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STRONG CONGRUENCE RELATION

IN ATOMISTIC LATTICES

H. S. RAMANANDA

Abstract. In this paper, for an atomistic lattice L satisfying the ascending and

descending chain conditions, it is proved that:

• the congruence lattice Con L is isomorphic to the sublattice of the set of all
standard elements of L;

• every congruence relation of L is representable.
Further, the notion of a strong congruence relation in lattices is introduced,

some examples of strong congruence relations are given and it is proved that in
a sectionally complemented lattice satisfying the ascending and descending chain

conditions, every congruence relation is strong.

1. Introduction

Atomistic lattices are proved to be very useful class of Lattices, mainly in software
engineering ([10], atomistic lattices are called atomic partitions). L. Libkin[6], S.
Radeleczki [8] studied atomistic lattices and obtained some structure theorems for
atomistic algebraic lattices. B. Šešelja and A. Tepavčevič [11] studied atomistic
weak congruence lattices and proved that in an atomistic algebraic lattice, every
codistributive element has a complement which is standard.

We observe that an atomistic lattice satisfying the ascending and descending
chain condition has some interesting properties. In the first section of this paper,
we prove some results for a particular type of atomistic lattices and the results
used to build a theory for strong congruence relation in the second section.

Let L be lattice and CS(L) the set of all (nonempty) convex sublattices of
L. S. Lavanya and S. Parameshwara Bhatta proved that there is a partial order on
CS(L) with respect to which CS(L) is a lattice such that both L and CS(L) are in
the same equational class ([4]). They also gave some characterization of the class
K of all lattices L for which every quotient lattice is a sublattice of CS(L). One
of the important result they proved is that a finite distributive lattice L belongs
to K if and only if it is isomorphic to a direct product of chains. Recently, Dwight
Duffus et al. [1] studied a fixed point property on CS(L).
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Continuing the study, in Section 4, the notion of a strong congruence relation
in lattices is introduced and it is proved that in a sectionally complemented lat-
tice satisfying the ascending and descending chain conditions, every congruence
relation is strong.

2. Preliminaries

Let L be a lattice and CS(L) the set of all convex sublattices of L. Define a partial
order ≤ on CS(L) by for A, B ∈ CS(L), A ≤ B if for each a ∈ A there exists
b ∈ B such that a ≤ b, and for each b ∈ B, there exists a ∈ A such that b ≥ a.
Then (CS(L);≤) is a lattice called the lattice of convex sublattices of L and it
is denoted by CS(L), see [3]. A simple structure L and its CS(L) given in the
Figure 1.

L CS(L)

Figure 1.

Let L be a lattice and a be an element of L.

(1) The element a is called distributive if

a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y)

for all x, y ∈ L.
(1⊥) The element a is called codistributive(or dually distributive) if

a ∧ (x ∨ y) = (a ∧ x) ∨ (a ∧ y)

for all x, y ∈ L.
(2) The element a is called standard if

x ∧ (a ∨ y) = (x ∧ a) ∨ (x ∧ y)

for all x, y ∈ L.
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(2⊥) The element a is called costandard (or dually standard) if

x ∨ (a ∧ y) = (x ∨ a) ∧ (x ∨ y)

for all x, y ∈ L.

An ideal I of a lattice L is called standard if I is a standard element of I(L), the
lattice of all ideals of L.

A(L) denotes set of atoms of a lattice L and J(L) denotes set of join-irreducibles
of L.

For x ∈ L, A(x) := A(L) ∩ (x].
For a, b ∈ L, Θ(a, b) denotes the principal congruence relation of L generated

by a, b. For an element s of a lattice L, the congruence relation Θs = Θ[(s]]=the
principal congruence relation generated by the ideal (s].

Let L be a lattice and Θ be a congruence relation of L. If the quotient latticeL/Θ
has the minimum element, say [a]Θ, then [a]Θ as a subset of L is an ideal called
the ideal kernel of the congruence relation Θ.

A congruence relation Θ of a lattice L is said to be representable if there is
a sublattice L1 of L such that the map f : L1 → L/Θ, a 7→ [a]Θ, defines an
isomorphism, see [2].

A lattice L with a minimum element 0 is called: (i) atomistic if every non-zero
element a of L is the join of atoms contained in it, (ii) sectionally complimented
if every interval [0 a] complimented. A sectionally complimented lattice is always
atomistic.

Following results can be easily verified and will be often used in this paper.

Lemma 2.1. If s is a distributive element of a lattice L, then

(1) for any y ∈ L, y ∨ s = max[y]Θs,
(2) [s) = {a ∈ L| a = max[y]Θs for some y ∈ L}.

Lemma 2.2. If s is a distributive element of a lattice L, then Θs is repre-
sentable.

Lemma 2.3.

(1) In an atomistic lattice, J(L) = A(L).
(2) Let L be a lattice. Then for any a, b ∈ L,

J(a ∧ b) = J(a) ∩ J(b) and J(a ∨ b) ⊇ J(a) ∪ J(b).

(3) An atomistic lattice L satisfying the ascending chain condition is algebraic.

3. Atomistic lattices

Throughout this section, L is an atomistic lattice satisfying the ascending and
descending chain conditions. Note that by Lemma 2.3, L is an algebraic lattice.

The following result of [6] will be frequently used in this paper.

Lemma 3.1. For an element a of ∈ L, the following are equivalent:

(1) a is distributive;
(2) a is standard;
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(3) for any y ∈ L, A(a ∨ y) = A(a) ∪A(y).

The following result ([7]) on trellises will be used to prove our next result. Note
that the notion of trellis introduced by H. Skala [?] is a natural generalization of
a lattice. Therefore, the results on trellises also hold good for lattices.

Theorem 3.2. The following statements are equivalent for a trellis L:

1. Every congruence relation has a kernel and every ideal is a congruence class
under, at most, one congruence relation,

2. L is bounded below and if I = [0](Θ(a, b)) for some a, b ∈ L, then Θ[I] =
Θ(a, b).

Lemma 3.3. Every ideal of L is the kernel of at most one congruence relation.

Proof. Let I = [0](Θ(a, b)) for some a, b ∈ L. To prove the theorem, by 2) of
the above theorem, it is required to prove that Θ[I] = Θ(a, b).

Evidently Θ[I] ⊆ Θ(a, b). To prove the reverse inclusion, consider x, y ∈ L
with x ≡ y(Θ(a, b)). Clearly, it can be assumed that x ≤ y. Since L satisfies
the ascending and descending chain condition, every chain connecting x and y is
finite. Let x = a0 ≺ a1 ≺ · · · ≺ an = y be any maximal chain connecting x and y;
we prove that x ≡ y(Θ([I]) by induction on n. For n = 0, nothing to prove.

Assume the result for n = k for k ≥ 0, i.e., if x ≡ y(Θ(a, b)) and x = a0 ≺ a1 ≺
· · · ≺ ak = y any maximal chain connecting x and y, then x ≡ y(Θ([I]).

We prove the result for n = k + 1.
Let x ≡ y(Θ(a, b)) and x = a0 ≺ a1 ≺ · · · ≺ ak+1 = y be any maximal

chain connecting x and y. By induction hypothesis, x = a0 ≡ ak(Θ[I]). Now,
since ak < ak+1, there exists an atom p ≤ ak+1 such that p ∧ ak = 0. Clearly,
0 = p∧ak ≡ p∧ak+1 = p(Θ(a, b)). But then p ∈ [0]Θ(a, b) = I so that 0 ≡ p(Θ[I]).
Now, ak ≡ p ∨ ak = ak+1 = y(Θ[I]). Thus x = a0 ≡ ak+1(Θ[I]). Hence result is
true for all n by mathematical induction. �

A congruence relation Θ of a lattice L is said to be standard if Θ = Θ[I] where
I is a standard ideal of L.

Lemma 3.4. Every congruence relation of L is standard.

Proof. Let I be the ideal kernel of a congruence relation. Since L satisfies the
ascending chain condition, every ideal of L is principal. Therefore, I = (a] for
some element a ∈ L. We prove that the element a is standard. Suppose that a is
not standard. By Lemma 3.1, there exists b ∈ L such that A(a∨ b) 6= A(a)∪A(b).
Let p ∈ A(a ∨ b)−A(a) ∪A(b).

We have

(3.1) 0 ≡ a(Θa)

and

(3.2) b = 0 ∨ b ≡ a ∨ b(Θa).

Then 0 = b ∧ p ≡ (a ∨ b) ∧ p = p(Θa).
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Now, from (3.1) and (3.2),

0 ≡ a ∨ p(Θa),

i.e,

(3.3) a ∨ p ∈ [0]Θa = (a].

Since (a] is the ideal kernel, (3.3) implies that a ∨ p = a or equivalently p ≤ a.
Hence p ∈ A(a), a contradiction. �

Theorem 3.5. Every congruence relation of L is representable.

Proof. Follows from Lemma 3.4, Lemma 3.1 and Lemma 2.2. �

We know that in any lattice, the set of all standard elements forms a sublattice
of the lattice. One more result about standard elements is the following theorem.

Theorem 3.6 ([2]). The map a → Θa for standard elements is an embedding
of the sublattice of standard elements into the congruence lattice.

Now we prove that there is an isomorphism between sublattice of standard
elements of L (an atomistic lattice satisfying the ascending and descending chain
conditions) and the congruence lattice of L.

Theorem 3.7. Let S denote the set of all standard elements of L. Then the
map f : S → ConL defined by f(s) = Θs is an isomorphism.

Proof. Clearly, by Theorem 3.6, f is a one-to-one homomorphism. Also f is
onto. In fact, if (s] = [0]Θ, then by Lemma 3.4, s ∈ S and by Lemma 3.3,
f(s) = Θs. �

4. Strong congruence relations

First we define new notion, strong congruence relation as follows:

Definition 4.1. Let L be a lattice. A congruence relation Θ is said to be
strong if L/Θ is a sublattice of CS(L). If L/Θ is a meet-subsemilattice or a join-
subsemilattice of CS(L), then we call Θ a meet-strong or join-strong, respectively.

It is known (see [4]) that in a relatively complemented lattice and in a finite
distributive lattice which is direct product of chains, every congruence relation is
strong. Further, it may be observed that even in a distributive lattice, a congruence
relation need not be either meet-strong or join-strong (In the distributive lattice
L of Figure 2, the congruence relation Ψ = Θ(0, a)∪Θ(d, 1) is neither meet-strong
nor join-strong).

The following is a characterization theorem for strong congruence relation in
complete lattices.

Theorem 4.2. Let L be a complete lattice and let Θ be a congruence relation
of L. Then following statements are equivalent:

(1) Θ is strong;
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Figure 2.

(2) Let P = {a ∈ L| a = max[x]Θ for some x ∈ L}
and Q = {a ∈ L| a = min[x]Θ for some x ∈ L}.
Then P and Q are sublattices of L.

The proof of this theorem is immediate from the following Lemma.

Lemma 4.3. Let L be a lattice and let Θ be a congruence relation of L such
that each congruence class of Θ has a maximal element. Then following statements
are equivalent:

(1) Θ is join-strong;
(2) P = {a ∈ L| a = max[x]Θ for some x ∈ L} is a sublattice of L.

Proof. (1)⇒ (2): Let Θ be a join-strong congruence relation. Let

P = {a ∈ L| a = max[x]Θ for some x ∈ L}
and let a, b ∈ P . To prove that a ∨ b = max[a ∨ b]Θ, consider c ∈ [a ∨ b]Θ. Since
[a ∨ b]Θ = [a]Θ ∨

CS(L)
[b]Θ, there exist a1 ∈ [a]Θ, b1 ∈ [b]Θ such that c ≤ a1 ∨ b1.

Now, since a = max[a]Θ and b = max[b]Θ, a1 ≤ a and b1 ≤ b so that c ≤ a ∨ b.
To prove that a ∧ b = max[a ∧ b]Θ, consider c ∈ [a ∧ b]Θ.
Since c ≡ a ∧ b(Θ), we get

(4.1) a ∨ c ≡ a(Θ)

and

(4.2) b ∨ c ≡ b(Θ).

Since a = max[a]Θ, b = max[b]Θ, (4.1) and (4.2) give c ≤ a ∧ b.
(2)⇒ (1). We prove that for each a, b ∈ L,

[a ∨ b]Θ = [a]Θ ∨
CS(L)

[b]Θ.



STRONG CONGRUENCE RELATION IN ATOMISTIC LATTICES 343

Clearly,
[a ∨ b]Θ ⊇ [a]Θ ∨

CS(L)
[b]Θ.

On the other hand, let c ∈ [a ∨ b]Θ. Take a1 = c ∧ a, b1 = c ∧ b, a2 = max[a]Θ
and b2 = max[b]Θ. Then, by (2),

(4.3) c ≤ max[a ∨ b]Θ = a2 ∨ b2.

Clearly, a1 ∨ b1 ≤ c and hence a1 ∨ b1 ≤ c ≤ a2 ∨ b2. We claim that a1 ∈ [a]Θ,
b1 ∈ [b]Θ. Since

c ≡ a ∨ b(Θ),(4.4)

clearly,

a1 = c ∧ a ≡ a(Θ)(4.5)

and

b1 = c ∧ b ≡ b(Θ).(4.6)

Therefore, a1 ∈ [a]Θ and b1 ∈ [b]Θ. Thus claim holds.
Now, a1, a2 ∈ [a]Θ, b1, b2 ∈ [b]Θ. Therefore, c ∈ [a]Θ ∨

CS(L)
[b]Θ. �

In a lattice satisfying the ascending and descending chain conditions, a congru-
ence relation is strong which implies that it is representable. More generally, we
prove the following theorem.

Theorem 4.4. Let L be a lattice and let Θ be a join-strong congruence relation
of L such that each congruence class of Θ has a maximal element. Then Θ is
representable.

Proof. By Lemma 4.3, the set P of all maximal elements of blocks of Θ is a
sublattice of L. Clearly, f : P → L/Θ, a 7→ [a]Θ, defines an isomorphism. Hence
Θ is representable. �

By dual arguments, one can prove that if L is a lattice and Θ is a meet-strong
congruence relation of L such that each congruence class of Θ has a minimal
element, then also Θ is representable.

We give some examples of join-strong congruence relations.
In the following theorem, we prove that if s is a distributive element of a lattice

L, then Θs is representable.

Theorem 4.5. If s is a distributive element of a lattice L, then Θs is join-
strong.

Proof. Since s is distributive, by Lemma 2.1, every congruence class of Θs has a
maximal element and by the Lemma 2.2, the set of all maximal elements of blocks
of Θs is a sublattice of L. Therefore, by Lemma 4.3, Θ is join-strong. �

Theorem 4.6. In an atomistic lattice satisfying the ascending and descending
chain conditions, every congruence relation is join-strong.
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Proof. Let Θ be a congruence relation of L. From Theorem 3.7, Θ = Θs for
some standard element s. Hence, by Theorem 4.5, Θ is join-strong. �

Remark 4.7. Even in a finite atomistic lattice, every congruence relation may
not be meet-strong (In the lattice of Figure 3, consider the congruence relation
Θ = Θ(0, a). Θ[j] = {j} and Θ[k] = {k}. Further, Θ[j] ∧ Θ[k] = {0, a}. But
{j} ∧

CS(L)
{k} = {a}. Hence Θ is not meet-strong). But if the lattice is sectionally

complemented, then every congruence relation is strong as proved in the following
theorem.

0

a
b cde

f g h

j k

1

L

i

L

Figure 3. An atomistic lattice with a congruence relation Θ(0, a) which is not meet-strong

Theorem 4.8. In a sectionally complemented lattice L, satisfying the ascending
and descending chain conditions, every congruence relation is strong.

Proof. Let Θ be a congruence relation of L. Since L is atomistic, from Theorem
4.6, Θ is join-strong. To prove that Θ is meet-strong, it is enough to prove, by the
dual of Lemma 4.3, that Q = {a ∈ L| a = min[x]Θ for some x ∈ L} is a sublattice
of L.

Let a, b ∈ Q and c = min([a ∧ b]Θ). We shall prove that c = a ∧ b.
Suppose that c < a∧ b. Let p ∈ A(a∧ b)−A(c). We have a∧ b ≡ c(Θ). Therefore,

(4.7) p = (a ∧ b) ∧ p ≡ c ∧ p = 0(Θ)

Let q be a complement of p in [0, 1]. Now, from (4.7),

1 = p ∨ q ≡ 0 ∨ q = q(Θ).
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Then

(4.8) a = 1 ∧ a ≡ q ∧ a(Θ).

Since a = min[a]Θ, from (4.8), we get a ≤ q. But p ≤ a ∧ b ≤ a ≤ q imply that
p = 0, a contradiction to the fact that p is an atom.

Let a, b ∈ Q. We prove that a ∨ b = min[a ∨ b]Θ.
Let c ∈ [a ∨ b]Θ.
Since c ≡ a ∨ b(Θ), we get

(4.9) a ∧ c ≡ a(Θ)

and

(4.10) b ∧ c ≡ b(Θ).

Further, a = min[a]Θ, b = min[b]Θ, (4.9) and (4.10) give c ≥ a ∨ b. �

One more example of a strong congruence relation is given in the next theorem.
First we prove a lemma.

In any lattice, a standard element can have at most one complement. Another
interesting property of the complement of a standard element is the following
lemma.

Lemma 4.9. In a lattice L, if a standard element has a complement, then it
is codistributive.

Proof. Let L be a bounded lattice. Let s be a standard element and s′ be the
complement of s. Also let x, y ∈ L. We prove that s′ ∧ (x∨ y) = (s′ ∧x)∨ (s′ ∧ y).
Take a = s′ ∧ (x ∨ y) and b = (s′ ∧ x) ∨ (s′ ∧ y). Evidently b ≤ a. Consider

a ∧ (s ∨ b) = a ∧ (s ∨ ((s′ ∧ x) ∨ (s′ ∧ y)))

= a ∧ (((s∨s′) ∧ (s∨x)) ∨ ((s∨s′) ∧ (s∨y))) since s is distributive

= a ∧ ((s ∨ x) ∨ (s ∨ y)) since s ∨ s′ = 1

= a ∧ (s ∨ (x ∨ y))

= a since a≤x∨y≤s∨(x∨y),

and since b ≤ a, we get

(a ∧ s) ∨ (a ∧ b) = ((s′ ∧ (x ∨ y)) ∧ s) ∨ b

= b since s′ ∧ (x ∨ y)) ∧ s ≤ s ∧ s′ = 0 ≤ b.

Now, since s is standard, we get

a = a ∧ (s ∨ b) = (a ∧ s) ∨ (a ∧ b) = b.

�

Theorem 4.10. Let L be a complemented lattice and let s be a standard element
of L. Then Θs is a strong congruence relation.
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Proof. Let s′ be the complement of s. By Lemma 4.9, s′ is codistributive. By
Theorem 4.5, Θs is join-strong and by the dual of Theorem 4.5, Θ[[s′)] is meet-
strong. To prove the theorem, it is enough to prove that Θs = Θ[[s′)].

Let x ≡ y(Θs). Then x ∨ s = y ∨ s. Now

x ∧ s′ = (x ∧ s′) ∨ (s ∧ s′) = (x ∨ s) ∧ s′

= (y ∨ s) ∧ s′ = (y ∧ s′) ∨ (s ∧ s′)

= (y ∧ s′).

Therefore, x ≡ y(Θ[[s′)]) so that Θs ⊆ Θ[[s′)].
On the other hand, let x ≡ y(Θ[[s′)]). Then x ∧ s′ = y ∧ s′.

Now

x ∨ s = (x ∨ s) ∧ (s ∨ s′) = (x ∧ s′) ∨ s since s distributive

= (y ∧ s′) ∨ s = (y ∨ s) ∧ (s ∨ s′)

= y ∨ s.

Therefore, x ≡ y(Θs) so that Θ[[s′)] ⊆ Θs. �
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