J[J, J](X, Y), Z).$$

(2.16)

Using (1.4) and (2.11) in (2.16), we obtain

$$g(A_\omega XY - A_\omega YX, Z) = g(-\nabla_X Y + \nabla_Y X, JZ) = -g([X, Y], \phi Z).$$

(2.17)

From (2.17), we know $A_\omega XY - A_\omega YX = 0$ since the distribution D^\perp is integrable. More, (2.13) becomes

$$S(X, Y) = \phi(A_\omega XY - A_\omega YX) = 0$$

(2.18)

From the above three conclusions, we know $S(X, Y) = 0$ for any $X, Y \in \Gamma(D^\perp)$, that is, the CR-submanifold M is normal.

Corollary 2.1 (Bejancu [1]). Let M be a CR-submanifold of a Kaehlerian manifold \overline{M}. Then M is normal if and only if we have

$$A_\omega Y \phi X = \phi A_\omega Y X,$$

(2.19)

for any $X \in \Gamma(D), Y \in \Gamma(D^\perp)$.

Proof. Since a Kaehlerian manifold \overline{M} is satisfied,

$$[J, J](X, Y) = 0 \in \Gamma(\nu)$$

for any $X, Y \in \Gamma(TM)$. Taking account of Theorem 2.2, Corollary 2.1 holds.

Theorem 2.3. Let M be a CR-submanifold of a nearly Kaehlerian manifold \overline{M} with following conditions satisfying

1. (2.11) holds,
2. for any $X \in \Gamma(D), Y \in \Gamma(D^\perp)$, we have

$$\nabla_X Y \in \Gamma(D).$$

(2.20)

Then M is normal if and only if we have

$$S^*(Y, X) = 0,$$

(2.21)

for any $X \in \Gamma(D), Y \in \Gamma(D^\perp)$.

Proof. From the proof Theorem 2.2 follows that M satisfying condition (2.11) is normal CR-submanifold if and only if $S(X, Y) = 0$ for any $X \in \Gamma(D), Y \in \Gamma(D^\perp)$. Using (1.12) and (2.5) in (2.1), we have

$$S(X, Y) = (\nabla_{\phi X} \phi Y - \phi \nabla_{\phi X} Y) - (\nabla_{\phi Y} \phi X - \phi \nabla_{\phi Y} X) + \phi(\nabla_X \phi Y - \phi \nabla_Y X) - \phi(\nabla_Y \phi X - \phi \nabla_Y X) - B(h(Y, \phi X) + \frac{1}{2}(J[J, J](X, Y))^\perp)$$

(2.22)

for any $X \in \Gamma(D), Y \in \Gamma(D^\perp)$.

□
Using (2.11) in (2.22), we get
\begin{equation}
S(X,Y) = \phi(\phi(X,Y) - [\phi X, Y]) - Bh(Y, \phi X).
\end{equation}

Next, using (1.13) and (2.11) in (2.5), we obtain
\begin{equation}
h(Y, \phi X) = \omega \nabla Y X + Ch(X, Y) + \frac{1}{4} (J[J, J](Y, X))^\perp.
\end{equation}

That implies
\begin{equation}
J \omega \nabla Y X = Bh(Y, \phi X) \in \Gamma(D^\perp).
\end{equation}

Taking account of (1.17) and (2.25), (2.23) becomes
\begin{equation}
S(X, Y) = \phi S^*(Y, X) - J \omega \nabla Y X.
\end{equation}

Now suppose \(M \) is normal. Then by comparing \(D \) part and \(D^\perp \) part in (2.26), we have
\begin{equation}
\phi S^*(Y, X) = 0 \quad \text{and} \quad J \omega \nabla Y X = 0
\end{equation}

More, we get
\begin{equation}
S^*(Y, X) \in \Gamma(D^\perp)
\end{equation}
and
\begin{equation}
\nabla Y X \in \Gamma(D).
\end{equation}

On the other hand, using (2.20) and (2.28) in (1.17), we obtain
\begin{equation}
S^*(Y, X) = (\nabla Y \phi X - \nabla \phi X Y) - \phi[Y, X] \in \Gamma(D).
\end{equation}

for any \(X \in \Gamma(D), Y \in \Gamma(D^\perp) \). Combining (2.27) with (2.29), it follows that \(S^*(Y, X) = 0 \) for any \(X \in \Gamma(D), Y \in \Gamma(D^\perp) \).

Conversely, suppose (2.21) is satisfied. Then from (1.17), (2.20) and (2.21) we have
\begin{equation}
\nabla Y \phi X = \nabla \phi X Y + \phi[Y, X] \in \Gamma(D).
\end{equation}

Using (2.21) and (2.30) in (2.26), we get \(S(X, Y) = 0 \) for any \(X \in \Gamma(D), Y \in \Gamma(D^\perp) \). Moreover, taking into account Theorem 2.2, \(M \) is normal. \(\square \)

References

AI HAIHUA, XIE LI AND WAN YONG

Ai Haihua, Dept. of Math. and Computing Science, Changsha University of Science and Technology, Changsha, Hunan, P. R. China, e-mail: aihhua888@163.com

Xie Li, Dept. of Math. and Computing Science, Changsha University of Science and Technology, Changsha, Hunan, P. R. China, e-mail: pkums9008163.com

Wan Yong, Dept. of Math. and Computing Science, Changsha University of Science and Technology, Changsha, Hunan, P. R. China, e-mail: wanyong870901@foxmail.com