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DATKO-PERRON’S PROBLEM FOR DICHOTOMY

OF DIFFERENTIAL EQUATIONS

T. BARTA, I. ION and P. PREDA

Abstract. The purpose of this paper is to show that in the study of dichotomy for

evolutionary family generated by differential systems, using the Perron’s method,

it is enough to consider space L∞ as an output, because when the output space is
Lq , q < ∞, it can be used the Datko’s theorem (see P. Preda, M. Megan [17]).

1. Preliminaries

In 1930, O. Perron ([16])proved that the differential system

(A) ẋ(t) = A(t)x(t)

is exponentially dichotomus if and only if for each f : R+ → X, f continuous
and bounded (f ∈ C), the inhomogeneous differential equation (A, f) : ẋ(t) =
A(t)x(t) + f(t) has a bounded solutions on R+. This fact was proved in finite
dimensional spaces.

In 1948, R. Bellman [1] and D. L. Kucer ([8]) studied that in conditions men-
tioned above, there is a connection between the norm from C of function x (also
called output) and the norm of function f(called input).

In 1958, J. L. Massera and J. J. Scha̋ffer ([11]) studied in Perron’s problem for
evolutionary family generated by differential equations, the input space with Lp

and the output space with L∞.
If the output space is C or L∞, we can use the inequality ‖x(t)‖ ≤ ‖x‖∞ a.e.,

where ‖x(t)‖ is the norm in the Banach space X and ‖x‖∞ is the norm in L∞.
In 1966, J. L. Massera and J. J. Scha̋ffer([12]) studied the asymptotic behaviour

for differential systems (A) using input-output spaces, spaces that are translation-
invariant.

J. L. Massera and J. J. Scha̋ffer in ([11, Example 5.1, p. 536]) showed that the
hypothesis that the evolutionary family generated by differential system (A) has
exponentially growth (there exist M,ω > 0 such that ‖Φ(t, t0)‖ ≤ M eω(t−t0) for
all t ≥ t0), is required in the study of asymptotic uniform behaviour of this family.

In 1970, R. Datko ([5]) proved that in Hilbert space a C0-semigroup with the
infinitesimal generator A is exponentially stable if and only if there is a linear

Received August 2, 2015; revised June 1, 2016.
2000 Mathematics Subject Classification. Primary 34D09,37D25.
Key words and phrases. evolution family; admissibility; uniform exponential dichotomy.



10 T. BARTA, I. ION and P. PREDA

operator W that is bounded, positive and such that

〈Ax,Wx〉+ 〈Wx,Ax〉 ≤ ‖x‖2, for all x ∈ D(A).

To prove this R. Datko highlights a result, proved to be extremely useful in the
literature dedicated to this issue, according to which the semigroup {T (t)}t≥0 is
exponentially stable if and only if∫ ∞

0

‖T (t)x‖2dt <∞ for all x ∈ X.

This result was extended by A. Pazy ([15]) from p = 2 to p ≥ 1, and by
W. Littman ([9]) to p > 0.

In 1972, R. Datko ([6]) extended this result to evolutionary family with ex-
ponential growth and in 1985, P. Preda with M. Megan ([17]) extended Datko’s
result from stability of evolutionary family to dichotomy of evolutionary family.

In 1974, D. L. Lovelady ([10]) showed that if U is the fundamental solution of
the differential system (A): {

U̇(t) = A(t)U(t)

U(0) = I,

X1 = {x ∈ X : U(·)x ∈ L∞} is complemented, X2 is one of it’s complements and
P1, P2 are the projectors associated to this decomposition, then the pair (Lp, L∞)
is admissible to the differential system (A) (for every f ∈ Lp, there is x ∈ L∞ such
that ẋ(t) = A(t)x(t) + f(t) for all t ≥ 0) with p > 1 if and only if(∫ t

0

‖U(t)P1U
1(τ)‖pdτ

) 1
p

+
(∫ ∞

t

‖U(t)P2U
1(τ)‖pdτ

) 1
p ≤ k for each t ≥ 0.

Making a link between the admissibility of a pair of function spaces and the di-
chotomy of the differential system (A), see W. A. Coppel [3].

It is easy to see that when you study the stability of evolutionary family with
exponential growth, using the admissibility of (Lp, Lq) and considering the function
f(t) = ϕ[t0,t0+1]Φ(t, t0)x as an input, where ϕE is the characteristic function of
the set E, we get x(t) = Φ(t, t0)x for all t ≥ t0 + 1.

In this way we can see the importance of studying the case where L∞ is the
output space, because the case when Lq, q <∞ is the output space has beenalready
solved by Datko’s theorem.

The purpose of this article is to show that for evolutionary family with
exponential growth generated by differential systems, using pairs of spaces (Lp, Lq)
for q <∞, Datko’s theorem can be used to study the dichotomy (see P. Preda, M.
Megan([17]).) Thus the comment made above for stability can be extended for
the dichotomy of the evolutionary family. In this way we have a Datko-Perron’s
method to the dichotomy of the evolutionary family generated by the differential
system in infinite dimensional spaces.

LetX be a Banach space and B(X) the Banach algebra of all linear and bounded
operators acting on X (the norm on both X and B(X) denoted by || · ||).
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Notations. For an upper unbounded interval I, we denote by M(I,X) the
spaces of all Bochner measurable functions from I to X.

Lp(I,X) =
{
f ∈M(I,X) :

∫
I

‖f(t)‖pdt <∞
}
, where p ∈ [1,∞),

L∞(I,X) =
{
f ∈M(I,X) : ess sup

t∈I
‖f(t)‖dt <∞

}
,

M1(I,X) =
{
f ∈M(I,X) : sup

t∈I

∫ t+1

t

‖f(t)‖dt <∞
}
.

We note that Lp(I,X), L∞(I,X), M1(I,X) are Banach spaces endowed with
the norms:

‖f‖p =
(∫

I

‖f(t)‖pdt
) 1
p

, ‖f‖∞ = ess sup
t∈I
‖f(t)‖, ‖f‖M1

= sup
t∈I

∫ t+1

t

‖f(s)‖ds.

We denote M1(R+,B(X)) with M1(X̃).

L1
loc(B(X)) =

{
f ∈M(R+,B(X)) :

∫
K

‖f(t)‖dt <∞ for each compact K in R+

}
.

For A ∈ L1
loc(B(X)), t0 ≥ 0 and x0 ∈ X, we consider the homogeneous Cauchy

problem

(1) (A, t0, x0) :

{
ẋ(t) = A(t)x(t)

x(t0) = x0.

Theorem 1.1. The homogeneous Cauchy’s problem (1) has a unique solution.

Proof. See [4]. �

We consider now the Cauchy operatorial problem

(2) (A, 0, I) :

{
Ẋ(t) = A(t)X(t)

X(0) = I,

where A : R+ → B(X), A ∈ L1
loc(R+,B(X)).

It was proved that the problem (2) has a unique solution, which is denoted by
U , U is invertible and U−1 is a solution for

(3) (Ã, 0, I) :

{
Ẋ(t) = −X(t)A(t)

X(0) = I.

We denote Φ(t, t0) = U(t)U−1(t0).
It is known that Φ is the evolution family generated by the equation

(A) ẋ(t) = A(t)x(t).

We list now some properties of the evolution family generated by the equa-
tion (A).
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Proposition 1.1.
a) Φ(t, t) = I for all t ≥ 0.

b) Φ(t, s)Φ(s, t0) = Φ(t, t0) for all t, s, t0 ≥ 0.

c)
d

dt
Φ(t, s) = A(t)Φ(t, s) for all t, s ≥ 0.

d)
d

ds
Φ(t, s) = −Φ(t, s)A(s) for all t, s ≥ 0.

e) If A ∈ M1(X̃), then there exist M > 0 and ω > 0 such that ‖Φ(t, t0)‖ ≤
M eω(t−t0) for all t ≥ t0 ≥ 0.

Proof. See [4]. �

If f : R+ → X, f ∈ L1
loc(R+, X), t0 ≥ 0, x0 ∈ X, we consider the Cauchy

problem

(4) (A, t0, x0; f) =

{
ẋ(t) = A(t)x(t) + f(t)

x(t0) = x0.

Theorem 1.2. The Cauchy problem (4) has a unique solution

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)f(t)dτ.

Proof. See [12]. �

We denote by X1 = {x ∈ X : U(·)x ∈ L∞}. Assume that X1 is closed subspace
and that there exists a closed subspace X2 such that X = X1

⊕
X2 and P1, P2

the projectors associated to this decomposition.

Definition 1.1. The system (A) is called ordinary dichotomic if and only if
there exists N > 0 such that:

i) ‖U(t)P1U
−1(s)‖ ≤ N for all t ≥ s ≥ 0,

ii) ‖U(t)P2U
−1(s)‖ ≤ N for all s ≥ t ≥ 0.

Definition 1.2. The system (A) is called exponentially dichotomic if and only
if there exist N, ν > 0 such that:

i) ‖U(t)P1U
−1(s)‖ ≤ N e−ν(t−s) for all t ≥ s ≥ 0,

ii) ‖U(t)P2U
−1(s)‖ ≤ N e−ν(s−t) for all s ≥ t ≥ 0.

Remark 1.1. If the system (A) is exponentially dichotomic, then (A) is ordinary
dichotomic.

Theorem 1.3 (Datko’s Theorem). Let A ∈ M1(X̃). The differential system
(A) is exponentially dichotomic if and only if there exist p > 0 and M > 0 such
that (∫ ∞

t

‖U(τ)P1U
−1(t)x‖pdτ

) 1
p

+
(∫ t

0

‖U(τ)P2U
−1(t)x‖pdτ

) 1
p ≤M‖x‖

for all t ≥ 0, x ∈ X.



DATKO-PERRON’S PROBLEM 13

Proof. See [17] �

Lemma 1.1. Let f : R+ → R+ be a function with the property that there exist
H, δ > 0 and η ∈ (0, 1) such that:

(i) f(t) ≤ Hf(t0) for all t ∈ [t0, t0 + δ] and all t0 ≥ 0;

(ii) f(t0 + δ) ≤ ηf(t0) for all t0 ≥ 0.
Then there exist N, ν > 0 such that

f(t) ≤ N e−ν(t−t0) f(t0) for all t ≥ t0 ≥ 0.

Proof. See [18]. �

2. The main result

We consider A ∈M1(X̃).

Definition 2.1. The differential system (A) satisfies the (p, q) Perron’s condi-
tion for dichotomy if and only if for every f ∈ Lp(X), there exists x ∈ Lq(X) such
that ẋ(t) = A(t)x(t) + f(t).

We set now Xq
1 = {x ∈ X : U(·)x ∈ Lq}. Assume that Xq

1 is closed and
that there exists Xq

2 closed and such that X = Xq
1

⊕
Xq

2 . We denote P q1 , P
q
2 the

projectors associated to this decomposition.

Remark 2.1. X∞1 = X1 and X∞2 = X2.

Proposition 2.1. If (A) satisfies the (p, q) Perron’s condition for dichotomy,
then for every f ∈ Lp(X), there is a unique x ∈ Lq(X) such that ẋ(t) = A(t)x(t)+
f(t) and x(0) ∈ Xq

2 .

Proof. Let f ∈ Lp(X). We have that there exists x ∈ Lq(X) such that
ẋ(t) = A(t)x(t) + f(t).

We consider y(t) = x(t) − U(t)P q1 x(0), it results ẏ(t) = A(t)y(t) + f(t),
y(0) = x(0)− P q1 x(0) = P q2 x(0) ∈ Xq

2 and y ∈ Lq(X).
To prove the uniqueness, we suppose that there exist x1, x2 ∈ Lq(X) such that

ẋi(t) = A(t)xi(t) + f(t) and xi(0) ∈ Xq
2 for i ∈ {1, 2}.

Let w(t) = x1(t)−x2(t), it implies ẇ(t) = A(t)w(t), w(0) ∈ Xq
2 , w ∈ Lq(X) and

from here we have w(0) ∈ Xq
1 ∩X

q
2 = {0}. It results w = 0 and then x1 = x2. �

Let f ∈ Lp(X) and ẋ(t) = A(t)x(t) + f(t), x(0) ∈ Xq
2 . Throughout this paper

we will denote this x by xf .

Theorem 2.1. If (A) satisfies the (p, q) Perron’s condition for dichotomy then
there exists K > 0 such that ‖xf‖q ≤ K‖f‖p and ‖xf (0)‖ ≤ K‖f‖p for all f ∈
Lp(X).

Proof. Let U : Lp(X) → Xq
2

⊕
Lq(X), defined by Uf = (xf (0), xf ). It is obvi-

ous that U is a linear operator. We will show that U is also closed.
Let (fn)n∈N∗ be a sequence such that fn ∈ Lp(X), f ∈ Lp(X), g ∈ Lq(X),

y ∈ X such that fn → f in Lp(X), xfn(0)→ y in X and xfn → g in Lq(X), which
means that Ufn → (y, g) in Xq

2

⊕
Lq(X).
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But ∥∥∥∫ t

0

Φ(t, τ)fn(τ)dτ −
∫ t

0

Φ(t, τ)f(τ)dτ
∥∥∥

=
∥∥∥∫ t

0

Φ(t, τ)(fn(τ)− f(τ))dτ
∥∥∥ ≤ ∫ t

0

‖Φ(t, τ)‖ · ‖fn(τ)− f(τ)‖dτ.

Since Φ(t, ·)x : [0, t]→ X is continuous for every x ∈ X, there exists Mt,x such that
‖Φ(t, τ)x‖ ≤ Mt,x, for every τ ∈ [0, t]. From the uniform boundedness principle
we have that there exist M(t) > 0 such that ‖Φ(t, τ)‖ ≤M(t) for every τ ∈ [0, t].

Therefore,∥∥∥∫ t

0

Φ(t, τ)fn(τ)dτ −
∫ t

0

Φ(t, τ)f(τ)dτ
∥∥∥ ≤M(t)

∫ t

0

‖fn(τ)− f(τ)‖dτ

≤M(t)t1−
1
p

(∫ t

0

‖fn(τ)− f(τ)‖pdτ
) 1
p

= M(t)t1−
1
p ‖fn − f‖p → 0, for n→∞.

xfn(t) = Φ(t, 0)xfn(0) +

∫ t

0

Φ(t, τ)fn(τ)dτ.

It implies g(t) = Φ(t, 0)y +

∫ t

0

Φ(t, τ)f(τ)dτ .

From here we get ġ(t) = A(t)g(t) + f(t), g(0) = y ∈ Xq
2 , g ∈ Lq(X), which

proves that g = xf and implies Uf = (y, g) showing that U is a closed operator,
and by the Closed Graph Theorem, it results that there exists K > 0 such that

‖(xf (0), xf )‖ ≤ K‖f‖p
is equivalent to‖xf (0)‖+ ‖xf‖q ≤ K‖f‖p for all f ∈ Lp(X). �

Theorem 2.2. If (A) satisfies the (p, q) Perron’s condition for dichotomy, then
xf ∈ L∞(X) and ‖xf (t)‖ ≤ M eω(K + 1)‖f‖p for all t ≥ 0. (M > 0, ω > 0 such

that ‖Φ(t, t0)‖ ≤M eω(t−t0) for every t ≥ t0 ≥ 0.)

Proof. Let t ≥ 1, s ∈ [t− 1, t], then

xf (t) = Φ(t, 0)xf (0) +

∫ t

0

Φ(t, τ)f(τ)dτ

= Φ(t, s)Φ(s, 0)xf (0) +

∫ s

0

Φ(t, s)Φ(s, τ)f(τ)dτ +

∫ t

s

Φ(t, τ)f(τ)dτ

= Φ(t, s)xf (s) +

∫ t

s

Φ(t, τ)f(τ)dτ.

It results

‖xf (t)‖ ≤ ‖Φ(t, s)‖ · ‖xf (s)‖+

∫ t

s

‖Φ(t, τ)‖ · ‖f(τ)‖dτ

≤ M eω(t−s) ‖xf (s)‖+

∫ t

t−1
M eω(t−τ) ‖f(τ)‖dτ

≤ M eω
(
‖xf (s)‖+

∫ t

t−1
‖f(τ)‖dτ

)
.
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By using the Hőlder’s inequality, we get

‖xf (t)‖ ≤M eω
(
‖xf (s)‖+

(∫ t

t−1
‖f(τ)‖pdτ

) 1
p
)
≤M eω(‖xf (s)‖+ ‖f‖p)

for all s ∈ [t− 1, t]. Integrating on [t− 1, t], we obtain

‖xf (t)‖ ≤M eω
(∫ t

t−1
‖xf (s)‖ds+ ‖f‖p

)
≤M eω

[( ∫ t

t−1
‖xf (s)‖qds

) 1
q

+ ‖f‖p
]

≤M eω(‖xf‖q + ‖f‖p) ≤M eω(K‖f‖p + ‖f‖p) = M eω(K + 1)‖f‖p
for all t ≥ 1. For t ∈ [0, 1], we have

xf (t) = Φ(t, 0)xf (0) +

∫ t

0

Φ(t, τ)f(τ)dτ.

That implies

‖xf (t)‖ ≤ ‖Φ(t, 0)‖ · ‖xf (0)‖+

∫ 1

0

‖Φ(t, τ)‖ · ‖f(τ)‖dτ

≤M eωt ‖xf (0)‖+

∫ t

0

M eω(t−τ) ‖f(τ)‖dτ ≤M eω
(
‖xf (0)‖+

∫ 1

0

‖f(τ)‖dτ
)

≤M eω
[
K‖f‖p +

(∫ 1

0

‖f(τ)‖p
) 1
p
]
≤M eω(K + 1)‖f‖p.

We have proved that ‖xf (t)‖ ≤ M ew(K + 1)‖f‖p for all t ≥ 0, and from this
relation we get also that xf ∈ L∞. �

Theorem 2.3. (A) satisfies the (1,∞) Perron’s condition for dichotomy if and
only if (A) is ordinary dichotomic.

Proof. If (A) is ordinary dichotomic and f ∈ L1(X), we denote

xf (t) =

∫ t

0

U(t)P1U
−1(τ)f(τ)dτ −

∫ ∞
t

U(t)P2U
−1(τ)f(τ)dτ

= U(t)P1

∫ t

0

U−1(τ)f(τ)dτ − U(t)P2

∫ ∞
t

U−1(τ)f(τ)dτ.

ẋf (t) = A(t)xf (t) + (U(t)P1U
−1(t) + U(t)P2U

−1(t))f(t) = A(t)xf (t) + f(t).

xf (0) = − P2

∫ ∞
0

U−1(τ)f(τ)dτ

and that proves that xf (0) ∈ X2.
We have also that

‖xf (t)‖ ≤
∫ t

0

‖U(t)P1U
−1(τ)‖ · ‖f(τ)‖dτ +

∫ ∞
t

‖U(t)P2U
−1(τ)‖ · ‖f(τ)‖dτ

≤ N
∫ ∞
0

‖f(τ)‖dτ = N‖f‖1

and from here we get that xf ∈ L∞(X), therefore, (A) satisfies the (1,∞) Perron’s
condition for dichotomy.
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If (A) satisfies the (1,∞) Perron’s condition for dichotomy, we consider δ>0 and

f(t) = ϕ[t0,t0+δ](t)
U(t)x
‖U(t)x‖ , x 6= 0, where ϕ[a,b] denotes the characteristic function

of the interval [a, b].∫ ∞
0

‖f(t)‖dt =

∫ t0+δ

t0

ϕ[t0,t0+δ](t)dt = δ, thus f ∈ L1(X) and ‖f‖1 = δ.

We have

xf (t) =

∫ t

0

U(t)P1U
−1(τ)f(τ)dτ −

∫ ∞
t

U(t)P2U
−1(τ)f(τ)dτ

=

∫ t

0

ϕ[t0,t0+δ](τ)
dτ

‖U(τ)x‖
U(t)P1x−

∫ ∞
t

ϕ[t0,t0+δ](τ)
dτ

‖U(τ)x‖
U(t)P2x

=



∫ t0+δ

t0

dτ

‖U(τ)x‖
U(t)P1x, t ≥ t0 + δ,

−
∫ t0+δ

t0

dτ

‖U(τ)x‖
U(t)P2x, t ≤ t0.

Using the Theorem 2.1 we obtain ‖xf‖∞ ≤ K · ‖f‖1 = Kδ, but ‖xf (t)‖ ≤ ‖xf‖∞,
a.e., thus ‖xf (t)‖ ≤ Kδ for all t ≥ 0.

Let t > t0 then there exists δ0 > 0 such that t > t0 +δ0, which implies t > t0 +δ
for all δ ∈ (0, δ0]. It results∫ t0+δ

t0

dτ

‖U(τ)x‖
‖U(t)P1x‖ ≤ Kδ,

which is equivalent to

1

δ

∫ t0+δ

t0

dτ

‖U(τ)x‖
‖U(t)P1x‖ ≤ K for all δ ∈ (0, δ0].

For δ → 0+, we obtain

1

‖U(t0)x‖
‖U(t)P1x‖ ≤ K for all t ≥ t0,

equivalent to

‖U(t)P1x‖ ≤ K‖U(t0)x‖.
If we take x = U−1(t0)y, y ∈ X, we get

‖U(t)P1U
−1(t0)y‖ ≤ K‖y‖ for all y ∈ X and t ≥ t0.

We consider now t ≤ t0, from ‖xf (t)‖ ≤ Kδ, we get

1

δ

∫ t0+δ

t0

dτ

‖U(τ)x‖
‖U(t)P2x‖ ≤ K

and for δ → 0+, we obtain

1

‖U(t0)x‖
‖U(t)P2x‖ ≤ K,
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and if we take U(t0)x = y, y ∈ X, we get

‖U(t)P2U
−1(t0)y‖ ≤ K for all t ≤ t0.

That proves that (A) is ordinary dichotomic. �

Theorem 2.4. If (A) satisfy the (p, q) Perron’s condition for dichotomy and
(p, q) 6= (1,∞), then (A) is exponentially dichotomic and Xq

1 = X1.

Proof. Let q < ∞ and f(t) = ϕ[t0,t0+1](t)
U(t)x
‖U(t)x‖ , x 6= 0 and t0 ≥ 0. Then

f ∈ Lp(X) and ‖f‖p = 1.

xf (t) =

∫ t

0

U(t)P q1U
−1(τ)f(τ)dτ −

∫ ∞
t

U(t)P q2U
−1(τ)f(τ)dτ.

We observe that

ẋf (t) = A(t)xf (t) + f(t) and xf (0) = −P q2
∫ ∞
0

U−1(τ)f(τ)dτ ∈ Xq
2 .

Since

xf (t) =


∫ t0+1

t0

dτ

‖U(τ)x‖
U(t)P q1 x, t ≥ t0 + 1

−
∫ t0+1

t0

dτ

‖U(τ)x‖
U(t)P q2 x, t ≤ t0,

we get that xf ∈ Lq(X).

From U(t)x = U(t0)x+
∫ t
t0
A(τ)U(τ)xdτ , we obtain

‖U(t)x‖ ≤ ‖U(t0)x‖+

∫ t

t0

‖A(τ)‖ · ‖U(τ)x‖dτ

and using the Gronwall’s inequality, we get

‖U(τ)x‖ ≤ ‖U(t0)x‖ · e
∫ t0+1
t0

‖A(τ)‖dτ ≤ ‖U(t0)x‖ · eα for all τ ∈ [t0, t0 + 1],

where α = supt0≥0
∫ t0+1

t0
‖A(τ)‖dτ <∞.

Thus we obtain

1

‖U(t0)x‖ eα
≤ 1

‖U(τ)x‖
for all τ ∈ [t0, t0 + 1].

Integrating on [t0, t0 + 1], we get

(5)
1

‖U(t0)x‖ eα
≤
∫ t0+1

t0

dτ

‖U(τ)x‖
,

which implies

1

‖U(t0)x‖eα
· ‖U(t)P q1 x‖ ≤ ‖xf (t)‖ for all t ≥ t0 + 1,

equivalent to

‖U(t)P q1 x‖ ≤ eα ‖U(t0)x‖ · ‖xf (t)‖.
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Denoting U(t0)x = y, we have

‖U(t)P q1U
−1(t0)y‖ ≤ eα ‖y‖ · ‖xf (t)‖ for all t ≥ t0 + 1.

We have ∫ ∞
t0

‖U(τ)P q1U
−1(t0)y‖qdτ

=

∫ t0+1

t0

‖U(τ)P q1U
−1(t0)y‖qdτ +

∫ ∞
t0+1

‖U(τ)P q1U
−1(t0)y‖qdτ

≤
∫ t0+1

t0

‖U(τ)P q1U
−1(t0)y‖qdτ + (eα ‖y‖)q

∫ ∞
t0+1

‖xf (τ)‖qdτ

≤
∫ t0+1

t0

‖U(τ)P q1U
−1(t0)y‖qdτ + (eα ‖y‖)q‖xf‖qq.

Since d
dtU(t)P q1U

−1(t0)y = A(t)U(t)P q1U
−1(t0)y, we obtain

U(t)P q1U
−1(t0)y = U(t0)P q1U

−1(t0)y +

∫ t

t0

A(τ)U(τ)P q1U
−1(t0)ydτ

which implies

‖U(t)P q1U
−1(t0)y‖ ≤ ‖U(t0)P q1U

−1(t0)y‖+

∫ t

t0

‖A(τ)U(τ)P q1U
−1(t0)y‖dτ.

Applying the Gronwall’s inequality, we get

‖U(t)P q1U
−1(t0)y‖ ≤ ‖U(t0)P q1U

−1(t0)y‖ e
∫ t
t0
‖A(τ)‖dτ

≤ ‖U(t0)P q1U
−1(t0)y‖ eα for all t ∈ [t0, t0 + 1].

Then
∫ t0+1

t0
‖U(τ)P q1U

−1(t0)y‖qdτ ≤ ‖U(t0)P q1U
−1(t0)y‖q · eαq. Therefore,

(6)

∫ ∞
t0

‖U(τ)P q1U
−1(t0)y‖qdτ ≤ ‖U(t0)P q1U

−1(t0)y‖q · eαq +(eα ‖y‖)q‖xf‖qq.

For t ≤ t0, we have xf (t) = −
∫ t0+1

t0
dτ

‖U(τ)x‖U(t)P q2 x. We obtain

‖xf (t)‖ =

∫ t0+1

t0

dτ

‖U(τ)x‖
‖U(t)P q2 x‖ for all t ≤ t0.

From (5), we have 1
eα ‖U(t0)x‖ ≤

∫ t0+1

t0
dτ

‖U(τ)x‖ , therefore,

1

eα‖U(t0)x‖
· ‖U(t)P q2 x‖ ≤ ‖xf (t)‖ for all t ≤ t0.

We obtain

(7) ‖U(t)P q2U
−1(t0)y‖ ≤ eα ‖y‖ · ‖xf (t)‖ for all t ≤ t0 and y ∈ X,

where we denote y = U(t0)x. Using the Theorem 2.2, we have

‖U(t)P q2U
−1(t0)y‖ ≤M eω(K + 1)‖y‖ eα for all t ∈ [0, t0].
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For t = t0, we obtain

‖U(t0)P q2U
−1(t0)‖ ≤M eω(K + 1) eα .

From here, we get

‖U(t0)P q1U
−1(t0)‖ = ‖I − U(t0)P q2U

−1(t0)‖ ≤ 1 +M eω(K + 1) eα .

Denoting e−α +M eω(K + 1) = L we have

‖U(t0)P q1U
−1(t0)‖ ≤ L eα for all t0 ≥ 0.

Using now relation (6), we get∫ ∞
t0

‖U(τ)P q1U
−1(t0)y‖qdτ ≤ eαq ‖y‖q(Lq + ‖xf‖q) ≤ eαq ‖y‖q(Lq +Kq),

thus(∫ ∞
t0

‖U(τ)P q1U
−1(t0)y‖qdτ

) 1
q ≤ eα ‖y‖(Lq +Kq)

1
q for all y ∈ X and t0 ≥ 0.

Integrating relation (7) on [0, t0], we get∫ t0

0

‖U(τ)P q2U
−1(t0)y‖qdτ ≤ eαq ‖y‖q

∫ t0

0

‖xf (τ)‖qdτ

≤ eαq ‖y‖q · ‖xf‖qq ≤ eαq ‖y‖qKq.

Since(∫ ∞
t0

‖U(τ)P q1U
−1(t0)y‖qdτ

) 1
q

+
(∫ t0

0

‖U(τ)P q2U
−1(t0)y‖qdτ

) 1
q

≤ eα ‖y‖
[
(Lq +Kq)

1
q +K

]
for all t0 ≥ 0, y ∈ X,

we use now the Theorem 1.3 and obtain that (A) is exponential dichotomic on
Xq

1 , which shows that Xq
1 ⊂ X1.

Let x ∈ X1, x = u + v, x ∈ Xq
1 , v ∈ Xq

2 . If we assume v 6= 0, it implies

‖Φ(t, t0)v‖ ≥ N eν(t−t0) ‖v‖. From here we get limt→∞ ‖Φ(t, t0)v‖ =∞.
As Φ(t, t0)x = Φ(t, t0)v − (−Φ(t, t0)u), we get

‖Φ(t, t0)x‖ ≥ ‖‖Φ(t, t0)v‖ − ‖Φ(t, t0)u‖‖ → ∞ for n→∞,
which is a contradiction because x ∈ X1. We have X1 ⊂ Xq

1 , therefore, X1 = Xq
1

and P q1 = P1, P q2 = P2.
If q =∞, then p > 1. If we consider t0 ≥ 0, x ∈ X such that Pix 6= 0 for i ∈ {1, 2}
and f(t) = ϕ[t0,t0+1](t)

U(t)x
‖U(t)x‖ , we get

xf (t) =


∫ t0+1

t0

dτ

‖U(τ)x‖
U(t)P1x, t ≥ t0 + 1

−
∫ t0+1

t0

dτ

‖U(τ)x‖
U(t)P2x, t ≤ t0,

.

Since xf ∈ L∞(X) from Theorem 2.1, there is an K > 0 such that ‖xf (t)‖ ≤ K
for all t ≥ 0.
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For t ≥ t0 + 1 and x ∈ X, we get ‖U(t)P1x‖ ≤ K eα ‖U(t0)P1x‖ for all t ≥ t0 + 1.
Since d

dtU(t)P1x = A(t)U(t)P1x, we have

U(t)P1x = U(t0)P1x+

∫ t0+1

t0

A(τ)U(τ)P1xdτ.

Then ‖U(t)P1x‖ ≤ ‖U(t0)P1x‖ +
∫ t0+1

t0
‖A(τ)‖ · ‖U(τ)P1x‖dτ, and using the

Gronawall’s inequality, we obtain

‖U(t)P1x‖ ≤ ‖U(t0)P1x‖ · eα for all t ∈ [t0, t0 + 1].

If we denote L = max{1,K} · eα, we have

‖U(t)P1x‖ ≤ L‖U(t0)P1x‖ for all t ≥ t0.

For t ≤ t0, we have
∫ t0+1

t0
dτ

‖U(τ)x‖ · ‖U(t)P2x‖ ≤ K, which implies

1

eα ‖U(t0)x‖
· ‖U(t)P2x‖ ≤ K for all t ≤ t0.

Replacing x by P2x and t0 with t, we get ‖U(t0)P2x‖ ≤ K eα ‖U(t)P2x‖ ≤
L‖U(t)P2x‖ for all t ≤ t0.

We consider now g(t) = ϕ[t0,t0+δ](t)
U(t)P1x
‖U(t)P1x‖ for δ > 0, t0 ≥ 0, x ∈ X, Pix 6= 0,

with i ∈ {1, 2}. Then g ∈ Lp(X), ‖g‖p = δ
1
p and

xg(t) =

∫ t

0

U(t)P1U
−1(τ)g(τ)dτ −

∫ ∞
t

U(t)P2U
−1(τ)g(τ)dτ

=

∫ t

0

ϕ[t0,t0+δ](τ)
dτ

‖U(τ)P1x‖
· U(t)P1x for all t ≥ 0, xg ∈ L∞,

thus

xg(t0 + δ) =

∫ t0+δ

t0

dτ

‖U(τ)P1x‖
U(t0 + δ)P1x.

Using the Theorem 2.1, we have ‖xg(t0 + δ)‖ ≤ K · δ
1
p , which is equivalent to∫ t0+δ

t0

dτ

‖U(τ)P1x‖
‖U(t0 + δ)P1x‖ ≤ Kδ

1
p .

Since d
dτU(τ)P1x = A(τ)U(τ)P1x and ‖U(τ)P1x‖ ≤ L‖U(t0)P1x‖ for all τ ≥ t0,

we get
1

L‖U(t0)P1x‖
≤ 1

‖U(τ)P1x‖
for all τ ∈ [t0, t0 + δ].

Integrating on [t0, t0 + δ], we obtain

δ

L‖U(t0)P1x‖
≤
∫ t0+δ

t0

dτ

‖U(τ)P1x‖
,

which implies δ
L‖U(t0)P1x‖ · ‖U(t0 + δ)P1x‖ ≤ Kδ

1
p and from here we get

‖U(t0 + δ)P1x‖ ≤ K · L · δ
1
p−1 · ‖U(t0)P1x‖.
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Since limδ→∞K · L · δ
1
p−1 = 0, it exists δ0 ≥ 0 such that

‖U(t0 + δ0)P1x‖ ≤
1

2
‖U(t0)P1x‖ for all t0 ≥ 0.

It results from Lemma 1.1 that there exist N1, ν1 > 0 such that

‖U(t)P1x‖ ≤ N1 e−ν1(t−t0) ‖U(t0)P1x‖ for all t ≥ t0 ≥ 0.

We consider now h(t) = U(t)P2x
‖U(t0+δ)P2x‖ · ϕ[t0,t0+δ](t), x ∈ X with P2x 6= 0.

1

L
‖U(t)P2x‖ ≥ ‖U(t0)P2x‖ for all t ≥ t0,

which implies

1

L
‖U(t0 + δ)P2x‖ ≥ ‖U(t)P2x‖ for all t ∈ [t0, t0 + δ].

From here we obtain h ∈ Lp and ‖h‖p ≤ 1
Lδ

1
p .

xh(t) =

∫ t

0

U(t)P1U
−1(τ)h(τ)dτ −

∫ ∞
t

U(t)P2U
−1(τ)h(τ)dτ

= −
∫ ∞
t

ϕ[t0,t0+δ](τ)
dτ

‖U(t0 + δ)P2x‖
U(t)P2x

=


−δ

‖U(t0 + δ)P2x‖
U(t)P2x, t ≤ t0

0, t ≥ t0 + δ.

We have xf ∈ L∞ and ‖xh(t)‖ ≤ K‖h‖p ≤ K
L δ

1
p for all t ≥ 0. Therefore,

δ
‖U(t0+δ)P2x‖ · ‖U(t0)P2x‖ ≤ K

L · δ
1
p is equivalent to

‖U(t0 + δ)P2x‖ ≥
L

K
δ1−

1
p ‖U(t0)P2x‖ for all δ > 0 and t0 ≥ 0.

Since limδ→∞
L
K δ

1− 1
p =∞, there exists δ0 > 0 such that L

K δ
1− 1

p

0 > 2.
Therefore, ‖U(t0 +δ0)P2x‖ ≥ 2‖U(t0)P2x‖ for all t0 ≥ 0 and x ∈ X with P2x 6= 0.
It results from Lemma 1.1 that there exist N2, ν2 > 0 such that

‖U(t)P2x‖ ≥ N2 eν2(t−t0) ‖U(t0)P2x‖ for all t ≥ t0 ≥ 0.

We have proved that (A) is exponentially dichtomic. �

Remark 2.2 The converse of the theorem above is true if and only if 1 ≤ p ≤ q ≤ ∞.
For the proof of the remark above, see [7, Theorem 6.4, p. 477]. The condition
p ≤ q is essential as it can be seen from the following example.

Example 2.1. Let X = R, U(t) = e−t, Φ(t, t0) = e−(t−t0), be the process
generated by the differential system (A) : ẋ(t) = −x(t).



22 T. BARTA, I. ION and P. PREDA

It is obvious that {Φ(t, t0)}t≥t0≥0 is exponential stable, but does not satisfy
the (2, 1) Perron’s condition for stability. Indeed if we consider f(t) = 1

t+1 , then

f ∈ L2 and

x(t) =

∫ t

0

Φ(t, s)f(s)ds =

∫ t

0

e−(t−s)

s+ 1
ds = e−t

∫ t

0

es

s+ 1
ds ≥ 1

t+ 1
− e−t,

which shows that x /∈ L1.
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