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ON FRACTIONAL DELAY INTEGRODIFFERENTIAL

EQUATIONS WITH FOUR-POINT MULTITERM FRACTIONAL

INTEGRAL BOUNDARY CONDITIONS

K. SHRI AKILADEVI and K. BALACHANDRAN

Abstract. In this paper, we study the existence and uniqueness of solutions for the

fractional delay integrodifferential equations with four-point multiterm fractional in-
tegral boundary conditions by using fixed point theorems. The fractional derivative

considered here is in the Caputo sense. Examples are provided to illustrate the

results.

1. Introduction

Fractional differential equations have been receiving greater attention during the
past few decades due to their varied applications to various fields of science and
engineering. For a detailed study, one can refer to the books [18, 25, 27, 33].
In recent years, fractional differential equations involving a variety of boundary
conditions have been investigated by several researchers. In particular, fractional
boundary value problems with integral boundary conditions form a very important
class of problems which includes two, three, multi-point and nonlocal boundary
conditions as special cases. Multi-point boundary conditions arise in problems
related to heat conduction, nonlinear elasticity, electric power networks, electric
railway systems, telecommunication lines, and so on. For some recent contributions
to fractional boundary value problems, see [1, 3, 5, 12, 24, 35, 40, 41].

On the other hand, delay differential equations are often used as tools in sev-
eral areas of applied mathematics including the study of epidemics, population
dynamics, automation, control theory, industrial robotics, traffic flow and so on.
The literature related to the existence of solutions of integer order delay differen-
tial equations is very extensive; see, for instance, [2, 6, 7, 8, 9, 21, 29, 34, 36]
and the references therein. For fractional order initial value problems with delay,
one can refer [11, 13, 15, 22, 26, 28, 39]. But for fractional boundary value
problems with delay, the theory is relatively less developed and many aspects of
these problems are yet to be explored. Some recent works on fractional boundary
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value problems with delay can be found in [14, 16, 17, 23, 31, 32, 37, 38] and
the references therein.

Balachandran [10] studied the existence of mild solutions for a class of abstract
fractional integrodifferential equation with nonlocal condition of the form

CDq
(
u(t) + e(t, u(t))

)
= Au(t)+f

(
t, u(t), u(α(t)),

∫ t

0

k(t, s, u(s), u(β(s)))ds
)
,

u(0) + g(u) = u0,

where CDq is the Caputo fractional derivative of order 0 < q < 1, t ∈ J = [0, a], A is
a closed linear unbounded operator in a Banach space X with dense domain D(A),
u0 ∈ X and f : J ×X3 → X, e : J ×X → X, k : ∆×X2 → X, g : C(J ;X)→ X,
α, β : J → J are continuous with ∆ = {(t, s) : 0 ≤ s ≤ t ≤ a}. The result is
obtained using Krasnoselskii’s fixed point theorem.

Ntouyas [30] studied the existence results for the following fractional differential
equation with fractional integral boundary condition

CDqx(t) = f (t, x(t)) , 0 < t < 1, 1 < q ≤ 2,

x(0) = 0, x(1) = αIpx(η), 0 < η < 1,

where f : [0, 1] × R → R is a given continuous function, α ∈ R is such that
α 6= Γ(p + 2)/ηp+1 and Ip is the Riemann-Liouville fractional integral of order
0 < p < 1. The existence results are obtained by using Krasnoselskii’s fixed point
theorem and Leray-Schauder degree theory.

Guezane-Lakoud and Khaldi [20] discussed the existence and uniqueness of
solutions to the fractional differential equation with integral boundary condition

CDq
0+u(t) = f

(
t, u(t),CDσ

0+u(t)
)
, 0 < t < 1,

u(0) = 0, u
′
(1) = Iσ0+u(1),

where 1 < q < 2, 0 < σ < 1 and f : [0, 1] × R × R → R is a continuous function.
The results are proved using Banach contraction principle and Leray-Schauder
nonlinear alternative.

The existence and uniqueness of solutions to the fractional differential equation
with four-point nonlocal Riemann-Liouville fractional integral boundary condi-
tions of the form

CDqx(t) = f (t, x(t)) , 1 < q ≤ 2, t ∈ [0, 1],

x(0) = aIβx(η), 0 < β ≤ 1,

x(1) = bIαx(σ), 0 < α ≤ 1, 0 < η, σ < 1.

was investigated by Ahmad in [4]. Here f : [0, 1] × R → R is a given continuous
function and a, b are real constants. The results are established using fixed point
theorems.

Motivated by the above works, in this paper, we study the existence and unique-
ness of solutions for the following nonlinear fractional integrodifferential boundary
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value problem with delay of the form

(1)

CDq
0+x(t) = f

(
t, x(t), x(λ(t)),

∫ t

0

k(t, s, x(s), x(σ(s)))ds
)
,

1 < q ≤ 2, t ∈ J = [0, 1],

x(0) =

n∑
i=1

ai(I
γi
0+x)(ζ),

x(1) =

n∑
i=1

bi(I
δi
0+x)(η), 0 < ζ < η < 1,

where the functions f : J×X3 → X , k : Ω×X2 → X, λ, σ : J → J are continuous
with 0 ≤ λ(t), σ(t) ≤ t, t ∈ J . Iµ0+ is the Riemann-Liouville fractional integral
of order µ > 0 for µ = γi or δi, and ai, bi are suitably chosen real constants for
i = 1, 2, . . . , n. Here Ω = {(t, s) : 0 ≤ s ≤ t ≤ 1}. (X, ‖ · ‖) is a Banach space and
Z = C(J,X) denotes the Banach space of all continuous functions from J → X
endowed with the topology of uniform convergence with the norm denoted by ‖·‖C .

The paper is organized as follows: In Section 2, we introduce definitions, nota-
tions and some preliminary notions. In Section 3, we present our main results on
existence and uniqueness of solutions using Krasnoselskii’s fixed point theorem,
Leray-Schauder nonlinear alternative and Banach contraction principle, respec-
tively. Examples are presented in Section 4 illustrating the applicability of the im-
posed conditions. To the best of the authors’ knowledge, no paper has considered
the existence of solutions to the fractional delay integrodifferential equations with
four-point multiterm fractional integral boundary conditions in Banach spaces.

2. Preliminaries

In this section, we give some of the basic definitions, notations and lemmas [25]
which will be used throughout the work.

Definition 2.1. The Riemann-Liouville fractional integral of a function f ∈
L1(R+) of order q > 0 is defined by

Iq0+f(t) =
1

Γ(q)

∫ t

0

(t− s)q−1f(s)ds,

provided the integral exists.

Definition 2.2. The Caputo fractional derivative of order n − 1 < q ≤ n is
defined by

CDq
0+f(t) =

1

Γ(n− q)

∫ t

0

(t− s)n−q−1f (n)(s)ds,

where the function f(t) has absolutely continuous derivatives upto order (n− 1).
In particular, if 0 < q ≤ 1,

CDq
0+f(t) =

1

Γ(1− q)

∫ t

0

f ′(s)

(t− s)q
ds,
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where f ′(s) = Df(s) = df(s)
ds .

For brevity of notation, Kx(t) =
∫ t

0
k(t, s, x(s), x(σ(s)))ds, Iq0+ is taken as Iq

and CDq
0+ is taken as CDq.

Lemma 2.1 ([1]). Let p, q ≥ 0, f ∈ L1[a, b]. Then IpIqf(t) = Ip+qf(t) =
IqIpf(t) and cDqIqf(t) = f(t) for all t ∈ [a, b].

Definition 2.3. A function x(t) ∈ C(J,X) is said to be a solution of (1) if it
satisfies the equation

CDqx(t) = f (t, x(t), x(λ(t)),Kx(t)) , t ∈ J,
and the boundary conditions

x(0) =

n∑
i=1

ai(I
γix)(ζ),

x(1) =

n∑
i=1

bi(I
δix)(η), 0 < ζ < η < 1.

To study the nonlinear problem (1), we first consider the linear problem and obtain
its solution.

Lemma 2.2. For f(t) ∈ C(J,X), the unique solution of the fractional boundary
value problem

(2)

CDqx(t) = f(t), 1 < q ≤ 2, t ∈ J,

x(0) =

n∑
i=1

ai(I
γix)(ζ), x(1) =

n∑
i=1

bi(I
δix)(η), 0 < ζ < η < 1,

is given by

(3)

x(t) = Iqf(t) + (A4 −A3t)

n∑
i=1

aiI
γi+qf(ζ)

+ (A2 +A1t)
{ n∑
i=1

biI
δi+qf(η)− Iqf(1)

}
,

where

A1 =
1

A

(
1−

n∑
i=1

ai
ζγi

Γ(γi + 1)

)
, A2 =

1

A

n∑
i=1

ai
ζγi+1

Γ(γi + 2)
,

A3 =
1

A

(
1−

n∑
i=1

bi
ηδi

Γ(δi + 1)

)
, A4 =

1

A

(
1−

n∑
i=1

bi
ηδi+1

Γ(δi + 2)

)
,

A =
(

1−
n∑
i=1

ai
ζγi

Γ(γi + 1)

)(
1−

n∑
i=1

bi
ηδi+1

Γ(δi + 2)

)
+
( n∑
i=1

ai
ζγi+1

Γ(γi + 2)

)(
1−

n∑
i=1

bi
ηδi

Γ(δi + 1)

)
.
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Proof. For some vector constants c0, c1 ∈ X, the general solution of (2) can be
written as [25]

(4) x(t) = Iqf(t) + c0 + c1t.

Using the boundary condition x(0) =
n∑
i=1

ai(I
γix)(ζ) and Lemma 2.1 in (4), we

have

(5)

(
1−

n∑
i=1

ai
ζγi

Γ(γi + 1)

)
c0 −

( n∑
i=1

ai
ζγi+1

Γ(γi + 2)

)
c1 =

n∑
i=1

aiI
γi+qf(ζ).

Next, using the boundary conditiotn x(1) =
n∑
i=1

bi(I
δix)(η) and Lemma 2.1 in (4),

we have

(6)
(

1−
n∑
i=1

bi
ηδi

Γ(δi + 1)

)
c0+

(
1−

n∑
i=1

bi
ηδi+1

Γ(δi + 2)

)
c1 =

n∑
i=1

biI
δi+qf(η)−Iqf(1).

Solving (5) and (6) for c0 and c1, we have

c0 =
1

A

[(
1−

n∑
i=1

bi
ηδi+1

Γ(δi + 2)

) n∑
i=1

aiI
γi+qf(ζ)

+

n∑
i=1

ai
ζγi+1

Γ(γi + 2)

{ n∑
i=1

biI
δi+qf(η)− Iqf(1)

}]
,

c1 =
1

A

[( n∑
i=1

bi
ηδi

Γ(δi + 1)
− 1
) n∑
i=1

aiI
γi+qf(ζ)

+
(

1−
n∑
i=1

ai
ζγi

Γ(γi + 1)

){ n∑
i=1

biI
δi+qf(η)− Iqf(1)

}]
.

Substituting the above values of c0 and c1 in (4), we get

x(t) = Iqf(t)+(A4−A3t)

n∑
i=1

aiI
γi+qf(ζ)+(A2 +A1t)

{ n∑
i=1

biI
δi+qf(η)−Iqf(1)

}
.

�

3. Main Results

In view of Lemma 2.2, we transform (1) as

(7) x = F (x),
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where F : Z → Z is given by
(8)

(Fx)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f (s, x(s), x(λ(s)),Kx(s)) ds

+ (A4 −A3t)

n∑
i=1

ai

∫ ζ

0

(ζ − s)γi+q−1

Γ(γi + q)
f (s, x(s), x(λ(s)),Kx(s)) ds

+ (A2 +A1t)
{ n∑
i=1

bi

∫ η

0

(η − s)δi+q−1

Γ(δi + q)
f (s, x(s), x(λ(s)),Kx(s)) ds

−
∫ 1

0

(1− s)q−1

Γ(q)
f (s, x(s), x(λ(s)),Kx(s)) ds

}
for t ∈ J . Observe that the problem (1) has solutions if the operator equation (7)
has fixed points.

Assume that the following conditions hold:

(A1) There exist positive constants Lf and Lk such that
(i) ‖f(t, x1, y1, z1)−f(t, x2, y2, z2)‖ ≤ Lf (‖x1−x2‖+‖y1−y2‖+‖z1−z2‖),

t ∈ J, x1, x2, y1, y2, z1, z2 ∈ X,
(ii) ‖k(t, s, x1, y1)−k(t, s, x2, y2)‖ ≤ Lk(‖x1 − x2‖+‖y1 − y2‖), t, s ∈ J ,

x1, x2, y1, y2 ∈ X.
(A2) ‖f(t, x, y, z)‖ ≤ l(t)φ(‖x‖), (t, x, y, z) ∈ J × X3, where l ∈ L1(J,R+) and

φ : [0,∞)→ (0,∞) is a continuous nondecreasing function.
(A3) Let ∆1 = 2Lf

(
θ1 + Lkθ2

)
< 1, where

θ1 =
1 + |A2|+ |A1|

Γ(q + 1)
+ (|A4|+ |A3|)ρ1 + (|A2|+ |A1|)ρ3 and

θ2 =
1 + |A2|+ |A1|

Γ(q + 2)
+ (|A4|+ |A3|)ρ2 + (|A2|+ |A1|)ρ4 with

ρ1 =

n∑
i=1

|ai|
ζγi+q

Γ(γi + q + 1)
, ρ2 =

n∑
i=1

|ai|
ζγi+q+1

Γ(γi + q + 2)
,

ρ3 =

n∑
i=1

|bi|
ηδi+q

Γ(δi + q + 1)
ρ4 =

n∑
i=1

|bi|
ηδi+q+1

Γ(δi + q + 2)
.

We prove the existence of solutions to (1) by applying Krasnoselskii’s fixed point
theorem.

Lemma 3.1 ([19, Krasnoselskii Theorem]). Let S be a closed, convex, nonempty
subset of a Banach space X. Let P,Q be two operators such that

(i) Px+Qy ∈ S, whenever x, y ∈ S,

(ii) P is compact and continuous,

(iii) Q is a contraction mapping.
Then there exists z ∈ S such that z = Pz +Qz.
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Theorem 3.1. Suppose that the assumptions (A1) and (A2) hold with

(9)

L = 2Lf

[{
|A2|+ |A1|

Γ(q + 1)
+ (|A4|+ |A3|)ρ1 + (|A2|+ |A1|)ρ3

}
+ Lk

{
|A2|+ |A1|

Γ(q + 2)
+ (|A4|+ |A3|)ρ2 + (|A2|+ |A1|)ρ4

}]
< 1.

Then the boundary value problem (1) has at least one solution on J.

Proof. Consider Br = {x ∈ Z : ‖x‖ ≤ r} . Now, for t ∈ J, we decompose F as
F1 + F2 on Br, where

(F1x)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f (s, x(s), x(λ(s)),Kx(s)) ds,

(F2x)(t) = (A4 −A3t)

n∑
i=1

ai

∫ ζ

0

(ζ − s)γi+q−1

Γ(γi + q)
f (s, x(s), x(λ(s)),Kx(s)) ds

+ (A2 +A1t)

{ n∑
i=1

bi

∫ η

0

(η − s)δi+q−1

Γ(δi + q)
f (s, x(s), x(λ(s)),Kx(s)) ds

−
∫ 1

0

(1− s)q−1

Γ(q)
f (s, x(s), x(λ(s)),Kx(s)) ds

}
.

Choose r > ‖l‖L1φ(r)θ1. For x, y ∈ Br, we find that

‖F1x+ F2y‖

≤
∫ t

0

(t− s)q−1

Γ(q)
‖f (s, x(s), x(λ(s)),Kx(s)) ‖ds

+ (|A4|+ |A3|)
n∑
i=1

|ai|
∫ ζ

0

(ζ − s)γi+q−1

Γ(γi + q)
‖f (s, y(s), y(λ(s)),Ky(s)) ‖ds

+ (|A2|+ |A1|)
{ n∑
i=1

|bi|
∫ η

0

(η − s)δi+q−1

Γ(δi + q)
‖f (s, y(s), y(λ(s)),Ky(s)) ‖ds

+

∫ 1

0

(1− s)q−1

Γ(q)
‖f (s, y(s), y(λ(s)),Ky(s)) ‖ds

}
≤
∫ t

0

(t− s)q−1

Γ(q)
l(s)φ(‖x‖)ds+ (|A4|+ |A3|)

n∑
i=1

|ai|
∫ ζ

0

(ζ − s)γi+q−1

Γ(γi + q)

× l(s)φ(‖y‖)ds+ (|A2|+ |A1|)
{ n∑
i=1

|bi|
∫ η

0

(η − s)δi+q−1

Γ(δi + q)
l(s)φ(‖y‖)ds

+

∫ 1

0

(1− s)q−1

Γ(q)
l(s)φ(‖y‖)ds

}
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≤ ‖l‖L1φ(r)

[
1 + |A2|+ |A1|

Γ(q + 1)
+ (|A4|+ |A3|)

n∑
i=1

|ai|
ζγi+q

Γ(γi + q + 1)

+ (|A2|+ |A1|)
n∑
i=1

|bi|
ηδi+q

Γ(δi + q + 1)

]
≤ ‖l‖L1φ(r)θ1 ≤ r.

Thus F1x+ F2y ∈ Br. Next we prove that F2 is a contraction.

‖(F2x)(t)− (F2y)(t)‖

≤ (|A4|+ |A3|)
n∑
i=1

|ai|
∫ ζ

0

(ζ − s)γi+q−1

Γ(γi + q)
‖f (s, x(s), x(λ(s)),Kx(s))

− f (s, y(s), y(λ(s)),Ky(s)) ‖ds+ (|A2|+ |A1|)
{ n∑
i=1

|bi|
∫ η

0

(η − s)δi+q−1

Γ(δi + q)

× ‖f (s, x(s), x(λ(s)),Kx(s))−f (s, y(s), y(λ(s)),Ky(s)) ‖ds

+

∫ 1

0

(1− s)q−1

Γ(q)
‖f (s, x(s), x(λ(s)),Kx(s))−f (s, y(s), y(λ(s)),Ky(s)) ‖ds

}
≤ (|A4|+ |A3|)

n∑
i=1

|ai|
∫ ζ

0

(ζ − s)γi+q−1

Γ(γi + q)
Lf

(
‖x(s)−y(s)‖+‖x(λ(s))−y(λ(s))‖

+ ‖Kx(s)−Ky(s)‖
)

ds+ (|A2|+ |A1|)
{ n∑
i=1

|bi|
∫ η

0

(η − s)δi+q−1

Γ(δi + q)

× Lf
(
‖x(s)− y(s)‖+ ‖x(λ(s))− y(λ(s))‖+ ‖Kx(s)−Ky(s)‖

)
ds

+

∫ 1

0

(1− s)q−1

Γ(q)
Lf

(
‖x(s)− y(s)‖+ ‖x(λ(s))− y(λ(s))‖

+ ‖Kx(s)−Ky(s)‖
)

ds

}
≤ (|A4|+ |A3|)

n∑
i=1

|ai|
∫ ζ

0

(ζ − s)γi+q−1

Γ(γi + q)
Lf

(
2‖x− y‖

+ ‖
∫ s

0

k(s, τ, x(τ), x(σ(τ)))dτ −
∫ s

0

k(s, τ, y(τ), y(σ(τ)))dτ‖
)

ds

+ (|A2|+ |A1|)
{ n∑
i=1

|bi|
∫ η

0

(η − s)δi+q−1

Γ(δi + q)
Lf

(
2‖x− y‖

+ ‖
∫ s

0

k(s, τ, x(τ), x(σ(τ)))dτ −
∫ s

0

k(s, τ, y(τ), y(σ(τ)))dτ‖
)

ds

+

∫ 1

0

(1− s)q−1

Γ(q)
Lf

(
2‖x− y‖+ ‖

∫ s

0

k(s, τ, x(τ), x(σ(τ)))dτ

−
∫ s

0

k(s, τ, y(τ), y(σ(τ)))dτ‖
)

ds

}
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≤ 2Lf

[{
|A2|+ |A1|

Γ(q + 1)
+ (|A4|+ |A3|)ρ1 + (|A2|+ |A1|)ρ3

}
+ Lk

{
|A2|+ |A1|

Γ(q + 2)
+ (|A4|+ |A3|)ρ2 + (|A2|+ |A1|)ρ4

}]
‖x− y‖ ≤ L‖x− y‖.

Hence F2 is a contraction. Continuity of f and k implies that the operator F1 is
continuous. Also F1 is uniformly bounded on Br as

‖(F1x)(t)‖ ≤
∫ t

0

(t− s)q−1

Γ(q)
‖f (s, x(s), x(λ(s)),Kx(s)) ‖ds

≤
∫ t

0

(t− s)q−1

Γ(q)
l(s)φ(‖x‖)ds ≤ ‖l‖L

1φ(r)

Γ(q + 1)
.

To prove that the operator F1 is compact, it remains to show that F1 is equicon-
tinuous. Now, for any t1, t2 ∈ J with t1 < t2 and x ∈ Br, we have

‖(F1x)(t2)− (F1x)(t1)‖

≤
∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
Γ(q)

‖f (s, x(s), x(λ(s)),Kx(s)) ‖ds

+

∫ t2

t1

(t2 − s)q−1

Γ(q)
‖f (s, x(s), x(λ(s)),Kx(s)) ‖ds

≤
∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
Γ(q)

l(s)φ(‖x‖)ds

+

∫ t2

t1

(t2 − s)q−1

Γ(q)
l(s)φ(‖x‖)ds

≤ φ(r)

[ ∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
Γ(q)

l(s)ds+

∫ t2

t1

(t2 − s)q−1

Γ(q)
l(s)ds

]
.

As t2 → t1, the right hand side of the above inequality tends to zero independent
of x ∈ Br. Thus F1 is equicontinuous. By Arzela-Ascoli’s Theorem, F1 is compact
on Br. Hence, by the Krasnoselskii fixed point theorem, there exists a fixed point
x ∈ Z such that Fx = x which is a solution to the fractional boundary value
problem (1). �

The next existence result is based on Leray-Schauder nonlinear alternative.

Theorem 3.2 ([19, Leray-Schauder nonlinear alternative]). Let E be a Banach
space, C a closed, convex subset of E, U an open subset of C and 0 ∈ U. Suppose
that F : Ū → C is a continuous, compact (that is, F (Ū) is a relatively compact
subset of C) map. Then either

(i) F has a fixed point in Ū or

(ii) there is a u ∈ ∂U (the boundary of U in C) and λ0 ∈ (0, 1) with u = λ0F (u).
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Theorem 3.3. Assume that the following hypotheses hold:
(A4) There exist a continuous nondecreasing function ψ : [0,∞) → (0,∞) and

functions n1, n2 ∈ L1(J,R+) such that for each (t, x, y, z) ∈ J ×X3,
‖f(t, x, y, z)‖ ≤ n1(t)ψ(‖x‖) + n2(t).

(A5) There exists a constant M > 0 such that MΛ−1 > 1, where

Λ = (ψ(M)‖n1‖L1 + ‖n2‖L1)θ1.

Then the boundary value problem (1) has at least one solution on J.

Proof. Observe that the operator F : Z → Z defined by (8) is continuous. Next
we show that F maps bounded sets into bounded sets in Z.

For a positive number r, let Br = {x ∈ Z : ‖x‖ ≤ r} be a bounded ball in Z.
Then, for x ∈ Br, we have

‖(Fx)(t)‖

≤
∫ t

0

(t− s)q−1

Γ(q)
‖f (s, x(s), x(λ(s)),Kx(s)) ‖ds

+ (|A4|+ |A3|)
n∑
i=1

|ai|
∫ ζ

0

(ζ − s)γi+q−1

Γ(γi + q)
‖f (s, x(s), x(λ(s)),Kx(s)) ‖ds

+ (|A2|+ |A1|)
{ n∑
i=1

|bi|
∫ η

0

(η − s)δi+q−1

Γ(δi + q)
‖f (s, x(s), x(λ(s)),Kx(s)) ‖ds

+

∫ 1

0

(1− s)q−1

Γ(q)
‖f (s, x(s), x(λ(s)),Kx(s)) ‖ds

}
≤
∫ t

0

(t− s)q−1

Γ(q)
(n1(s)ψ(‖x‖) + n2(s))ds+ (|A4|+ |A3|)

×
n∑
i=1

|ai|
∫ ζ

0

(ζ − s)γi+q−1

Γ(γi + q)
(n1(s)ψ(‖x‖) + n2(s))ds+ (|A2|+ |A1|)

×
{ n∑
i=1

|bi|
∫ η

0

(η − s)δi+q−1

Γ(δi + q)
(n1(s)ψ(‖x‖) + n2(s))ds

+

∫ 1

0

(1− s)q−1

Γ(q)
(n1(s)ψ(‖x‖) + n2(s))ds

}
≤ ψ(‖x‖)‖n1‖L1

[
1 + |A2|+ |A1|

Γ(q + 1)
+ (|A4|+ |A3|)ρ1 + (|A2|+ |A1|)ρ3

]
+ ‖n2‖L1

[
1 + |A2|+ |A1|

Γ(q + 1)
+ (|A4|+ |A3|)ρ1 + (|A2|+ |A1|)ρ3

]
≤ (ψ(r)‖n1‖L1 + ‖n2‖L1)θ1.

Thus

‖(Fx)(t)‖ ≤ (ψ(r)‖n1‖L1 + ‖n2‖L1)θ1.
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Now we show that F maps bounded sets into equicontinuous sets in Br. For
that, let t1, t2 ∈ J with t1 < t2. Then, for x ∈ Br,

‖(Fx)(t2)− (Fx)(t1)‖

≤
∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
Γ(q)

‖f (s, x(s), x(λ(s)),Kx(s)) ‖ds

+

∫ t2

t1

(t2 − s)q−1

Γ(q)
‖f (s, x(s), x(λ(s)),Kx(s)) ‖ds+ |A3|(t2 − t1)

×
n∑
i=1

|ai|
∫ ζ

0

(ζ − s)γi+q−1

Γ(γi + q)
‖f (s, x(s), x(λ(s)),Kx(s)) ‖ds+ |A1|

× (t2 − t1)

{ n∑
i=1

|bi|
∫ η

0

(η − s)δi+q−1

Γ(δi + q)
‖f (s, x(s), x(λ(s)),Kx(s)) ‖ds

+

∫ 1

0

(1− s)q−1

Γ(q)
‖f (s, x(s), x(λ(s)),Kx(s)) ‖ds

}
≤ ψ(r)

[ ∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
Γ(q)

n1(s)ds+

∫ t2

t1

(t2 − s)q−1

Γ(q)
n1(s)ds

+ |A3|(t2 − t1)

n∑
i=1

|ai|
∫ ζ

0

(ζ − s)γi+q−1

Γ(γi + q)
n1(s)ds+ |A1|(t2 − t1)

×
( n∑
i=1

|bi|
∫ η

0

(η − s)δi+q−1

Γ(δi + q)
n1(s)ds+

∫ 1

0

(1− s)q−1

Γ(q)
n1(s)ds

)]

+

[ ∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
Γ(q)

n2(s)ds+

∫ t2

t1

(t2 − s)q−1

Γ(q)
n2(s)ds

+ |A3|(t2 − t1)

n∑
i=1

|ai|
∫ ζ

0

(ζ − s)γi+q−1

Γ(γi + q)
n2(s)ds+ |A1|(t2 − t1)

×
( n∑
i=1

|bi|
∫ η

0

(η − s)δi+q−1

Γ(δi + q)
n2(s)ds+

∫ 1

0

(1− s)q−1

Γ(q)
n2(s)ds

)]
.

As t2 → t1, the right hand side of the above inequality tends to zero independent
of x ∈ Br. Thus F maps bounded sets into equicontinuous sets in Br. By Arzela-
Ascoli’s Theorem, F is completely continuous.

Now let x = λ0Fx, where λ0 ∈ (0, 1). Then, for t ∈ J , we have

x(t) =λ0

∫ t

0

(t− s)q−1

Γ(q)
f (s, x(s), x(λ(s)),Kx(s)) ds

+ λ0(A4 −A3t)

n∑
i=1

ai

∫ ζ

0

(ζ − s)γi+q−1

Γ(γi + q)
f (s, x(s), x(λ(s)),Kx(s)) ds

+ λ0(A2 +A1t)

{ n∑
i=1

bi

∫ η

0

(η − s)δi+q−1

Γ(δi + q)
f (s, x(s), x(λ(s)),Kx(s)) ds

−
∫ 1

0

(1− s)q−1

Γ(q)
f (s, x(s), x(λ(s)),Kx(s)) ds

}
.
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Then, using the computations of the first step, we have

‖x(t)‖≤(ψ(‖x‖)‖n1‖L1 + ‖n2‖L1)θ1

which can be written as

‖x‖
{

(ψ(‖x‖)‖n1‖L1 + ‖n2‖L1)θ1

}−1

≤ 1.

In view of (A5), there exists M such that ‖x‖ 6= M . We set

U =
{
x ∈ Z : ‖x‖ < M

}
.

Note that the operator F : Ū → Z is continuous and completely continuous.
From the choice of U , there is no x ∈ ∂U such that x = λ0Fx for some λ0 ∈ (0, 1).
Consequently, by the Leray-Schauder nonlinear alternative, we deduce that F has
a fixed point x ∈ Ū which is a solution to the problem (1). �

The next result is based on Banach contraction principle.

Theorem 3.4. Assume that the hypotheses (A1) and (A3) hold. Then the
boundary value problem (1) has a unique solution on J .

Proof. Let M1 = sup
t∈J
‖f(t, 0, 0, 0)‖ and M2 = sup

t,s∈J
‖k(t, s, 0, 0)‖. Consider

Br = {x ∈ Z : ‖x‖ ≤ r} , where r ≥ ∆2

1−∆1
with ∆2 = LfM2θ2 + M1θ1 and ∆1

is given by the assumption (A3). Now we show that FBr ⊂ Br, where F : Z → Z
is defined by (8). For x ∈ Br, we have

‖(Fx)(t)‖

≤
∫ t

0

(t− s)q−1

Γ(q)
‖f (s, x(s), x(λ(s)),Kx(s)) ‖ds

+ (|A4|+ |A3|)
n∑
i=1

|ai|
∫ ζ

0

(ζ − s)γi+q−1

Γ(γi + q)
‖f (s, x(s), x(λ(s)),Kx(s)) ‖ds

+ (|A2|+ |A1|)
{ n∑
i=1

|bi|
∫ η

0

(η − s)δi+q−1

Γ(δi + q)
‖f (s, x(s), x(λ(s)),Kx(s)) ‖ds

+

∫ 1

0

(1− s)q−1

Γ(q)
‖f (s, x(s), x(λ(s)),Kx(s)) ‖ds

}
≤
∫ t

0

(t− s)q−1

Γ(q)

[
‖f (s, x(s), x(λ(s)),Kx(s))− f(s, 0, 0, 0)‖+ ‖f(s, 0, 0, 0)‖

]
ds

+ (|A4|+ |A3|)
n∑
i=1

|ai|
∫ ζ

0

(ζ − s)γi+q−1

Γ(γi + q)

[
‖f (s, x(s), x(λ(s)),Kx(s))

− f(s, 0, 0, 0)‖+ ‖f(s, 0, 0, 0)‖
]
ds+ (|A2|+ |A1|)

{ n∑
i=1

|bi|
∫ η

0

(η − s)δi+q−1

Γ(δi + q)

×
[
‖f (s, x(s), x(λ(s)),Kx(s))− f(s, 0, 0, 0)‖+ ‖f(s, 0, 0, 0)‖

]
ds

+

∫ 1

0

(1− s)q−1

Γ(q)

[
‖f (s, x(s), x(λ(s)),Kx(s))− f(s, 0, 0, 0)‖+ ‖f(s, 0, 0, 0)‖

]
ds

}
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≤
∫ t

0

(t− s)q−1

Γ(q)

[
Lf (‖x(s)‖+ ‖x(λ(s))‖+ ‖Kx(s)‖) +M1

]
ds+ (|A4|+ |A3|)

×
n∑
i=1

|ai|
∫ ζ

0

(ζ − s)γi+q−1

Γ(γi + q)

[
Lf (‖x(s)‖+ ‖x(λ(s))‖+ ‖Kx(s)‖)+M1

]
ds

+ (|A2|+ |A1|)
{ n∑
i=1

|bi|
∫ η

0

(η − s)δi+q−1

Γ(δi + q)

[
Lf (‖x(s)‖+ ‖x(λ(s))‖+ ‖Kx(s)‖)

+M1

]
ds+

∫ 1

0

(1− s)q−1

Γ(q)

[
Lf (‖x(s)‖+ ‖x(λ(s))‖+ ‖Kx(s)‖) +M1

]
ds

}
≤
∫ t

0

(t− s)q−1

Γ(q)

[
Lf

(
‖x(s)‖+‖x(λ(s))‖+

∫ s

0

[
‖k(s, τ, x(τ), x(σ(τ)))− k(s, τ, 0, 0)‖

+ ‖k(s, τ, 0, 0)‖
]
dτ

)
+M1

]
ds+ (|A4|+ |A3|)

n∑
i=1

|ai|
∫ ζ

0

(ζ − s)γi+q−1

Γ(γi + q)

×
[
Lf

(
‖x(s)‖+ ‖x(λ(s))‖+

∫ s

0

[
‖k(s, τ, x(τ), x(σ(τ)))− k(s, τ, 0, 0)‖

+ ‖k(s, τ, 0, 0)‖
]
dτ

)
+M1

]
ds+ (|A2|+ |A1|)

{ n∑
i=1

|bi|
∫ η

0

(η − s)δi+q−1

Γ(δi + q)

×
[
Lf

(
‖x(s)‖+ ‖x(λ(s))‖+

∫ s

0

[
‖k(s, τ, x(τ), x(σ(τ)))− k(s, τ, 0, 0)‖

+ ‖k(s, τ, 0, 0)‖
]
dτ

)
+M1

]
ds+

∫ 1

0

(1− s)q−1

Γ(q)

[
Lf

(
‖x(s)‖+ ‖x(λ(s))‖

+

∫ s

0

[
‖k(s, τ, x(τ), x(σ(τ)))− k(s, τ, 0, 0)‖+ ‖k(s, τ, 0, 0)‖

]
dτ

)
+M1

]
ds

}
≤ 2rLf

(
θ1 + Lkθ2

)
+
(
LfM2θ2 +M1θ1

)
≤ ∆1r + ∆2 ≤ r.

This shows that FBr ⊂ Br. Next, for x, y ∈ Z and t ∈ J, we obtain

‖(Fx)(t)− (Fy)(t)‖

≤
∫ t

0

(t− s)q−1

Γ(q)
‖f (s, x(s), x(λ(s)),Kx(s))−f (s, y(s), y(λ(s)),Ky(s)) ‖ds

+ (|A4|+ |A3|)
n∑
i=1

|ai|
∫ ζ

0

(ζ − s)γi+q−1

Γ(γi + q)
‖f (s, x(s), x(λ(s)),Kx(s))

− f (s, y(s), y(λ(s)),Ky(s))‖ds+(|A2|+ |A1|)
{ n∑
i=1

|bi|
∫ η

0

(η − s)δi+q−1

Γ(δi + q)

× ‖f (s, x(s), x(λ(s)),Kx(s))− f (s, y(s), y(λ(s)),Ky(s)) ‖ds

+

∫ 1

0

(1− s)q−1

Γ(q)
‖f(s, x(s), x(λ(s)),Kx(s))−f(s, y(s), y(λ(s)),Ky(s))‖ds

}
≤ 2Lf

(
θ1 + Lkθ2

)
‖x− y‖

‖Fx− Fy‖ ≤ ∆1‖x− y‖.
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Here ∆1 depends only on the parameters involved in the problem. By assumption
(A3), ∆1<1 and therefore, F is a contraction. Hence, by the Banach contraction
principle, the problem (1) has a unique solution on J . �

Remark 3.1. By fixing the parameters in the given problem, several special
cases can be obtained.

(a) For f = f(t, x(t)) and taking ai, bi = 0, i = 2, . . . , n in the problem (1),

(i) the results of [3] are got by taking a1 = 0, δ1 = 1.

(ii) the results of [4] appear as a special case with X = R.

(iii) the results of [30] are obtained as a special case by taking a1 = 0 and
X = R.

(b) For ai, bi = 0, i = 1, 2, . . . , n, the problem (1) reduces to a Dirichlet problem.

(c) Taking ai, bi = 0, i = 2, . . . , n, and γ1, δ1 = 1, the problem (1) reduces to
a fractional delay integrodifferential equation with integral boundary condi-
tions.

(d) For q = 2, taking ai, bi = 0, i = 2, . . . , n, and γ1, δ1 = 1, we obtain new
results for a second order delay differential equation with integral boundary
conditions.

(e) The problem (1) can be generalized to fractional integrodifferential boundary
value problem with multiple delay of the form

CDqx(t) = f
(
t, x(t), x(λ1(t)), x(λ2(t)), . . . , x(λm1(t)),∫ t

0

k(t, s, x(s), x(σ1(s)), x(σ2(s)), . . . , x(σm2(s)))ds
)
, t ∈ J = [0, 1],

x(0) =

n∑
i=1

ai(I
γix)(ζ),

x(1) =

n∑
i=1

bi(I
δix)(η), 0 < ζ < η < 1,

where 1 < q ≤ 2, the functions λi, σj : J → J , i = 1, 2, . . . ,m1, j =
1, 2, . . . ,m2, are continuous such that 0 ≤ λi(t) ≤ t, 0 ≤ σj(t) ≤ t, t ∈ J ,
and under suitable assumptions, we can establish the existence results.

4. Example

Consider the following fractional boundary value problem

(10)

CD3/2x(t) =
1

(t+ 63)

|x(t)|
1 + |x(t)| +

e−t

62 + et
|x(t/2)|

1 + |x(t/2)|

+
1

63

∫ t

0

e−s

7

|x(s2)|
1 + |x(s2)|ds, t ∈ [0, 1],

x(0) =

5∑
i=1

ai(I
γix)(ζ),

x(1) =

5∑
i=1

bi(I
δix)(η), 0 < ζ < η < 1.
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Here X = R, q =
3

2
, n = 5, ζ = 1

2 , η =
2

3
,

a1 = 3, a2 = 4, a3 = 7, a4 = 11, a5 = 17,

γ1 =
1

3
, γ2 =

2

3
, γ3 =

4

3
, γ4 =

5

3
, γ5 =

8

3
,

b1 = 2, b2 = 5, b3 = 16, b4 = 11, b5 = 10,

δ1 =
1

2
, δ2 =

3

4
, δ3 =

5

4
, δ4 =

3

2
, δ5 =

7

4
.

From the above given data, we see that

A=−3.126434, A1 =3.122104, A2 =−0.914796, A3= 6.693181, A4 =1.858697,

ρ1 = 1.264617, ρ2 =0.195105, ρ3 = 3.284678, ρ4 =0.612445,

θ1 = 27.86379, θ2 = 5.656502.

(i) From (10), we have

f (t, x(t), x(λ(t)),Kx(t)) =
1

(t+ 63)

|x(t)|
1 + |x(t)| +

e−t

62 + et
|x(t/2)|

1 + |x(t/2)|

+
1

63

∫ t

0

e−s

7

|x(s2)|
1 + |x(s2)|ds

where Kx(t) =
∫ t

0
e−s

7
|x(s2)|

1+|x(s2)|ds, λ(t) = t/2, σ(t) = t2. The condition (A1)

is satisfied with Lf = 1/63 and Lk = 1/7. The condition (A2) is satisfied with
l(t)=1 and φ(‖x‖) = 5/147. Computing the value of L, we have L = 0.884972 < 1,
thereby satisfying the condition (9). Thus all the assumptions of the Theorem 3.1
are satisfied. Hence the problem (10) with the given function f has at least one
solution on J.

(ii) Now we take

f (t, x(t), x(λ(t)),Kx(t)) =
sin 2πx

72π
+

1 + e−t

71 + et
x(t3)

1 + x(t3)
+

1

36

∫ t

0

e−s

11

x(sin s)

1 + x(sin s)
ds

in (10), where Kx(t) = 1/36
∫ t

0
e−s

11
x(sin s)

1+x(sin s)ds, λ(t) = t3, σ(t) = sin t. Clearly

‖f (t, x(t), x(λ(t)),Kx(t)) ‖ ≤ ‖x‖
36

+
1

33
.

Here n1(t) = 1/36, ψ(‖x‖) = ‖x‖ and n2(t) = 1/33. From (A5), we have

M

(ψ(M)‖n1‖L1 + ‖n2‖L1)θ1
> 1

from which we find that M > M1, where M1 w 3.735994 thereby satisfying the
condition (A5). Thus all the assumptions of the Theorem 3.3 are satisfied. Hence
the problem (10) with the given function f has at least one solution on J.
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(iii) Taking

f (t, x(t), x(λ(t)),Kx(t)) =
1

(2t+ 8)2
x(t)

1 + x(t)
+

1 + e−t

127 + et
x(sin t)

1 + x(sin t)

+
1

64

∫ t

0

e−
x(sin s)

15 ds

in (10), we have Kx(t) =
∫ t

0
e−

x(sin s)
15 ds, λ(t) = σ(t) = sin t. The condition (A1)

is satisfied with Lf = 1/64 and Lk = 1/15. Computing the value of ∆1, we
have ∆1 = 0.882528 < 1, thereby satisfying the condition (A3). Thus all the
assumptions of the Theorem 3.4 are satisfied. Hence the problem (10) with the
given function f has a unique solution on J.
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