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EXISTENCE RESULTS FOR

THIRD-ORDER DIFFERENTIAL INCLUSIONS WITH

THREE-POINT BOUNDARY VALUE PROBLEMS

A. REZAIGUIA and S. KELAIAIA

Abstract. In this paper, we investigate the solutions for a third-order differential

inclusion with three-point boundary value problem. First, we apply the Schaefer’s

fixed point theorem combined with a selection theorem due to Bressan and Colombo.
Secondly, our result is based on the fixed point theorem for multivalued maps due

to Covitz and Nadler.

1. Introduction

Realistic problems arising from economics, optimal control, stochastic analysis can
be modelled as differential inclusions. So much attention has been paid by many
autors to study this kind of problems, see [5, 6] and the references therein.

By using Shaefer’s fixed point theorem and some results on selections for lower
semicontinuous multivalued maps, in this work, we prove some existence results
for the three point boundary value problem of the third-order differential inclusion

− u′′′(t) ∈ F (t, u(t)), t ∈ (0, 1),(1.1)

u′(0) = u′(1) = αu(η), u(0) = βu(η),(1.2)

where α, β and η are constants with α ∈ [0, 1η ), 0 < η < 1, β 6= 1−αη, F : [0, 1]×
R → P(R) is a multivalued map, and P(R) is the family of all subsets of R. In
[12], the authors discussed the existence of positive solutions to the problem (1.1)
and (1.2) with F (t, u(t)) as a single-valued map (F (t, u(t)) = a(t)f(t, u(t))) and
β = 0.

This paper is organized as follows. In Section 2, we present some theorems and
lemmas that are used to prove our main results. In Section 3, we present existence
results for the problem (1.1) and (1.2) when the right-hand side is nonconvex,
where at first we apply the Schaefer’s fixed point theorem (see [1, p. 29]) combined
with a selection theorem due to Bressan and Colombo for lower semicontinuous
multivalued maps with nonempty closed and decomposable values [2]. The second
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result is based on the fixed point theorem contraction multivalued maps due to
Covitz and Nadler [3].

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from
multivalued analysis which are used throughout this paper.

Here C([0, 1],R) denotes the Banach space of all continuous functions from [0, 1]
into R with the norm ‖u‖ = sup{|u(t)| : for all t ∈ [0, 1]}, L1([0, 1],R), the Ba-
nach space of measurable functions u : [0, 1] → R which are Lebesgue integrable,

normed by ‖u‖L1 =
∫ 1

0
|u(t)|dt, and ACi([0, 1],R) the space of i-times differen-

tiable functions u : [0, 1]→ R whose i-th derivative u(i) is absolutely continuous.
Let A be a subset of [0, 1] ×R. A is L ⊗ B measurable if A belongs to the

σ-algebra generated by all sets of the form I ×D, where I is Lebesgue measurable
in [0, 1] and D is Borel measurable in R. A subset A of L1([0, 1],R) is said to
be decomposable if for all u, v ∈ A and I ⊂ [0, 1] = I measurable, the function
uχI + vχI−I ∈ A where χ denotes the characteristic function.

Let (X, d) be a metric space induced from the normed space (X, ‖ · ‖). We
denote

P0(X) = {A ∈ P(X) : A 6= φ} ,
Pcl(X) = {A ∈ P0(X) : A is closed} ,
Pb(X) = {A ∈ P0(X) : A is bounded} ,

Pcomp(X) = {A ∈ P0(X) : A is compact} .
Consider Hd : P(X)× P(X)→ R ∪ {∞} given by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
,

where d(a,B) = infb∈B d(a, b) and d(b, A) = infa∈A d(a, b). Then (Pb,cl(X), Hd) is
a metric space and (Pcl(X), Hd) is a generalized metric space see [7].

Let E be a separable Banach space, Y a nonempty closed subset of E and
G : Y → Pcl(E) a multivalued operator. G is said to be lower semicontinuous
(l.s.c.) if the set {x ∈ Y : G(x) ∩ U 6= ∅} is open for any open set U in E. G has
a fixed point if there is x ∈ Y such that x ∈ G(x).

For more details on the multi-valued maps, see the books of Aubin and Cel-
lina [4], Aubin and Frankowska [8], Deimling [9], Górniewicz [10] and Hu and
Papageorgiou [11].

Definition 1. Let Y be a separable metric space and letN : Y→P0(L1([0, 1],R))
be a multivalued operator. We say N has the property (BC) if

1. N is lower semi-continuous (l.s.c),

2. N has nonempty closed and decomposable values.

Let F : [0, 1]×R→ Pcomp(R) be a multivalued map. Assign to F the multival-
ued operator

F : C([0, 1],R)→ P0(L1([0, 1],R))
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by letting

F(u) = {w ∈ L1([0, 1],R) : w(t) ∈ F (t, u(t)) for a.e. t ∈ [0, 1]}.

The operator F is called the Niemytzki operator associated with F . We say F is
of the lower semi-continuous type (l.s.c type) if its associated Niemytzki operator
F is lower semi-continuous and has nonempty closed and decomposable values.

Next we state a selection theorem due to Bressan and Colombo.

Lemma 1 ([2]). Let Y be a separable metric space and let N:Y→P0(L1([0, 1],R))
be a multivalued operator which has the property (BC). Then N has a contin-
uous selection, i.e., there exists a continuous function (single-valued) g : Y →
L1([0, 1],R) such that g(u) ∈ N(u) for every u ∈ Y .

Definition 2. A multivalued operator N : X → Pcl(X) is called
a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(Nx,Ny) ≤ γd(x, y) for each x, y ∈ X,

b) a contraction if and only if it is γ-Lipschitz with γ < 1.

Lemma 2 ([3]). Let (X, d) be a complete metric space. If N : X → Pcl(X) is
a contraction, then FixN 6= ∅.

3. Existence Results

By the help of Schaefer’s theorem combined with the selection theorem of Bressan
and Colombo for lower semicontinuous maps with decomposable values, first we
shall present an existence result for the problem (1.1) and (1.2). Before this, let
us introduce the following hypotheses which are assumed hereafter:
(H1) F : [0, 1]× R→ Pcomp(R) be a multivalued map verifying:

a) (t, u)→ F (t, u) is L ⊗ B measurable.

b) u→ F (t, u) is lower semicontinuous for a.e. t ∈ [0, 1].

(H2) F is integrably bounded, that is, there exists a function m ∈ L1([0, 1],R+)
such that ‖F (t, u)‖ = sup {‖v‖ : v ∈ F (t, u)} 6 m(t) for almost all t ∈ [0, 1].

Lemma 3 ([13]). Let F : [0, 1]×R→ Pcomp(R) be a multivalued map. Assume
(H1) and (H2) hold. Then F is of the l.s.c. type.

Definition 3. A function u ∈ AC2([0, 1],R) is called a solution to the BVP
(1.1) and (1.2) if u satisfies the differential inclusion (1.1) a.e. on [0, 1] and the
condition (1.2).

In the first result, we study the case when F is not necessarily convex valued.
Our strategy to deal with this problem is based on Schaefer’s fixed point theorem
with the selection theorem of Bressan and Colombo [2] for lower semicontinuous
maps with decomposable values.

Theorem 1. Suppose that hypothesis (H1) and (H2) hold. Then the problem
(1.1) and (1.2) has at least one solution.
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Proof. (H1) and (H2) imply by Lemma 3 that F is of the lower semi-continuous
type. Then from Lemma 1, there exists a continuous function g : C([0, 1],R) →
L1([0, 1],R) such that g(u) ∈ F(u) for all u ∈ C([0, 1],R).

We consider the problem

−u′′′ = g(u), a.e. t ∈ [0, 1],(3.1)

u′(0) = u′(1) = αu(η), u(0) = βu(η).(3.2)

Remark 1. If u ∈ C([0, 1],R) is a solution to the problem (3.1) and (3.2), then
u is a solution to the problem (1.1) and (1.2).

Transform problem (3.1) and (3.2) into a fixed point problem. Consider the
operator T : C([0, 1],R)→ C([0, 1],R), defined by

T (u)(t) = − 1

2

∫ t

0

(t− s)2g(u)ds+
1

2
[t2 + η2

αt+ β

1− αη − β
]

∫ 1

0

(1− s)g(u)ds

− 1

2

αt+ β

1− αη − β

∫ η

0

(η − s)2g(u)ds.

We show that T is a compact operator.
Step 1. T is continuous.

Let {un} be a sequence such that un → u in C([0, 1],R). Then

|T (un)(t)− T (u)(t)| ≤ 1

2

∫ t

0

(t− s)2 |g(un)− g(u)|ds

+
1

2
[t2 + η2

αt+ β

1− αη − β
]

∫ 1

0

(1− s)|g(un)− g(u)|ds

+
1

2

αt+ β

1− αη − β

∫ η

0

(η − s)2|g(un)− g(u)|ds,

Since g is continuous, then

‖T (un)− T (u)‖ → 0 as n→∞.

Step 2. T is bounded on bounded sets of C([0, 1],R).
Indeed, it is enough to show that there exists a positive constant c such that

for each h ∈ T (u), u ∈ Br = {u ∈ C([0, 1],R) : ‖u‖ ≤ r}, one has ‖h‖ ≤ c. By
(H2), we have for each t ∈ [0, 1],

|h(t)| ≤
[
1 +

η2

2

∣∣∣ α+ β

1− αη − β

∣∣∣] ∫ 1

0

m(s)ds+
η2

2

∣∣∣ α+ β

1− αη − β

∣∣∣ ∫ η

0

m(s)ds = c.

Then |h| ≤ c.
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Step 3. T sends bounded sets of C([0, 1],R) into equicontinuous sets.
Let t1, t2 ∈ [0, 1], t1 < t2, and Br be a bounded set of C([0, 1],R). Then we

obtain

|h(t2)− h(t1)|

≤ 1

2

∫ t2

t1

(t2 − s)2|g(u)|ds+
1

2

[
t22 − t21 + η2

α(t2 − t1)

|1− αη − β|

] ∫ 1

0

(1− s)|g(u)|ds

+
1

2

α(t2 − t1)

|1− αη − β|

∫ η

0

(η − s)2|g(u)|ds+
1

2

∫ t1

0

((t1 − s)2 − (t2 − s)2)|g(u)|ds,

≤ 1

2

∫ t2

t1

(t2 − s)2m(s)ds+

[
t22 − t21

2
+

αη2(t2 − t1)

2|1− αη − β|

] ∫ 1

0

(1− s)m(s)ds

+
1

2

α(t2 − t1)

|1− αη − β|

∫ η

0

(η − s)2m(s)ds+
1

2

∫ t1

0

((t1 − s)2 − (t2 − s)2)m(s)ds.

As t2 → t1 the right-hand side of the above inequality tends to zero.
As a consequence of Steps 1 to 3, together with the Arzela-Ascoli theorem, we

can conclude that T is completely continuous.
In order to apply Schaefer’s theorem, it remains to show next step.

Step 4 The set

Ω = {u ∈ C([0, 1],R) : λu = T (u) for some λ > 1}

is bounded.
Let u ∈ Ω. Then λu = T (u) for some λ > 1 and

u(t) = − λ−1

2

∫ t

0

(t− s)2g(u)ds+
λ−1

2

[
t2 + η2

αt+ β

1− αη − β

] ∫ 1

0

(1− s)g(u)ds

− λ−1

2

αt+ β

1− αη − β

∫ η

0

(η − s)2g(u)ds,

this implies by (H2) that for each t ∈ [0, 1], we have

|u(t)| ≤ 1

2

∫ t

0

(t− s)2m(s)ds+
1

2

[
t2 + η2

∣∣∣ αt+ β

1− αη − β

∣∣∣] ∫ 1

0

(1− s)m(s)ds

+
1

2

∣∣∣ αt+ β

1− αη − β

∣∣∣ ∫ η

0

(η − s)2m(s)ds,

thus

|u| ≤ 1

2

∫ 1

0

(t− s)2m(s)ds+
1

2

[
1 + η2

∣∣∣ α+ β

1− αη − β

∣∣∣] ∫ 1

0

(1− s)m(s)ds

+
1

2

∣∣∣∣ α+ β

1− αη − β

∣∣∣∣ ∫ η

0

(η − s)2m(s)ds = K.

This shows that Ω is bounded.
As a consequence of Schaefer’s theorem (see [1, p. 29]), we deduce that T has

a fixed point which is a solution to (3.1) and (3.2), and hence from Remark 1, a
solution to the problem (1.1) and (1.2). �
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Now we prove the existence of solutions to the problem (1.1) and (1.2) with a non
convex valued right-hand side by applying a fixed point theorem for multivalued
map due to Covitz and Nadler [3].

Theorem 2. Assume that
(H3) F : [0, 1]× R→ Pcomp(R) is such that F (·, u)[0, 1]× R→ Pcomp(R) is mea-

surable for each t ∈ [0, 1].

(H4) Hd(F (t, u), F (t, u)) ≤ p(t)|u − u| for almost all t ∈ [0, 1] and u, u ∈ R with
p ∈ L1([0, 1],R+) and d(0, F (t, 0)) ≤ p(t) for almost all t ∈ [0, 1].

Then the problem (1.1) and (1.2) has at least one solution on [0, 1] if[
1 +

1 + η2

2

∣∣∣ α+ β

1− αη − β

∣∣∣]‖p‖L1 < 1.

Proof. For each u ∈ C([0, 1]× R), define the set of selections of F by

SF,u := {w ∈ L1([0, 1],R) : w(t) ∈ F (t, u(t)) for a.e. t ∈ [0, 1]},
and the multi-valued operator Ω : C([0, 1]× R)→ Pcl(C([0, 1]× R)) by

Ω(u) =

{
h ∈ C([0, 1]× R) : h(t) = −1

2

∫ t

0

(t− s)2f(u)ds

+
1

2

[
t2 + η2

αt+ β

1− αη − β

] ∫ 1

0

(1− s)f(u)ds.

− 1

2

αt+ β

1− αη − β

∫ η

0

(η − s)2f(u)ds, t ∈ [0, 1]

}
for f ∈ SF,u. Observe that the set SF,u is nonempty for each u ∈ C([0, 1]×R), by
the assumption (H3), so F has a measurable selection (see [14, Theorem III.6]).
Now we show that the operator Ω satisfies the assumptions of Lemma 2. To show
that Ω(u) ∈ PclC([0, 1] × R), for each u ∈ C([0, 1] × R), let {vn}n≥0 ∈ Ω(u) be
such that vn → v (n → ∞) in C([0, 1] × R). Then v ∈ C([0, 1] × R) and there
exists wn ∈ SF,u such that for each t ∈ [0, 1],

vn(t) = − 1

2

∫ t

0

(t− s)2wn(s)ds+
1

2

[
t2 + η2

αt+ β

1− αη − β

] ∫ 1

0

(1− s)wn(s)ds

− 1

2

αt+ β

1− αη − β

∫ η

0

(η − s)2wn(s)ds.

As F has compact values, we pass onto a subsequence to obtain that wn con-
verges to w in L1([0, 1]× R). Thus, w ∈ SF,u and for each t ∈ [0, 1]

vn(t)→ v(t) = − 1

2

∫ t

0

(t− s)2w(s)ds+
1

2

[
t2 + η2

αt+ β

1− αη − β

] ∫ 1

0

(1− s)w(s)ds

− 1

2

αt+ β

1− αη − β

∫ η

0

(η − s)2w(s)ds,

Hence, v ∈ Ω(u).
Next we show that there exists γ < 1 such that

Hd(Ωu,Ωu) ≤ γ‖u− u‖ for each u, u ∈ C([0, 1]× R).
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Let u, u ∈ C([0, 1] × R) and h1 ∈ Ω(u). Then there exists v1(t) ∈ SF,u such,
that for each t ∈ [0, 1],

h1(t) = − 1

2

∫ t

0

(t− s)2v1(s)ds+
1

2

[
t2 + η2

αt+ β

1− αη − β

] ∫ 1

0

(1− s)v1(s)ds

− 1

2

αt+ β

1− αη − β

∫ η

0

(η − s)2v1(s)ds.

By H4, we have

Hd(F (t, u), F (t, u)) ≤ p(t)|u(t)− u(t)|.

So, there exists w ∈ SF,u such that

|v1 − w| ≤ p(t)|u− u|, t ∈ [0, 1].

Define U : [0, 1]→ P(R) by

U(t) = {w ∈ R : |v1 − w| ≤ p(t)|u(t)− u(t)|}.

Since the multivalued operator V(t) = U(t) ∩ F (t, u(t)) is measurable ([14,
Proposition III.4]), there exists a function v2(t) which is a measurable selection for
V. So v2(t) ∈ SF,u, and for each t ∈ [0, 1], we have |v1(t)−v2(t)| ≤ p(t)|u(t)−u(t)|.
For each t ∈ [0, 1], let us define

h2(t) = − 1

2

∫ t

0

(t− s)2v2(s)ds+
1

2

[
t2 + η2

αt+ β

1− αη − β

] ∫ 1

0

(1− s)v2(s)ds

− 1

2

αt+ β

1− αη − β

∫ η

0

(η − s)2v2(s)ds,

h1(t) = − 1

2

∫ t

0

(t− s)2v1(s)ds+
1

2

[
t2 + η2

αt+ β

1− αη − β

] ∫ 1

0

(1− s)v1(s)ds

− 1

2

αt+ β

1− αη − β

∫ η

0

(η − s)2v1(s)ds.

Thus,

|h1(t)− h2(t)| ≤ 1

2

∫ t

0

(t− s)2|v1(s)− v2(s)|ds+
1

2

∣∣∣t2
+ η2

αt+ β

1− αη − β

∣∣∣ ∫ 1

0

(1− s) |v1(s)− v2(s)|ds

+
1

2

∣∣∣ αt+ β

1− αη − β

∣∣∣ ∫ η

0

(η − s)2|v1(s)− v2(s)|ds,

≤
[
1 +

1 + η2

2

∣∣∣ α+ β

1− αη − β

∣∣∣] ∫ 1

0

p(s) |u(s)− u(s)|ds.

Hence,

‖h1 − h2‖ ≤
[
1 +

1 + η2

2

∣∣∣ α+ β

1− αη − β

∣∣∣]‖p‖L1‖u− u‖.
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Analogously, interchanging the roles of u and u, we obtain

Hd(Ω(u),Ω(u)) ≤ γ‖u− u‖ ≤
[
1 +

1 + η2

2

∣∣∣ α+ β

1− αη − β

∣∣∣]‖p‖L1‖u− u‖.

Since Ω is a contraction, from Lemma 2, it follows that Ω has a fixed point u which
is a solution to the problem (1.1) and (1.2). This completes the proof. �
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