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NORMAL CR-SUBMANIFOLDS

OF A NEARLY KAEHLERIAN MANIFOLD

AI HAIHUA, XIE LI and WAN YONG

Abstract. In this paper, we give some sufficient and necessary conditions for nor-

mal CR-submanifold of a nearly Kaehlerian manifold, and generalize Bejancu’s re-
search work.

1. Introduction

Let M be a real differentiable manifold. An almost complex structure on M is
a tensor field J of type (1, 1) on M such that at every point x ∈ M , we have
J2 = −I, where I denotes the identify transformation of TxM . A manifold M
endowed with an almost complex structure is called an almost complex manifold.

A linear connection ∇ on M is said to be a Riemannian connection if Riemann-
ian metric g satisfies

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ)(1.1)

for any X,Y ∈ Γ(TM).
The covariant derivative of J is defined by

(∇XJ)Y = ∇XJY − J∇XY(1.2)

for any X,Y ∈ Γ(TM). More, we define the torsion tensor of J or the Nijenhuis
tensor of J by

[J, J ](X,Y ) = [JX, JY ]− [X,Y ]− J [JX, Y ]− J [X, JY ](1.3)

for any X,Y ∈ Γ(TM), where [X,Y ] is the Lie bracket of vector fields X and Y ,
that is, [X,Y ] = ∇XY −∇YX.

A Hermitian metric on an almost complex manifold M is a Riemannian metric
g satisfying

g(JX, JY ) = g(X,Y )(1.4)

for any X,Y ∈ Γ(TM).
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An almost complex manifold endowed with a Hermitian metric is said to be an
almost Hermitian manifold.

Definition 1.1 ([1]). An almost Hermitian manifold M with Levi-Civita con-
nection ∇ is called a nearly Kaehlerian manifold if we have

(∇XJ)Y + (∇Y J)X = 0(1.5)

for any X,Y ∈ Γ(TM).

Definition 1.2 ([1]). An almost Hermitian manifold M with Levi-Civita con-
nection ∇ is called a Kaehlerian manifold if we have

∇XJ = 0(1.6)

for any X ∈ Γ(TM).

Obviously, a Kaehlerian manifold is a nearly Kaehlerian manifold.
Let M be an m-dimensional Riemannian submanifold of an n-dimensional Rie-

mannian manifold M . By TM⊥, we denote the normal bundle to M and by g
metric on M and M . Also, we denote the Levi-Civita connection on M by ∇, the
induced connection on M by ∇, and the induced normal connection on M by ∇⊥.

Then, for any X,Y ∈ Γ(TM), we have

∇XY = ∇XY + h(X,Y ),(1.7)

where h : Γ(TM) × Γ(TM) → Γ(TM⊥) is a normal bundle valued symmetric
bilinear form on Γ(TM). The equation (1.7) is called the Gauss formula and h is
called the second fundamental form of M .

Now, for any X ∈ Γ(TM) and V ∈ Γ(TM⊥) by −AVX and ∇⊥XV , we denote

the tangent part and normal part of ∇XV , respectively. Then we have

∇XV = −AVX +∇⊥XV.(1.8)

Thus, for any V ∈ Γ(TM⊥), we have a linear operator satisfying

g(AVX,Y ) = g(X,AV Y ) = g(h(X,Y ), V ).(1.9)

The equation (1.8) is called the Weingarten formula.
An m-dimensional distribution on a manifold M is a mapping D defined on M ,

which assignes to each point x of M an m-dimensional linear subspace Dx of TxM .
A vector field X on M belongs to D if we have Xx∈Dx for each x ∈ M . When
this happens, we write X ∈ Γ(D). The distribution D is said to be differentiable
if for any x ∈ M , there exist m differentiable linearly independent vector fields
Xi ∈ Γ(D) in a neighborhood of x. From now on, all distributions are supposed
to be differentiable of class C∞.

Definition 1.3 ([1]). LetM be a real n-dimensional almost Hermitian manifold
with almost complex structure J and with Hermitian metric g. Let M be a real
m-dimensional Riemannian manifold isometrically immersed in M . Then M is
called a CR-submanifold of M if there exists a differentiable distribution

D : x→ Dx ⊂ TxM
on M satisfying the following conditions:
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(1) D is holomorphic, that is, J(Dx) = Dx for each x ∈M ,

(2) the complementary orthogonal distribution

D⊥ : x→ D⊥x ⊂ TxM

is anti-invariant, that is, J(D⊥x ) ⊂ TxM⊥, for each x ∈M .

Now let M be an arbitrary Riemannian manifold isometrically immersed in an
almost Hermitian manifold M . For each vector field X tangent to M , we put

JX = φX + ωX,(1.10)

where φX and ωX, respectively, are the tangent part and the normal part of JX.
Also, for each vector field V normal to M , we put

JV = BV + CV,(1.11)

where BV and CV are respectively the tangent part and the normal part of JV .
We take account of the decomposition TM = D⊕D⊥⊕JD⊥⊕ν. Obviously, we

have φX ∈ Γ(D), ωX ∈ Γ(JD⊥), BV ∈ Γ(D⊥), CV ∈ Γ(ν) for any X ∈ Γ(TM),
V ∈ Γ(JD⊥ ⊕ ν).

The covariant derivative of φ is defined by

(∇Xφ)Y = ∇XφY − φ∇XY(1.12)

for any X,Y ∈ Γ(TM). On the other hand, the covariant derivative of ω is de-
fined by

(∇Xω)Y = ∇⊥XωY − ω∇XY(1.13)

for any X,Y ∈ Γ(TM).
The exterior derivative of ω is defined by

dω(X,Y ) =
1

2
{∇⊥XωY −∇⊥Y ωX − ω([X,Y ])}(1.14)

for any X,Y ∈ Γ(TM).
The Nijenhuis tensor of φ is defined by

[φ, φ](X,Y ) = [φX, φY ] + φ2[X,Y ]− φ[φX, Y ]− φ[X,φY ](1.15)

for any X,Y ∈ Γ(TM), where [X,Y ] is the Lie bracket of vector fields X and Y .
We define two tensor fields S and S∗, respectively, by

S(X,Y ) = [φ, φ](X,Y )− 2Bdω(X,Y )(1.16)

and

S∗(Y,X) = ( LY φ)X = [Y, φX]− φ[Y,X](1.17)

for any X,Y ∈ Γ(TM).

Definition 1.4 ([1]). The CR-submanifold M is said to be normal if the tensor
fields S vanishes identically on M .
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2. Main Results

Lemma 2.1 ([1]). Let M be a CR-submanifold of an almost Hermitian mani-
fold M . Then we have

S(X,Y ) = (∇φXφ)Y − (∇φY φ)X + φ{(∇Y φ)X − (∇Xφ)Y }
−B{(∇Xω)Y − (∇Y ω)X}

(2.1)

for any X,Y ∈ Γ(TM).

Lemma 2.2 ([1]). Let M be a nearly Kaehlerian manifold. Then we have

(∇XJ)Y =
1

4
J [J, J ](X,Y )(2.2)

for any X,Y ∈ Γ(TM).

Lemma 2.3 (Frobenius [1, 2]). The distribution D⊥ is integrable if and only if

[X,Y ] ∈ Γ(D⊥)

for any X,Y ∈ Γ(D⊥).

Lemma 2.4 (Urbano [1]). Let M be a CR-submanifold of a nearly Kaehlerian
manifold M . Then the distribution D⊥ is integrable if and only if

g(∇XJ)Y,Z) = 0(2.3)

for any X,Y ∈ Γ(D⊥), Z ∈ Γ(D).

Lemma 2.5. Let M be a CR-submanifold of a nearly Kaehlerian manifold M .
Then we have

(∇Xφ)Y = AωYX +Bh(X,Y ) +
1

4
(J [J, J ](X,Y ))>(2.4)

and

(∇Xω)Y = −h(X,φY ) + Ch(X,Y ) +
1

4
(J [J, J ](X,Y ))⊥(2.5)

for any X,Y ∈ Γ(TM).

Proof. For any X,Y ∈ Γ(TM), using (1.7), (1.8), (1.10) and (1.11) in (1.2), we
have

(∇XJ)Y = ∇XφY + h(X,φY )−AωYX +∇⊥XωY − φ∇XY − ω∇XY
−Bh(X,Y )− Ch(X,Y ).

(2.6)

Taking into account (1.12) and (1.13), (2.6) becomes

(∇XJ)Y = (∇Xφ)Y + h(X,φY )−AωYX + (∇Xω)Y

−Bh(X,Y )− Ch(X,Y ).
(2.7)

Taking account of (2.2) and (2.7), we obtain

1

4
J [J, J ](X,Y ) = (∇Xφ)Y + h(X,φY )−AωYX + (∇Xω)Y

−Bh(X,Y )− Ch(X,Y ).
(2.8)



NORMAL CR-SUBMANIFOLDS OF A NEARLY KAEHLERIAN MANIFOLD281

By comparing the tangent part and the normal part in (2.8), we get (2.4)
and (2.5). �

Theorem 2.1. Let M be a CR-submanifold of a nearly Kaehlerian manifold
M . Then M is normal if and only if we have

0 = AωY φX − φAωYX −AωXφY + φAωXY +
1

4
(J [J, J ](φX, Y ))>

− 1

4
(J [J, J ](φY,X))> − 1

2
φ(J [J, J ](X,Y ))> − 1

2
B(J [J, J ](X,Y ))⊥,

(2.9)

for any X,Y ∈ Γ(TM).

Proof. For any X,Y ∈ Γ(TM), using (2.4) and (2.5), (2.1) becomes

S(X,Y ) = AωY φX − φAωYX −AωXφY + φAωXY

+
1

4
(J [J, J ](φX, Y ))> − 1

4
(J [J, J ](φY,X))>

− 1

2
φ(J [J, J ](X,Y ))> − 1

2
B(J [J, J ](X,Y ))⊥.

(2.10)

Taking account of Definition 1.4, M is normal if and only if (2.9) holds. �

Theorem 2.2. Let M be a CR-submanifold of a nearly Kaehlerian manifold
M and

[J, J ](X,Y ) ∈ Γ(ν),(2.11)

for any X,Y ∈ Γ(TM). Then M is normal if and only if we have

AωY φX = φAωYX(2.12)

for any X ∈ Γ(D), Y ∈ Γ(D⊥).

Proof. By using (2.11) in (2.10), we obatin

S(X,Y ) = AωY φX − φAωYX −AωXφY + φAωXY(2.13)

for any X,Y ∈ Γ(TM).
Suppose M is normal CR-submanifold of M . Then (2.12) follows from (2.13)

since AωX = 0 for any X ∈ Γ(D).
Now, if (2.12) is sastified, we prove S = 0 by means of the decomposition

TM = D ⊕D⊥.
First, for any X,Y ∈ Γ(D), from (2.13), we have

S(X,Y ) = 0.

Next, for any X ∈ Γ(D), Y ∈ Γ(D⊥), using (2.12) in (2.13), we obtain

S(X,Y ) = AωY φX − φAωYX = 0.(2.14)

Finally, for any X,Y ∈ Γ(D⊥), from (2.11), Lemma 2.2 and Lemma 2.4, the
distribution D⊥ is integrable.
Next, from (1.8) and (1.2), we have

g(AωXY −AωYX,Z) = g(J∇XY,Z) + g((∇XJ)Y, Z)

− g(J∇YX,Z)− g((∇Y J)X,Z)
(2.15)
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for any X,Y ∈ Γ(D⊥), Z ∈ Γ(TM).
Using (2.2) in (2.15), we get

g(AωXY −AωYX,Z) = g(J∇XY,Z)− g(J∇YX,Z)

+ g(
1

2
J [J, J ](X,Y ), Z).

(2.16)

Using (1.4) and (2.11) in (2.16), we obtain

g(AωXY −AωYX,Z) = g(−∇XY +∇YX,JZ) = −g([X,Y ], φZ).(2.17)

From (2.17), we know AωXY − AωYX = 0 since the distribution D⊥ is inte-
grable. More, (2.13) becomes

S(X,Y ) = φ(AωXY −AωYX) = 0(2.18)

for any X,Y ∈ Γ(D⊥).
From the above three conclusions, we know S(X,Y ) = 0 for any X,Y ∈ Γ(TM),

that is, the CR-submanifold M is normal. �

Corollary 2.1 (Bejancu [1]). Let M be a CR-submanifold of a Kaehlerian
manifold M . Then M is normal if and only if we have

AωY φX = φAωYX,(2.19)

for any X ∈ Γ(D), Y ∈ Γ(D⊥).

Proof. Since a Kaehlerian manifold M is satisfied,

[J, J ](X,Y ) = 0 ∈ Γ(ν)

for any X,Y ∈ Γ(TM). Taking account of Theorem 2.2, Corollary 2.1 holds. �

Theorem 2.3. Let M be a CR-submanifold of a nearly Kaehlerian manifold
M with following conditions satisfing

(1) (2.11) holds,

(2) for any X ∈ Γ(D), Y ∈ Γ(D⊥), we have

∇XY ∈ Γ(D).(2.20)

Then M is normal if and only if we have

S∗(Y,X) = 0,(2.21)

for any X ∈ Γ(D), Y ∈ Γ(D⊥).

Proof. From the proof Theorem 2.2 follows that M sastifying condition (2.11) is
normal CR-submainifold if and only if S(X,Y ) = 0 for any X ∈ Γ(D), Y ∈ Γ(D⊥).
Using (1.12) and (2.5) in (2.1), we have

S(X,Y ) = (∇φXφY − φ∇φXY )− (∇φY φX − φ∇φYX)

+ φ(∇Y φX − φ∇YX)− φ(∇XφY − φ∇XY )

−B(h(Y, φX) +
1

2
(J [J, J ](X,Y ))⊥)

(2.22)

for any X ∈ Γ(D), Y ∈ Γ(D⊥).
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Using (2.11) in (2.22), we get

S(X,Y ) = φ(φ[X,Y ]− [φX, Y ])−Bh(Y, φX).(2.23)

Next, using (1.13) and (2.11) in (2.5), we obtain

h(Y, φX) = ω∇YX + Ch(X,Y ) +
1

4
(J [J, J ](Y,X))⊥.(2.24)

That implies

Jω∇YX = Bh(Y, φX) ∈ Γ(D⊥).(2.25)

Taking account of (1.17) and (2.25), (2.23) becomes

S(X,Y ) = φS∗(Y,X)− Jω∇YX.(2.26)

Now suppose M is normal. Then by comparing D part and D⊥ part in (2.26),
we have

φS∗(Y,X) = 0 and Jω∇YX = 0

More, we get

S∗(Y,X) ∈ Γ(D⊥)(2.27)

and

∇YX ∈ Γ(D).(2.28)

On the other hand, using (2.20) and (2.28) in (1.17), we obtain

S∗(Y,X) = (∇Y φX −∇φXY )− φ[Y,X] ∈ Γ(D).(2.29)

for any X ∈ Γ(D), Y ∈ Γ(D⊥). Combining (2.27) with (2.29), it follows that
S∗(Y,X) = 0 for any X ∈ Γ(D), Y ∈ Γ(D⊥),

Conversely, suppose (2.21) is saitisfied. Then from (1.17), (2.20) and (2.21) we
have

∇Y φX = ∇φXY + φ[Y,X] ∈ Γ(D).(2.30)

Using (2.21) and (2.30) in (2.26), we get S(X,Y ) = 0 for any X ∈ Γ(D),
Y ∈ Γ(D⊥). Moreover, taking into account Theorem 2.2, M is normal. �
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