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RELATIVE RANK OF THE FINITE FULL TRANSFORMATION

SEMIGROUP WITH RESTRICTED RANGE

K. TINPUN and J. KOPPITZ

Abstract. In this paper, we determine the relative rank of the semigroup T (X,Y )

of all transformations on a finite set X with restricted range Y modulo the semigroup

of all extensions of the bijections on Y , modulo the idempotent order-preserving
transformations in T (X,Y ), and modulo the semigroup of all order-preserving trans-

formations in T (X,Y ).

1. Introduction and Preliminaries

The rank of a semigroup S, denoted rank(S), is the minimum size of a generating
set for S [8]. The ranks of certain finite semigroups were studied in [4]. This
concept was generalized in [9]. The authors introduced a ’new’ rank property, the
relative rank of S modulo a subset A of S. For a semigroup S, if A ⊆ S, then
we call the minimum size of a set B such that 〈A ∪B〉 = S the relative rank of S
modulo A, denoted rank(S : A). In [5], the authors considered the relative rank of
T (X) modulo the semigroup O(X) of all order-preserving maps on a finite linearly
ordered set X, i.e., rank(T (X) : O(X)) = 2. The relative rank of T (X) modulo
the symmetric group S(X) on a finite set X is 1 [10].

Recall that for a finite linearly ordered set (X;≤), a map α ∈ T (X) is order
preserving if x ≤ y implies xα ≤ yα for all x, y ∈ X. For a finite set X of size n,
the semigroup O(X) has been studied extensively. Its order is

(
2n−1
n−1

)
, its rank is

n, it is idempotent generated, and the minimum size of a generating set of O(X)
consisting of idempotents, the idempotent rank, is 2n− 2, see [4] or [7].

The present paper deals with only finite transformation semigroups, i.e., X is
finite. The rank of the semigroup T (X,Y ) was determined in [2]. It is a ’large size’.
Hence, we consider the relative rank of T (X,Y ) modulo the semigroup O(X,Y )
of all order-preserving maps from X in Y on a linearly ordered set X as well as
the semigroup S(X,Y ) of all maps α from X in Y whose restriction to Y (denoted
α|Y ) is a bijection on Y , i.e., α|Y ∈ S(Y ). The semigroup T (X,Y ) was introduced
by J. S. V. Symons in 1975 and called semigroup with restricted range [12].
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Let X be a finite set of size n and consider a subset Y ⊆ X of size m. The
semigroup T (X,Y ) was studied in [1, 12, 6, 10, 11, 12]. When X is linearly
ordered, O(X,Y ) can be written as

O(X,Y ) := O(X) ∩ T (X,Y )

and has order
(
n+m−1
m−1

)
by the same calculations as in the proof of the order of

O(X) in [7]. The semigroup O(X,Y ) is not idempotent generated. It has rank(
n−1
m−1

)
+
∣∣Y #

∣∣, where Y # is the set of so-called captive elements [1].

The semigroup S(X,Y ) was firstly mentioned in [11]. The authors of this paper
consider it as J -class of the semigroup F (X,Y ) := {α ∈ T (X,Y ) : Xα ⊆ Y α},
namely J(F,m) := {α ∈ F (X,Y ) : |Xα| = m}. Notice that J(F,m) = S(X,Y ),
rank(J(F,m)) = mn−m if Y is a proper subset of X, and rank(J(F,m)) = 2 if
X = Y .

The cardinality of the image of α, imα := Xα is called rank of α, denoted
rankα = |imα|. The kernel of α, denoted kerα := {(x, y) ∈ X × X : xα = yα},
is an equivalence relation on X, which corresponds uniquely to a decomposition
of X into blocks, called kerα-classes. This justifies the notation B ∈ kerα in case
B is kerα-class. Moreover, a set T ⊆ X with |B ∩ T | = 1 for all B ∈ kerα, is
called transversal of kerα. If we restrict α to T , we obtain a map α|T from T in
Y defined by x(α|T ) := xα for all x ∈ T . In particular, it is easy to verify that
α ∈ S(X,Y ) if and only if Y is a transversal of kerα.

The rest of this paper is organized in three sections. In the next section, we
determine the relative rank of T (X,Y ) modulo S(X,Y ). As a consequence, we
obtain the already known rank of T (X,Y ), but here as the sum of the rank of
S(X,Y ) and the relative rank T (X,Y ) modulo S(X,Y ). In the second section, we
determine the number of idempotents in O(X,Y ) and the relative rank of O(X,Y )
modulo the set of its idempotents. In the last section, we give the relative rank
of T (X,Y ) modulo O(X,Y ). If Y = {y} is a singleton set, then T (X,Y ) contains
only one element, namely the constant map cY mapping all elements of X to y.
Hence, we drop the case m = 1 and assume without loss of generality that

X = {x1, . . . , xn} and Y = {xi1 , . . . , xim} with m ≥ 2.

2. The relative rank of T (X,Y ) modulo S(X,Y )

In this section, we determine the relative rank of T (X,Y ) modulo S(X,Y ). Since
T (X,Y ) \ S(X,Y ) is an ideal [10], the rank of T (X,Y ) is the sum of the relative
rank of T (X,Y ) modulo S(X,Y ) and the rank of S(X,Y ).

Recall that for 1 ≤ k ≤ n, the Stirling number of the second kind (or Sterling
partition number) is the number of ways to decompose an n-element set into k
non-empty subsets, denoted S(n, k), where

S(n, k) =
1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jn.
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Proposition 2.1. Let X and Y be subsets as in Section 1 with cardinality n and
m, respectively. The relative rank of T (X,Y ) modulo S(X,Y ) is S(n,m)−mn−m.

Proof. Let D := {kerβ : β ∈ T (X,Y ) \S(X,Y ), rankβ = m}. For each D ∈ D,
we choose a transformation αD ∈ T (X,Y ) with imαD = Y and kerαD = D. It is
easy to see that D is the set of all decompositions D of X into m non-empty sets
such that Y is not a transversal of D. In order to calculate the cardinality of D,
we need to count the ways to decompose the n-element set X into m non-empty
subsets having Y as transversal. This is a simple combinatorial problem: We have
to distribute the elements of the set XrY to the elements of Y . There are exactly
mn−m ways to do this. Hence, |D| = S(n,m)−mn−m.

We will show that S(X,Y ) ∪ {αD : D ∈ D} generates T (X,Y ). If this is the
case, then rank(T (X,Y ) : S(X,Y )) ≤ S(n,m)−mn−m.

Let γ ∈ T (X,Y ) r S(X,Y ) with rankγ = m. Then there is D ∈ D with
ker γ = kerαD = D. Let xD ∈ xα−1D for x ∈ Y . Then define θ from X to Y by

xθ :=

{
xDγ if x ∈ Y,
xi1 otherwise.

It is easy to see that Y is a transversal of ker θ, i.e., θ ∈ S(X,Y ). For x ∈ X.
we have xαDθ = (xαD)Dγ = xγ since (xαD)D ∈ xαDα−1D is in the kerαD-class
of x, which is also a ker γ-class (since ker γ = kerαD). Therefore, γ = αDθ ∈
〈S(X,Y ) ∪ {αD : D ∈ D}〉.

Suppose now that {β ∈ T (X,Y ) : rankβ = p} ⊆ 〈S(X,Y ) ∪ {αD : D ∈ D}〉 for
some p ≤ m and take γ ∈ T (X,Y ) with rankγ = p − 1. We can assume without
loss of generality that

im γ = {xi1 , . . . , xip−1
}.

Then there is k ∈ {1, . . . , p−1} with
∣∣xikγ−1∣∣ ≥ 2 and decompose xikγ

−1 into two
non-empty sets (C1 and C2, say). Define α from X to Y by

xα :=

 xγ if x /∈ xikγ−1,
xik if x ∈ C1,
xip if x ∈ C2.

Clearly, rankα = p and thus α ∈ 〈S(X,Y ) ∪ {αD : D ∈ D}〉 by assumption. Now
define δ from X to Y by

xδ :=

 x if x ∈ im γ r {xik},
xik if x ∈ {xik , xip},
xip if x /∈ (im γ ∪ {xip}).

Clearly, rankδ = p and thus δ ∈ 〈S(X,Y ) ∪ {αD : D ∈ D}〉 by assumption.
For x ∈ X r xikγ

−1, we have xα = xγ ∈ im γ r {xik} and thus xαδ = xγ.
For x ∈ xikγ

−1, we have xα ∈ {xik , xip} and thus xαδ = xik = xγ. This
shows that γ = αδ ∈ 〈S(X,Y ) ∪ {αD : D ∈ D}〉. Thus, we have T (X,Y ) ⊆
〈S(X,Y ) ∪ {αD : D ∈ D}〉.

Next, we will show if B ⊆ T (X,Y ) with 〈S(X,Y ) ∪B〉 = T (X,Y ), then
D ⊆ {kerβ : β ∈ B}. If it is the case, then rank(T (X,Y ) : S(X,Y )) ≥ |D| =
S(m,n)−mn−m and altogether, we have proved the equality as required. Assume
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that D 6⊆ {kerβ : β ∈ B}. Then there is D ∈ D such that kerβ 6= D for all
β ∈ B. From αD ∈ 〈S(X,Y ) ∪B〉, it follows the existence of θ1 ∈ S(X,Y ) ∪ B
and θ2 ∈ T (X,Y ) with αD = θ1θ2. Thus D = kerαD = ker θ1θ2 = ker θ1 since
imαD = Y . But ker θ1 = D implies θ1 /∈ B. Hence, θ1 ∈ S(X,Y ) and Y is a
transversal of ker θ1. This contradicts ker θ1 = D ∈ D. �

Corollary 2.2. rank(T (X,Y )) = S(n,m).

Proof. It follows from Proposition 2.1 and the fact that the rank of S(X,Y )
equals mn−m. �

3. The relative rank of O(X,Y ) modulo its idempotents

In this section, we assume that X is linearly ordered. Set

X = {x1 < · · · < xn}
and Y a non-empty subchain with m elements, say

Y = {xi1 < · · · < xim}.
Let EO(X,Y ) be the set of all idempotent order-preserving transformations in

T (X,Y ). For a subchain P = {xp1 < xp2 < · · · < xpk} of Y of size k, we define
gP from {0, 1, . . . , k − 1} in {1, . . . , n} by gP (l) := pl+1 − pl for l ∈ {1, . . . , k − 1}
and gP (0) := 1.

Next proposition determines how many idempotents with rank m are in the
semigroup O(X,Y ).

Proposition 3.1. |EO(X,Y )| =
∑
∅6=P⊆Y

|P |−1∏
l=0

gP (l).

Proof. Let P be a non-empty subchain of Y . If |P | = 1, then there is exactly

one idempotent with image P , where
∏0
l=0 gP (l) = gP (0) = 1. Admit |P | ≥ 2

and let l ∈ {1, 2, . . . , |P | − 1}. Then there are pl+1 − pl ways to decompose
{xpl , xpl+1, . . . , xpl+1

} into two non-empty sets C1 < C2 (x1 ∈ C1 and x2 ∈ C2

implies x1 < x2). From the definition of gP , we have |{β ∈ EO(X,Y ) : rankβ =

|P |}| = gP (0)gP (1) . . . gP (|P | − 1) =
∏|P |−1
l=0 gP (l). Considering all non-empty

subsets P ⊆ Y , we obtain the assertion. �

We consider the set

A(X,Y ) := {β ∈ O(X,Y ) : β /∈ EO(X,Y ), rankβ = m}.

Lemma 3.2. 〈EO(X,Y ) ∪A(X,Y )〉 = O(X,Y ).

Proof. We reason by induction on the rank of any γ ∈ O(X,Y ). Let rank γ = m.
Then γ ∈ EO(X,Y ) ∪A(X,Y ), i.e., γ ∈ 〈EO(X,Y ) ∪A(X,Y )〉.

Suppose that γ ∈ 〈EO(X,Y ) ∪A(X,Y )〉 whenever γ ∈ O(X,Y ) with rank γ =
k for some k ≤ m, and let γ ∈ O(X,Y ) with rank γ = k − 1. We put P := im γ =
{xp1 < xp2 < · · · < xpk−1

}. Then there is i ∈ {1, . . . , k − 1} with
∣∣xpiγ−1∣∣ ≥ 2.

Moreover, there is j ∈ {1, . . . , k − 1} with xpj+1 /∈ P or .xpj−1 /∈ P . Suppose
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without loss of generality xpj+1 /∈ P . We decompose xpiγ
−1 into two non-empty

sets C1 < C2 and put

Dl := xplγ
−1 for 1 ≤ l < i,

Di := C1

Di+1 := C2

Dl := xpl−1
γ−1 for i+ 2 ≤ l ≤ k, as well as

yl := xpl for 1 ≤ l ≤ j,
yj+1 := xpj+1

yl := xpl−1
for j + 1 < l ≤ k.

We define θ from X to Y by

xθ := yl if x ∈ Dl, 1 ≤ l ≤ k.

It is easy to verify that θ is order-preserving with rank k. Hence,
θ ∈ 〈EO(X,Y ) ∪A(X,Y )〉.
Suppose that i = j. Then we define ε from X to Y by

xε :=


y1 if x < y1,
yl if yl ≤ x < yl+1; 1 ≤ l < i,
yi if yi ≤ x ≤ yi+1,
yl if yl−1 < x ≤ yl; i+ 1 < l ≤ k,
yk if x > yk.

It is easy to see that ε is order-preserving as well as idempotent and thus
ε ∈ 〈EO(X,Y ) ∪A(X,Y )〉. Let x ∈ Dl for some l ∈ {1, . . . , k}. If l < i, then
xθε = yl = xl = xγ. If l ∈ {i, i + 1}, then xθε = ylε = yi = xi = xγ. And
if l > i + 1, then xθε = ylε = yl = xl−1 = xγ. This shows that γ = θε ∈
〈EO(X,Y ) ∪A(X,Y )〉.

We consider now j < i. The case j > i works analogously. For 0 ≤ r ≤ i−j−1,
we define εr from X in Y by

xεr :=


y1 if x < y1,
yl if yl ≤ x < yl+1; 1 ≤ l < i− r,
yi−r+1 if yi−r ≤ x ≤ yi−r+1,
yl if yl−1 < x ≤ yl; i− r + 1 < l ≤ k,
yk if x > yk.

It is easy to see that εr is order-preserving as well as idempotent and thus εr ∈
〈EO(X,Y ) ∪A(X,Y )〉. Let x ∈ X. If x ∈ Dl, 1 ≤ l ≤ j, then xθε0ε1 . . . εi−j−1 =
ylε0ε1 . . . εi−j−1 = yl = xl = xγ. If x ∈ Dl, i+ 2 ≤ l ≤ k, then xθε0ε1 . . . εi−j−1 =
ylε0ε1 . . . εi−j−1 = yl = xl−1 = xγ. If x ∈ Dl, j + 1 ≤ l ≤ i, then

xθε0ε1 . . . εi−j−1 = yl(ε0ε1 . . . εi−l)εi−l+1 . . . εi−j−1 = ylεi−l(εi−l+1 . . . εi−j−1)

= yl+1(εi−l+1 . . . εi−j−1) = yl+1 = xl = xγ.
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If x ∈ Dl+1, then xθε0ε1 . . . εi−j−1 = yi+1ε0ε1 . . . εi−j−1 = yi+1 = xi = xγ.
As a consequence of the above reasoning, we get that γ = θε0ε1 . . . εi−j−1 ∈
〈EO(X,Y ) ∪A(X,Y )〉. �

Next lemma shows the size of A(X,Y ).

Lemma 3.3. |A(X,Y )| =
(
n− 1

m− 1

)
−
m−1∏
l=0

gP (l).

Proof. Any α ∈ O(X,Y ) with rankα = m has image Y and it is uniquely
determined by its kernel kerα. But this kernel is uniquely determined by the
least elements in each kerα-class. Note that x1 is mapped to xi1 . Hence, there
are

(
n−1
m−1

)
ways to create this kernel kerα. Any α ∈ O(X,Y ) with rankα = m is

idempotent if Y is a transversal of kerα, then there are
∏m−1
l=0 gP (l) ways to create

this kerα as already shown in the proof of Proposition 3.1. Hence, |A(X,Y )| =

|{β ∈ O(X,Y ) : β /∈ EO(X,Y ), rankβ = m}| =
(
n−1
m−1

)
−
∏m−1
l=0 gP (l). �

We are now in the position to present the main result of this section.

Theorem 3.4. With the above notations, the relative rank of the semigroup of
order-preserving transformations O(X,Y ) modulo its idempotent elements satisfies

rank(O(X,Y ) : EO(X,Y )) =

(
n− 1

m− 1

)
−
m−1∏
l=0

gP (l).

Proof. By the Lemma 3.2 and 3.3, we have

rank(O(X,Y ) : EO(X,Y )) ≤ |A(X,Y )| =
(
n− 1

m− 1

)
−
m−1∏
l=0

gP (l).

For the equality, we show that each set B ⊆ O(X,Y ) with 〈EO(X,Y ) ∪B〉 =
O(X,Y ) contains A(X,Y ).

Assume there is a set B as above but A(X,Y ) 6⊆B, i.e., there is γ∈A(X,Y ) rB.
Since γ ∈ O(X,Y ) = 〈EO(X,Y ) ∪B〉, there are θ1 ∈ EO(X,Y ) ∪ B and
θ2 ∈ O(X,Y ) with γ = θ1θ2. We have ker γ = ker θ1 because rank γ = m.
Note that the elements in A(X,Y ) are uniquely, determined by their kernels. So
we can conclude θ1 = γ ∈ A(X,Y ), i.e., θ1 = γ /∈ B and γ = θ1 ∈ EO(X,Y ), a
contradiction. �

4. Relative rank of T (X,Y ) modulo O(X,Y )

This section is devoted to state and prove the main result of this paper: the
computation the relative rank of T (X,Y ) modulo the semigroup of all order-
preserving transformations in T (X,Y ). In the case X = Y , it is two. Set X
and Y as in Section 3. We define

M := {kerβ : β ∈ T (X,Y ), rankβ = m}r {kerβ : β ∈ O(X,Y ), rankβ = m}.

Lemma 4.1. |M| = S(n,m)−
(
n− 1

m− 1

)
.
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Proof. It follows from |{kerβ : β ∈ O(X,Y ), rankβ = m}| =
(
n−1
m−1

)
(see proof

of Lemma 3.3) and the fact that |{kerβ : β ∈ T (X,Y ), rankβ = m}| = S(n,m).
�

For each M ∈M, we choose αM ∈ T (X,Y ) with imαM = Y and kerαM = M .
Clearly, |{αM : M ∈M}| = S(n,m) −

(
n−1
m−1

)
. Note for all s ∈ S(Y ) there is

µS ∈ T (X,Y )rO(X,Y ) with µS |Y = s whenever s is not the identity map on Y .

Lemma 4.2. If S ⊆ S(Y ) with 〈S〉 = S(Y ), then

T (X,Y ) = 〈O(X,Y ) ∪ {µS : s ∈ S} ∪ {αM : M ∈M}〉 .

Proof. Let γ ∈ T (X,Y ). Suppose that rank γ = m. Then there is δ ∈ O(X,Y )∪
{αM : M ∈ M} with ker δ = ker γ. For x ∈ Y , we choose xδ ∈ xδ−1 and define
map θ from X to Y by

xθ :=

{
xδγ if x ∈ Y
xi1 otherwise.

If a, b ∈ Y with aθ = bθ, then aδγ = bδγ, aδ−1γ = bδ−1γ, and a = b since
ker δ = ker γ. Hence, Y is a transversal of ker θ, i.e., θ|Y ∈ S(Y ) = 〈S〉. That
means that there is µ ∈ 〈{µS : s ∈ S}〉 with θ|Y = µ|Y .

Let x ∈ X. Then we have xδµ = xδθ = (xδ)δγ = xγ. This shows γ = δµ ∈
〈O(X,Y ) ∪ {µS : s ∈ S} ∪ {αM : M ∈M}〉.

Suppose now that γ ∈ 〈O(X,Y ) ∪ {µS : s ∈ S} ∪ {αM : M ∈M}〉 whenever
rank γ = p for some p ≤ m and let rank γ = p− 1 with

im γ = {xj1 < · · · < xjp−1} ⊆ Y .

Then there is i ∈ {1, 2, . . . , p − 1} with
∣∣xjiγ−1∣∣ ≥ 2 and we decompose xjiγ

−1

into two sets Mi < Mi+1. So, there is z ∈ Y r im γ and set

Ml := xjlγ
−1 and yl := xjl for 1 ≤ l < i,

Ml := xj(l−1)
γ−1 and yl := xj(l−1)

for i+ 1 < l ≤ p,
yi := xji and yi+1 := z.

Now we define map α from X to Y by

xα := yl if x ∈Ml, 1 ≤ l ≤ p.
For x ∈ im γ ∪ {z}, we choose xα ∈ xα−1 and define η from X to Y by

xη :=

 xαγ if x ∈ {y1, . . . , yi−1, yi+2, . . . , yp}
yi if x ∈ {yi, yi+1}
z if x ∈ X r {y1, . . . yp}.

Notice that X r {y1, . . . yp} 6= ∅ since p ≤ m < n. Hence, it is easy to verify that
both α and η have rank p and thus

α, η ∈ 〈O(X,Y ) ∪ {µS : s ∈ S} ∪ {αM : M ∈M}〉 .
Let x ∈ Ml for some 1 ≤ l ≤ p. If l 6= i and l 6= i + 1, then xαη =

(xα)αγ = xγ. If l = i or l = i + 1, then xαη = yi = xji = xγ. This shows that
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γ = αη ∈ 〈O(X,Y ) ∪ {µS : s ∈ S} ∪ {αM : M ∈M}〉. The above reasoning proves
the assertion T (X,Y ) ⊆ 〈O(X,Y ) ∪ {µS : s ∈ S} ∪ {αM : M ∈M}〉. �

Lemma 4.3. If A ⊆ T (X,Y ) r O(X,Y ) with 〈O(X,Y ) ∪A〉 = T (X,Y ) then
M⊆ {kerβ : β ∈ A}.

Proof. Let A ⊆ T (X,Y ) r O(X,Y ) with 〈O(X,Y ) ∪A〉 = T (X,Y ). Assume
that there is M ∈ M with M /∈ {kerβ : β ∈ A}. Since αM ∈ T (X,Y ) =
〈O(X,Y ) ∪A〉, there is an element θ1 ∈ O(X,Y ) ∪A and θ2 ∈ T (X,Y ) such that
αM = θ1θ2. Because rankαM = m, we obtain kerαM = ker θ1, i.e., ker θ1 = M .
Hence, θ1 /∈ A (by assumption) and θ1 /∈ O(X,Y ) (since M /∈ {kerβ : β ∈
O(X,Y )}), a contradiction. �

We define the following subset P ∗(X) of the power set P (X) of X:
If |X| ≥ 5, then P ∗(X) := P (X) r ({∅, X} ∪ {{x} : x ∈ X}),
if |X| = 4, then P ∗(X) := {Y ⊆ X : |Y | ≥ 2, |X r Y | = 2 or {x2, x3} ⊆ Y } and
if |X| = 3, then P ∗(X) := {Y ⊆ X : |Y | = 2, x2 ∈ Y }.
We call two elements a, b ∈ X to be neighbors if a is immediate successor or
predecessor of b.

Theorem 4.4. With the previous notations, assume that Y ∈ P ∗(X). Then

rank(T (X,Y ) : O(X,Y )) = S(n,m)−
(
n− 1

m− 1

)
.

Proof. If |X| ≥ 5 or |X| = 4 and {x2, x3} ⊆ Y , then there are x ∈ X r Y
and y1, y2 ∈ Y such that neither y1 nor y2 is neighbor of x. So we can put
Mi := {{r} : r ∈ Y r {yi}}∪{Xr (Y r {yi})}, i = 1, 2. It is easy to verify that Y
is transversal of M1 as well as of M2. Moreover, M1,M2 /∈ {kerβ : β ∈ O(X,Y )},
i.e., M1,M2 ∈ M. It is well known that the symmetric group S(Y ) on Y is
generated by two bijections (s1 and s2, say). We can assume without loss of
generality that αM1 |Y = s1 and αM2 |Y = s2, i.e., µs1 = αM1 and µs2 = αM2 .

If |X| = 4 and |X r Y | = 2 or |X| = 3 and x2 ∈ Y2 then |Y | = 2. Here
there are x ∈ X r Y and y ∈ Y such that x is not neighbor of y. Then we
put M3 := {{r} : r ∈ Y r {y}} ∪ {X r (Y r {y})}. It is easy to verify that
Y is transversal of M3 and M3 /∈ {kerβ : β ∈ O(X,Y )}. Thus M3 ∈ M. The
symmetric group S(Y ) on the two-element set Y is generated by one bijection, say
s. We can assume without loss of generality that αM3 |Y = s, i.e., µs = αM3 .

The above fact shows that there is S ⊆ S(Y ) with 〈S〉 = S(Y ) such that
{µS : s ∈ S} ⊆ {αM : M ∈ M}. Now we can use Lemma 4.2. It provides
that T (X,Y ) = 〈O(X,Y ) ∪ {αM : M ∈M}〉 and thus rank(T (X,Y ) : O(X,Y )) ≤
|{αM : M ∈M}| = S(n,m)−

(
n−1
m−1

)
by Lemma 4.1. On the other hand, Lemma 4.3

shows that the minimum size of a relative generating set modulo O(X,Y ) is
|M| = S(n,m) −

(
n−1
m−1

)
and altogether, we obtain the assertion rank(T (X,Y ) :

O(X,Y )) = S(n,m)−
(
n−1
m−1

)
. �
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Theorem 4.5. If Y /∈ P ∗(X), then

rank(T (X,Y ) : O(X,Y )) = S(n,m)−
(
n− 1

m− 1

)
+ 1.

Proof. If |X| = 4, |X r Y | = 1, and {x2, x3} 6⊆ Y , then there is exactly one pair
(x, y) ∈ (X r Y )× Y such that x and y are not neighbors. Then M1 := {{r} : r ∈
Y r {y}} ∪ {{x, y}} is the only element M ∈ M with Y is transversal of M and
M /∈ {kerβ : β ∈ O(X,Y )}. Note that the symmetric group S(Y ) is generated
by two bijections (s1 and s2, say). We can assume without loss of generality that
αM1 |Y = s1, i.e., µs1 = αM1 . Then µs2 /∈ O(X,Y )∪ {αM : M ∈M}.

If |X| = 3 and x2 /∈ Y , then |Y | = 2 and there is no M ∈ M with Y is
transversal of M and M /∈ {kerβ : β ∈ O(X,Y )}. The 2-element symmetric
group S(Y ) is generated by one s ∈ S(Y ), where µs /∈ O(X,Y )∪ {αM : M ∈M}.

We put α := µs2 and α := µs, respectively. We can apply Lemma 4.2 and
obtain T (X,Y ) = 〈O(X,Y ) ∪ {α} ∪ {αM : M ∈M}〉 and thus

rank(T (X,Y ) : O(X,Y )) ≤ |{αM : M ∈M} ∪ {α}| = S(n,m)−
(
n− 1

m− 1

)
+ 1.

Let A ⊆ T (X,Y )rO(X,Y ) with 〈O(X,Y ) ∪A〉 = T (X,Y ), thenM⊆ {kerβ :
β ∈ A} by Lemma 4.3. If γ ∈ O(X,Y ) then Y is not a transversal of ker γ or γ|Y
is the identity map on Y . Hence, there is S ⊆ A such that {s|Y : s ∈ S} = S(Y ).

If |X| = 4 and |X r Y | = 1 and {x2, x3} 6⊆ Y then S contains at least two
elements (µ1 and µ2, say). Note that Y is a transversal of kerµ1 as well as of
kerµ2 and kerµ1, kerµ2 /∈ {kerβ : β ∈ O(X,Y )}. But we have only one M ∈ M
with Y is a transversal of M and M /∈ {kerβ : β ∈ O(X,Y )}. Hence, we need one
additional element in A which is not in O(X,Y ) ∪ {αM : M ∈M}. Hence,

|A| ≥ |D|+ 1 = S(n,m)−
(
n− 1

m− 1

)
+ 1.

If |X| = 3 and x2 /∈ Y , then |Y | = 2 and S(Y ) is a cyclic group with one
generator, i.e., S has to contain one element, say s. But in this case µS /∈ O(X,Y )∪
{αM : M ∈ M}, we need one additional element in A which is not in O(X,Y ) ∪
{αM : M ∈M}. Hence,

|A| ≥ |M|+ 1 = S(n,m)−
(
n− 1

m− 1

)
+ 1.
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