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EXISTENCE AND QUALITATIVE BEHAVIOR

OF OSCILLATORY SOLUTIONS OF SECOND ORDER LINEAR

ORDINARY DIFFERENTIAL EQUATIONS

T. KUSANO and N. YOSHIDA

Dedicated to Professor Jaroslav Jaroš on the occasion of his 60th birthday

Abstract. We consider the second order linear differential equation

(A) (p(t)y′)′ + q(t)y = 0,

which is oscillatory under the assumption that p(t) and q(t) are positive, continu-

ously differentiable and monotone functions on [0,∞). After studying qualitative
properties, including amplitudes and slopes, of oscillatory solutions, we establish

the existence of three types of solutions of (A) referred to as moderately bounded,
small of large oscillatory solutions. Essential use is made of pairs of quadratic forms

P (t)y′(t)2 + Q(t)y(t)2, R(t)y′(t)2 + S(t)y(t)2, which are monotone for all possible

solutions y(t) of (A), but have different monotonicity.

1. Introduction

We consider the second order linear differential equation(
p(t)y′

)′
+ q(t)y = 0(A)

under the assumption that p(t) and q(t) are positive, continuously differentiable
functions on [0,∞). The characteristic feature of (A) is that all of its nontrivial
solutions are either oscillatory (in which case (A) is called oscillatory) or else
nonoscillatory (in which case (A) is called nonoscillatory). This paper is concerned
exclusively with the case where equation (A) is oscillatory. It is known [10] that
(A) is oscillatory if∫ ∞

0

dt

p(t)
=∞, and

∫ ∞
0

P (t)λq(t)dt =∞ for some λ ∈ [0, 1),(1.1)

where P (t) =
∫ t
0

ds/p(s), or if∫ ∞
0

dt

p(t)
<∞, and

∫ ∞
0

π(t)µq(t)dt =∞ for some µ ∈ (1, 2],(1.2)
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where π(t) =
∫∞
t

ds/p(s). For the special case of (A)

y′′ + q(t)y = 0,(A0)

the following (see, e.g., [11]) can often be useful oscillation criteria:

lim inf
t→∞

t2q(t) >
1

4
, or lim inf

t→∞
t

∫ ∞
t

q(s)ds >
1

4
.

We would like to acquire as much and detailed information as possible about
the existence and the qualitative properties of oscillatory solutions of equation (A).
Let y(t) be an oscillatory solution on [0,∞) of (A). By {σk}∞k=1, we denote the
sequence of zeros of y(t) and by {τk}∞k=1, the sequence of points at which y(t) takes
on extrema (i.e., local maxima or minima). They are arranged as σk < σk+1 and
τk < τk+1, k = 1, 2, . . . . Naturally y(σk) = 0 and y′(τk) = 0 for any k. The values
|y′(σk)| and |y(τk)| are referred to as the slope and the amplitude, respectively, of
the k-th wave of y(t). We use the following notations:

A∗[y] = sup
k
|y(τk)|, A∗[y] = inf

k
|y(τk)|,

S∗[y] = sup
k
|y′(σk)|, S∗[y] = inf

k
|y′(σk)|.

A solution y(t) of (A) satisfying A∗[y] = ∞, i.e., lim supt→∞ |y(t)| = ∞, is an
unbounded solution which may be termed a large oscillatory solution. Let y(t) be
a bounded solution such that A∗[y] < ∞. Two cases are possible for it: either
limk→∞ |y(τk)| = 0 which is equivalent to limt→∞ y(t) = 0, or lim infk→∞ |y(τk)| >
0 which amounts to A∗[y] > 0. In the former case it is called a small oscillatory so-
lution, while in the latter case it is called a moderately bounded oscillatory solution
of (A).

With regard to the oscillatory solutions of equation (A), there arise several
questions to be answered including the following. Can one detect any law governing
the distribution of zeros {σk} and points of extrema {τk} of y(t)? Is it possible to
give estimates, preferably precise, for A∗[y], A∗[y] (the upper and lower amplitudes
of y(t) on [0,∞)), and for S∗[y], S∗[y] (the upper and lower slopes of y(t) on
[0,∞))? Is it possible to specify sufficient conditions for (A) to possess oscillatory
solutions which are small, large or moderately bounded in the sense defined above?

In view of the difficulty in handling general oscillatory equations of the form
(A), we limit our consideration to the case where both p(t) and q(t) are monotone
on [0,∞), and distinguish the following four possibilities for the combination of
their monotonicity:

(i) p′(t) ≥ 0, q′(t) ≤ 0, (ii) p′(t) ≤ 0, q′(t) ≥ 0,(1.3)

(iii) p′(t) ≥ 0, q′(t) ≥ 0, (iv) p′(t) ≤ 0, q′(t) ≤ 0.(1.4)

Note that in some cases (1.4) may be replaced by

(iii)
(
p(t)q(t)

)′ ≥ 0, (iv)
(
p(t)q(t)

)′ ≤ 0.(1.5)
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Given an oscillatory equation (A), the two quadratic forms in y(t) and its
derivative

V [y](t) = p(t)y′(t)2 + q(t)y(t)2, W [y](t) =
y′(t)2

q(t)
+
y(t)2

p(t)
,(1.6)

can be formed automatically. As it is easily checked, if y(t) is a solution of (A),

then
(
V [y](t)

)′ ≤ 0 (or ≥ 0) if p(t) and q(t) satisfy (i) (or (ii)) of (1.3), and(
W [y](t)

)′ ≤ 0 (or ≥ 0) if p(t) and q(t) satisfy (iii) (or (iv)) of (1.4), which means
that
V [y](t) is decreasing (or increasing) if p(t) is increasing (or decreasing) and q(t)

is decreasing (or increasing); and
W [y](t) is decreasing (or increasing) if both p(t) and q(t) are increasing (or

decreasing).
This fact was found by Hille [7, pp. 380–383] and applied to the qualitative study
of oscillatory solutions of (A). It should be noticed here that when specialised to
equation (A0) (p(t) ≡ 1), the above-mentioned statements regarding V [y](t) and
W [y](t) given by (1.6) are reduced to the following simplified assertion. Let y(t)
be a solution of (A0). Then

q′(t) ≤ 0 =⇒
(
V [y](t)

)′ ≤ 0,
(
W [y](t)

)′ ≥ 0,

q′(t) ≥ 0 =⇒
(
V [y](t)

)′ ≥ 0,
(
W [y](t)

)′ ≤ 0,

which implies that for equation (A0) with q(t) monotone there exist two quadratic
forms V [y](t) and W [y](t), one of which is increasing and the other is decreasing
for any of its solutions y(t). This noteworthy result was obtained by Hartman
[5, pp 510–511] and utilized as a basis for constructing large or small oscillatory
solutions of (A0).

The objective of this paper is to show that for equation (A) with monotone
coefficients p(t) and q(t), there always exists a pair of quadratic forms of the type

(1.7) V[y](t) = P (t)y′(t)2 +Q(t)y(t)2, W[y](t) = R(t)y′(t)2 + S(t)y(t)2,

having the property that
(
V[y](t)

)′ ≥ 0 and
(
W[y](t)

)′ ≤ 0, so that V[y](t) is
increasing and W[y](t) is decreasing for any oscillatory solution y(t) of (A), and
then to demonstrate the usefulness of these quadratic forms in the qualitative
analysis of oscillatory behavior of solutions of (A) as well as in establishing the
existence of small or large oscillatory solutions for (A).

The main body of the paper is organized as follows. Section 2 is devoted to
the detection of a pair of quadratic forms {V[y],W[y]} of the type (1.7) which are
associated with equation (A) in such a way that V[y](t) is increasing and W[y](t)
is decreasing for any of its (oscillatory) solutions y(t) on [0,∞). In Section 3,
these pairs {V[y],W[y]} can be effectively used to obtain explicit upper bounds
for A∗[y] and S∗[y] as well as explicit lower bounds for A∗[y] and S∗[y], for all
possible solutions y(t) of (A). The results indicate the existence of a class of
equations of the form (A), all solutions of which are moderately bounded oscillatory
solutions. Besides, an attempt is made to find laws or rules governing the structure
of the sequences of zeros and extrema points of all oscillatory solutions of (A).
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In the final Section 4, we focus our attention on the existence of small or large
oscillatory solutions for equation (A). Building existence theory of such non-
periodic oscillatory solutions seems to be a very difficult task even for second order
linear differential equations. To the best of the authors’ knowledge Hartman’s
paper [4] on equation (A0) represents one of the most general and deep results
on the subject. See also [5, pp. 510–513]. Our aim is to generalize the results of
Hartman, given as Theorem 3.1 in [5], to equation (A) so as to cover all the four
cases for

(
p(t), q(t)

)
as described in (1.3) and (1.4) (or (1.5)). Our main results are

designed to provide explicit criteria for (A) to possess desired oscillatory solutions
as well as information as to how small or large the obtained solutions are with the
help of the quadratic forms V[y] and W[y] associated with (A).

Second order linear oscillation theory has a long history, and there is a vast
existing literature on the subject. The reader is referred, for example, to the
books [1, 2, 3, 5, 7, 8, 9, 11] and the papers cited therein for a wide spectrum
of studies on oscillation problems for second order linear differential equations. It
seems that little in-depth analysis has been made of equations of the form (A),
and this observation motivated the present work.

2. Preliminaries

The oscillatory differential equation (A) is under consideration on [0,∞). It is
assumed that p(t) and q(t) are monotone in the sense that one of the conditions in
(1.3) and (1.4) (or (1.5)) is satisfied. Our main purpose here is to show that there
always exists a pair of positive quadratic forms {V[y],W[y]} of the type (1.7) such

that
(
V[y]

)′ ≥ 0 and
(
W[y]

)′ ≤ 0 on [0,∞) for all possible solutions y(t) of (A).
Some useful properties of these quadratic forms are also mentioned.

Lemma 2.1. Let V [y] be the quadratic form defined by

V [y](t) = p(t)y′(t)2 + q(t)y(t)2.

Then, the following hold for any solution y(t) of (A):(
V [y](t)

)′
= −p′(t)y′(t)2 + q′(t)y(t)2,(2.1) (

p(t)

q(t)
V [y](t)

)′
= −p(t)

2q′(t)

q(t)2
y′(t)2 + p′(t)y(t)2,(2.2) (

p(t)V [y](t)
)′

=
(
p(t)q(t)

)′
y(t)2,(2.3) (

1

q(t)
V [y](t)

)′
= −

(
p(t)q(t)

)′
q(t)2

y′(t)2.(2.4)

Proof. In the proof the independent variable t is deleted. Let y be any solution
of (A) on [0,∞). Since V [y] = (py′)2/p+ qy2, we see that(

V [y]
)′

= 2y′(py′)′ − p′y′2 + 2qyy′ + q′y2 = −p′y′2 + q′y2,
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which verifies (2.1). Using (2.1), we obtain(
p

q
V [y]

)′
=
p

q

(
V [y]

)′
+

(
p′q − pq′

q2

)
V [y]

=
p

q

(
−p′y′2 + q′y2

)
+

(
p′q − pq′

q2

)(
py′2 + qy2

)
= −p

2q′

q2
y′2 + p′y2,

which implies that (2.2) is true. To confirm (2.3) and (2.4), it suffices to proceed
as follows:(

pV [y]
)′

= p′V [y] + p
(
V [y]

)′
= p′

(
py′2 + qy2

)
+ p
(
−p′y′2 + q′y2

)
= (pq)′y2,

and(
1

q
V [y]

)′
= − q

′

q2
V [y] +

1

q

(
V [y]

)′
= − q

′

q2
(
py′2 + qy2

)
+

1

q

(
−p′y′2 + q′y2

)
= − (pq)′

q2
y′2.

�

Remark 2.1. In (1.6), there appears another quadratic form W [y](t) = y′(t)2

q(t) +
y(t)2

p(t) . Note that V [y](t) and W [y](t) are not independent. For example, the

following identities hold:

p(t)q(t)W [y](t) ≡ V [y](t), p(t)2W [y](t) ≡ p(t)

q(t)
V [y](t),

p(t)2q(t)W [y](t) ≡ p(t)V [y](t), p(t)W [y](t) ≡ 1

q(t)
V [y](t).

This shows that Lemma 2.1 could be formulated in terms of the quadratic form
W [y](t).

An important implication of Lemma 2.1 is that in case p(t) and q(t) are mono-
tone, there exist two positive quadratic forms V[y] and W[y] with the property

that
(
V[y]

)′
(t) ≥ 0 and

(
W[y]

)′
(t) ≤ 0, so that V[y](t) is increasing and W[y](t)

is decreasing for any solution y(t) of (A). More specifically, such quadratic forms
are determined in dependence on the monotonicity of (p(t), q(t)) as follows:

(2.5) V[y](t) =
p(t)2

q(t)
y′(t)2 + p(t)y(t)2, W[y](t) = p(t)y′(t)2 + q(t)y(t)2

if p′(t) ≥ 0 and q′(t) ≤ 0;

(2.6) V[y](t) = p(t)y′(t)2 + q(t)y(t)2, W[y](t) =
p(t)2

q(t)
y′(t)2 + p(t)y(t)2

if p′(t) ≤ 0 and q′(t) ≥ 0;

(2.7) V[y](t) = p(t)2y′(t)2 + p(t)q(t)y(t)2, W[y](t) =
p(t)

q(t)
y′(t)2 + y(t)2
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if p′(t) ≥ 0 and q′(t) ≥ 0, or if (p(t)q(t))′ ≥ 0, and

(2.8) V[y](t) =
p(t)

q(t)
y′(t)2 + y(t)2, W[y](t) = p(t)2y′(t)2 + p(t)q(t)y(t)2

if p′(t) ≤ 0 and q′(t) ≤ 0, or if (p(t)q(t))′ ≤ 0.

Lemma 2.2. Let {V[y],W[y]} be any one of the pairs of quadratic forms de-
scribed in Lemma 2.1, and let y0(t) and y1(t) be any linearly independent solutions
of (A) on [0,∞). Then, there exists a positive constant C2 such that

V[y0](t)W[y1](t) ≥ C2 for t ≥ 0.(2.9)

Proof. Since y0(t) and y1(t) are linearly independent, their Wronskian satisfies
p(t)W [y0, y1](t) ≡ C, t ≥ 0, for some constant C 6= 0, that is,

p(t)
(
y0(t)y′1(t)− y′0(t)y1(t)

)
≡ C, t ≥ 0.(2.10)

We rewrite the Wronskian as

(2.11) y0(t)y′1(t)− y′0(t)y1(t) =
y0(t)√
p(t)

√
p(t)y′1(t)− y′0(t)√

q(t)

√
q(t)y1(t),

or as

(2.12) y0(t)y′1(t)− y′0(t)y1(t) =
√
q(t)y0(t)

y′1(t)√
q(t)
−
√
p(t)y′0(t)

y1(t)√
p(t)

.

Combining (2.10) with (2.11) or (2.12) and using the Schwarz inequality, we find
that

C2 = p(t)2
(
y0(t)y′1(t)− y′0(t)y1(t)

)2
≤ p(t)2

(
|y0(t)|√
p(t)

√
p(t)|y′1(t)|+ |y

′
0(t)|√
q(t)

√
q(t)|y1(t)|

)2

≤ p(t)2
(
y′0(t)2

q(t)
+
y0(t)2

p(t)

)(
p(t)y′1(t)2 + q(t)y1(t)2

)
=

(
p(t)2

q(t)
y′0(t)2 + p(t)y0(t)2

)(
p(t)y′1(t)2 + q(t)y1(t)2

)
,

or that
C2 = p(t)2

(
y0(t)y′1(t)− y′0(t)y1(t)

)2
≤ p(t)2

(√
q(t)|y0(t)| |y

′
1(t)|√
q(t)

+
√
p(t)|y′0(t)| |y1(t)|√

p(t)

)2

≤ p(t)2
(
p(t)y′0(t)2 + q(t)y0(t)2

)(y′1(t)2

q(t)
+
y1(t)2

p(t)

)
=
(
p(t)2y′0(t)2 + p(t)q(t)y0(t)2

)(p(t)
q(t)

y′1(t)2 + y1(t)2
)
.

This proves that (2.9) is true. �

Remark 2.2. From (2.9), it follows in particular that

lim
t→∞

W[y1](t) = 0 =⇒ lim
t→∞

V[y0](t) =∞.
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Sometimes it is useful to consider the following equation together with (A)(
Q(t)z′

)′
+ P (t)z = 0, P (t) =

1

p(t)
, Q(t) =

1

q(t)
.(B)

Equations (A) and (B) are interrelated via z = p(t)y′ and y = Q(t)z′ in the sense
that if y(t) (resp., z(t)) satisfies (A) (resp., (B)), then z(t) = p(t)y′(t) (resp.,
y(t) = Q(t)z′(t)) satisfies (B) (resp., (A)). It is clear that if (A) is oscillatory,
then so is (B), and vice versa.

Consider the quadratic forms (1.6) introduced by Hille for both (A) and (B),
and denote them by

VA[y](t) = p(t)y′(t)2 + q(t)y(t)2, WA[y](t) =
y′(t)2

q(t)
+
y(t)2

p(t)
,

VB [z](t) =
z′(t)2

q(t)
+
z(t)2

p(t)
, WB [z](t) = p(t)z′(t)2 + q(t)z(t)2.

An elementary computation shows that

VA[y](t) = WB [y](t) = WA[z](t) = VB [z](t),

if y(t) is a solution of (A) and z(t) = p(t)y′(t), or if z(t) is a solution of (B) and
y(t) = Q(t)z′(t).

It was shown above that for equation (A) there always exists a pair of qua-
dratic forms with different monotonicity; see (2.5)–(2.8). These formulas applied
to equation (B) have the following representations:

(2.13) VB [z] =
Q(t)2

P (t)
z′(t)2 +Q(t)z(t)2, WB [z] = Q(t)z′(t)2 + P (t)z(t)2

if p′(t) ≥ 0 and q′(t) ≤ 0;

(2.14) VB [z] = Q(t)z′(t)2 + P (t)z(t)2, WB [z] =
Q(t)2

P (t)
z′(t)2 +Q(t)z(t)2

if p′(t) ≤ 0 and q′(t) ≥ 0;

(2.15) VB [z] =
Q(t)

P (t)
z′(t)2 + z(t)2, WB [z] = Q(t)2z′(t)2 + P (t)Q(t)z(t)2

if p′(t) ≥ 0 and q′(t) ≥ 0, or if (p(t)q(t))′ ≥ 0, and

(2.16) VB [z] = Q(t)2z′(t)2 + P (t)Q(t)z(t)2, WB [z] =
Q(t)

P (t)
z′(t)2 + z(t)2

if p′(t) ≤ 0 and q′(t) ≤ 0, or if (p(t)q(t))′ ≤ 0.
Comparing (2.5)–(2.8) (with the subscript A added to V,W) with (2.13)–(2.16)

suggests the truth of the next lemma.

Lemma 2.3. Let y(t) be a solution of (A) and put z(t) = p(t)y′(t), or let
z(t) be a solution of (B) and put y(t) = Q(t)z′(t). Then, there hold the following
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formulas:
p(t)2

q(t)
y′(t)2 + p(t)y(t)2 =

Q(t)2

P (t)
z′(t)2 +Q(t)z(t)2,

p(t)y′(t)2 + q(t)y(t)2 = Q(t)z′(t)2 + P (t)z(t)2,

p(t)2y′(t)2 + p(t)q(t)y(t)2 =
Q(t)

P (t)
z′(t)2 + z(t)2,

p(t)

q(t)
y′(t)2 + y(t)2 = Q(t)2z′(t)2 + P (t)Q(t)z(t)2.

Proof. We omit the independent variable t from y(t), z(t) and their derivatives.
Let y be any solution of (A) on [0,∞) and define z = p(t)y′. Then, since z′ =(
p(t)y′

)′
= −q(t)y, we obtain

Q(t)2

P (t)
z′2 +Q(t)z2 =

p(t)

q(t)2
(−q(t)y)2 +

1

q(t)
(p(t)y′)2

=
p(t)2

q(t)
y′2 + p(t)y2,

Q(t)z′2 + P (t)z2 =
1

q(t)
(−q(t)y)2 +

1

p(t)
(p(t)y′)2

= p(t)y′2 + q(t)y2

Q(t)

P (t)
z′2 + z2 =

p(t)

q(t)
(−q(t)y)2 + (p(t)y′)2

= p(t)2y′2 + p(t)q(t)y2

Q(t)2z′2 + P (t)Q(t)z2 =
1

q(t)2
(−q(t)y)2 +

(p(t)y′)2

p(t)q(t)

=
p(t)

q(t)
y′2 + y2.

The proof starting from a solution z of (B) is essentially the same as above, and
so is deleted. �

Remark 2.3. From Lemma 2.2 applied to (B) it follows that for any linearly
independent solutions z0(t), z1(t) of (B) on [0,∞), any pair of quadratic forms
{VB [z],WB [z]} from (2.13)–(2.16) satisfies

VB [z0](t)WB [z1](t) ≥ C2, t ≥ 0,

for some constant C2 > 0. This inequality shows that

lim
t→∞

WB [z1](t) = 0 =⇒ lim
t→∞

VB [z0](t) =∞.

Let us consider equation (B) again and transform it by performing the change
of independent variable

s =

∫ t

0

q(ξ)

p(ξ)
dξ(2.17)
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under the assumption that ∫ ∞
0

q(t)

p(t)
dt =∞.(2.18)

As it is easily seen, the transformed equation is expressed as(
P(s)ẇ(s)

)·
+Q(s)w(s) = 0, s ≥ 0,(C)

where · = d/ds, w(s) = z(t), P(s) = P (t) = 1/p(t) and Q(s) = Q(t) = 1/q(t).
Recalling the relationship between equations (A) and (B) one recognizes that the
direct passage from (A) to (C) is possible by way of the transformation (2.17)
combined with w(s) = p(t)y′(t). It is obvious that conversely (C) can be trans-
formed into (A) via the change of variables y(t) = P(s)ẇ(s). Thus there exists a
close relationship between the pairs of quadratic forms associated with equations
(A) and (C), as it is described in the following lemma which is a generalization of
a result of Hartman [5, p 512, Lemma 3.1].

Lemma 2.4. Suppose that (2.18) holds. Consider (C) which is connected with
(A) via (2.17). Then, any pair (y(t), w(s)) consisting of a solution y(t) of (A)
and the corresponding solution w(s) of (C) satisfies the following formulas:

p(t)

q(t)
y′(t)2 + y(t)2 = P(s)2ẇ(s)2 + P(s)Q(s)w(s)2,(2.19)

p(t)2y′(t)2 + p(t)q(t)y(t)2 =
P(s)

Q(s)
ẇ(s)2 + w(s)2,(2.20)

p(t)y′(t)2 + q(t)y(t)2 =
P(s)2

Q(s)
ẇ(s)2 + P(s)w(s)2,(2.21)

p(t)2

q(t)
y′(t)2 + p(t)y(t)2 = P(s)ẇ(s)2 +Q(s)w(s)2.(2.22)

Proof. Let y(t) be a solution of (A) on [0,∞) and put w(s) = p(t)y′(t) with s
given by (2.17). We then have

ẇ(s) =
(
p(t)y′(t)

)′
/s′ = −q(t)y(t)

p(t)

q(t)
= −p(t)y(t) or P(s)ẇ(s) = −y(t),

and so (
P(s)ẇ(s)

)·
= −y′(t)p(t)

q(t)
= −Q(s)w(s),

which shows that w(s) is a solution of (C) on [0,∞). To obtain (2.19), we proceed
as follows:

y(t)2 +
p(t)

q(t)
y′(t)2 =

(
−P(s)ẇ(s)

)2
+
p(t)

q(t)

(
w(s)

p(t)

)2

= P(s)2ẇ(s)2 + P(s)Q(s)w(s)2.
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Multiplying (2.19) by p(t)q(t) = 1/P(s)Q(s) gives (2.20). To confirm (2.21) and
(2.22), it suffices to multiply (2.19) by q(t) = 1/Q(s) and p(t) = 1/P(s), respec-
tively. The proof starting from a solution w(s) of (C) is fundamentally the same
as above, and so is deleted. �

3. Moderately bounded oscillatory solutions

We now know that with the oscillatory equation (A) with monotone coefficients one

can associate four pairs of quadratic forms {V[y],W[y]} such that
(
V[y](t)

)′ ≥ 0

and
(
W[y](t)

)′ ≤ 0 for all solutions y(t) on [0,∞) of (A). In this section, these
quadratic forms are utilized to detect some nontrivial qualitative properties of
oscillatory solutions of (A) including their amplitudes and slopes.

Suppose that (A) is oscillatory. Let y(t) be any one of its solutions on [0,∞), and
let {σk} and {τk}, respectively, denote the sequences of all zeros and all extrema
points of y(t). It is clear that y(σk) = 0 and y′(τk) = 0 for all k = 1, 2, . . . .

We distinguish four cases (1.3) and (1.4) (or (1.5)) for possible combinations of
the monotonicity of p(t) and q(t), and recall that in each of these cases the pair
of quadratic forms {V[y],W[y]} with different monotonicity is given explicitly by
(2.5)–(2.8). First we are concerned with the amplitudes of solutions of (A). A
pioneering study of amplitudes for solutions of (A0) was attempted by Hartman
and Wintner [6]. Our discussions are based on the following simple inequalities:

V[y](τk) ≤ V[y](τk+1), W[y](τk) ≥ W[y](τk+1), k = 1, 2, . . . ,(3.1)

V[y](τk) ≥ V[y](0), W[y](τk) ≤ W[y](0), k = 1, 2, . . . .(3.2)

In what follows use is made of the notation p(∞)=limt→∞ p(t), q(∞)=limt→∞ q(t)
which exist in the extended positive half-line [0,∞].

Let p′(t) ≥ 0 and q′(t) ≤ 0 for t ≥ 0. Application of (3.1) to {V[y],W[y]} given
by (2.5) implies that the sequence {p(τk)y(τk)2} is increasing and the sequence
{q(τk)y(τk)2} is decreasing, so that

{
√
p(τk)|y(τk)|} is increasing and {

√
q(τk)|y(τk)|} is decreasing.

If p′(t) ≤ 0 and q′(t) ≥ 0 for t ≥ 0, then in view of (2.6), it suffices to interchange
the role of V[y] and W[y] in the above case, and it follows that

{
√
q(τk)|y(τk)|} is increasing and {

√
p(τk)|y(τk)|} is decreasing.

Let p′(t) ≥ 0 and q′(t) ≥ 0, or more generally (p(t)q(t))′ ≥ 0 for t ≥ 0. Applying
(3.1) to {V[y],W[y]} given by (2.7), we see that

(3.3) {
√
p(τk)q(τk)|y(τk)|} is increasing and {|y(τk)|} is decreasing.

If p′(t) ≤ 0 and q′(t) ≤ 0, or if (p(t)q(t))′ ≤ 0 for t ≥ 0, then (3.1) written for
(2.8) implies that

(3.4) {|y(τk)|} is increasing and {
√
p(τk)q(τk)|y(τk)|} is decreasing.

The above statements can be regarded as the description, mostly indirect, of
laws governing the variation of the amplitudes of oscillatory solutions of (A).
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Direct information involved in (3.3) and (3.4) is that for any oscillatory solution
y(t) of (A), the sequence of its extrema or amplitudes {|y(τk)|} is decreasing or
increasing according to whether p′(t) ≥ 0, q′(t) ≥ 0 or p′(t) ≤ 0, q′(t) ≤ 0 for t ≥ 0.

Next, let us combine (3.2) with (2.5)–(2.8) to estimate the upper and lower
amplitudes A∗[y] and A∗[y] on [0,∞) for the solution y(t) of (A) satisfying the
initial conditions

y(0) = α, y′(0) = β,(3.5)

where α and β are any given constants such that (α, β) 6= (0, 0). Then, we easily
obtain the following four pairs of inequalities:

y(τk)2 ≥
p(0)

(
q(0)α2 + p(0)β2

)
p(τk)q(0)

, y(τk)2 ≤ q(0)α2 + p(0)β2

q(τk)
(3.6)

if p′(t) ≥ 0 and q′(t) ≤ 0,

y(τk)2 ≥ q(0)α2 + p(0)β2

q(τk)
, y(τk)2 ≤

p(0)
(
q(0)α2 + p(0)β2

)
p(τk)q(0)

(3.7)

if p′(t) ≤ 0 and q′(t) ≥ 0,

y(τk)2 ≥
p(0)

(
q(0)α2 + p(0)β2

)
p(τk)q(τk)

, y(τk)2 ≤ q(0)α2 + p(0)β2

q(0)
(3.8)

if (p(t)q(t))′ ≥ 0, and

y(τk)2 ≥ q(0)α2 + p(0)β2

q(0)
, y(τk)2 ≤

p(0)
(
q(0)α2 + p(0)β2

)
p(τk)q(τk)

(3.9)

if (p(t)q(t))′ ≤ 0. In each of (3.6)–(3.9), take the supremum over k of the right-hand
inequality and the infimum of the left-hand inequality. Then, one can indicate the
situations in which the upper and lower amplitudes A∗[y] and A∗[y] of the solution
under consideration have a finite upper bound and a finite nonzero lower bound,
respectively, as is shown in the following theorem.

Theorem 3.1. Let (A) be oscillatory and let y(t) be a solution of (A) on [0,∞)
satisfying (3.5).

(i) Suppose that p′(t) ≥ 0 and q′(t) ≤ 0 for t ≥ 0. Then,

A∗[y] ≤

√
q(0)α2 + p(0)β2

q(∞)
if q(∞) > 0,(3.10)

A∗[y] ≥

√
p(0)

(
q(0)α2 + p(0)β2

)
p(∞)q(0)

if p(∞) <∞.(3.11)

(ii) Suppose that p′(t) ≤ 0 and q′(t) ≥ 0 for t ≥ 0. Then,
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A∗[y] ≤

√
p(0)

(
q(0)α2 + p(0)β2

)
p(∞)q(0)

if p(∞) > 0,(3.12)

A∗[y] ≥

√
q(0)α2 + p(0)β2

q(∞)
if q(∞) <∞.(3.13)

(iii) Suppose that (p(t)q(t))′ ≥ 0 for t ≥ 0. Then,

A∗[y] ≤

√
q(0)α2 + p(0)β2

q(0)
,(3.14)

A∗[y] ≥

√
p(0)

(
q(0)α2 + p(0)β2

)
p(∞)q(∞)

if p(∞)q(∞) <∞.(3.15)

(iv) Suppose that (p(t)q(t))′ ≤ 0 for t ≥ 0. Then,

A∗[y] ≤

√
p(0)

(
q(0)α2 + p(0)β2

)
p(∞)q(∞)

if p(∞)q(∞) > 0,(3.16)

A∗[y] ≥

√
q(0)α2 + p(0)β2

q(0)
.(3.17)

Since the constants α and β in (3.5) are arbitrary, the inequalities (3.10)–(3.17)
guarantee under the indicated conditions on p(∞) and/or q(∞) that A∗[y] < ∞
and A∗[y] > 0 for all solutions y(t) of (A). Noting that A∗[y] < ∞ imply the
boundedness of y(t) on [0,∞) and that A∗[y] < ∞ plus A∗[y] > 0 implies the
moderate boundedness of y(t) on [0,∞), we recognize that the following proposi-
tions are included in Theorem 3.1.

Corollary 3.1. Suppose that (A) is oscillatory. All of its solutions are bounded
on [0,∞) if p(t) and q(t) satisfy one of the following conditions:

(i) p′(t) ≥ 0, q′(t) ≤ 0 for t ≥ 0 and q(∞) > 0;
(ii) p′(t) ≤ 0, q′(t) ≥ 0 for t ≥ 0 and p(∞) > 0;
(iii) (p(t)q(t))′ ≥ 0 for t ≥ 0;
(iv) (p(t)q(t))′ ≤ 0 for t ≥ 0 and p(∞)q(∞) > 0.

Corollary 3.2. Suppose that (A) is oscillatory. All of its solutions are mod-
erately bounded on [0,∞) if p(t) and q(t) satisfy one of the following conditions:

(i) p′(t) ≥ 0, q′(t) ≤ 0 for t ≥ 0 and p(∞) <∞, q(∞) > 0;
(ii) p′(t) ≤ 0, q′(t) ≥ 0 for t ≥ 0 and p(∞) > 0, q(∞) <∞;

(iii) (p(t)q(t))′ ≥ 0 for t ≥ 0 and p(∞)q(∞) <∞;
(iv) (p(t)q(t))′ ≤ 0 for t ≥ 0 and p(∞)q(∞) > 0.

Let us turn our attention to the slopes {|y′(σk)|} and the upper and lower
slopes S∗[y],S∗[y] of oscillatory solutions y(t) of (A) on [0,∞). As in the study of
the amplitudes, we begin by applying to each pair {V[y],W[y]} in (2.5)–(2.8) the
following sets of inequalities

V[y](σk) ≤ V[y](σk+1), W[y](σk) ≥ W[y](σk+1), k = 1, 2, . . . ,
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and

(3.18) V[y](σk) ≥ V[y](0), W[y](σk) ≤ W[y](0), k = 1, 2, . . . .

For economy of space we write down only those inequalities which arise from (3.18)
for the solutions y(t) of (A) satisfying the initial condition (3.5). They read as
follows:

(3.19) y′(σk)2 ≥ p(0)q(σk)

p(σk)2q(0)

(
q(0)α2 + p(0)β2

)
, y′(σk)2 ≤ q(0)α2 + p(0)β2

p(σk)

if p′(t) ≥ 0 and q′(t) ≤ 0 for t ≥ 0,

(3.20) y′(σk)2 ≥ q(0)α2 + p(0)β2

p(σk)
, y′(σk)2 ≤ p(0)q(σk)

p(σk)2q(0)

(
q(0)α2 + p(0)β2

)
if p′(t) ≤ 0 and q′(t) ≥ 0 for t ≥ 0,

(3.21)
y′(σk)2 ≥ p(0)

p(σk)2
(
q(0)α2 + p(0)β2

)
,

y′(σk)2 ≤ q(σk)

p(σk)q(0)

(
q(0)α2 + p(0)β2

)
if (p(t)q(t))′ ≥ 0 for t ≥ 0,

(3.22)
y′(σk)2 ≥ q(σk)

p(σk)q(0)

(
q(0)α2 + p(0)β2

)
,

y′(σk)2 ≤ p(0)

p(σk)2
(
q(0)α2 + p(0)β2

)
if (p(t)q(t))′ ≤ 0 for t ≥ 0. From these inequalities one can easily find sufficient
conditions on p(t) and q(t) which ensure that S∗[y] <∞ and/or S∗[y] > 0 for all
solutions y(t) of (A).

Theorem 3.2. Let (A) be oscillatory and let y(t) be the solution of (A) on
[0,∞) satisfying (3.5).

(i) Suppose that p′(t) ≥ 0 and q′(t) ≤ 0 for t ≥ 0. Then,

S∗[y] ≤

√
q(0)α2 + p(0)β2

p(0)
,

S∗[y] ≥

√
p(0)q(∞)

p(∞)2q(0)

(
q(0)α2 + p(0)β2

)
if p(∞) <∞ and q(∞) > 0.

(ii) Suppose that p′(t) ≤ 0 and q′(t) ≥ 0 for t ≥ 0. Then,

S∗[y] ≤

√
p(0)q(∞)

p(∞)2q(0)

(
q(0)α2 + p(0)β2

)
if p(∞) > 0 and q(∞) <∞,

S∗[y] ≥

√
q(0)α2 + p(0)β2

p(0)
.
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(iii) Suppose that p′(t) ≥ 0 and q′(t) ≥ 0 for t ≥ 0. Then,

S∗[y] ≤

√
q(∞)

p(0)q(0)

(
q(0)α2 + p(0)β2

)
if q(∞) <∞,

S∗[y] ≥

√
p(0)

p(∞)2
(
q(0)α2 + p(0)β2

)
if p(∞) <∞.

(iv) Suppose that p′(t) ≤ 0 and q′(t) ≤ 0 for t ≥ 0. Then,

S∗[y] ≤

√
p(0)

p(∞)2
(
q(0)α2 + p(0)β2

)
if p(∞) > 0,

S∗[y] ≥

√
q(∞)

p(0)q(0)

(
q(0)α2 + p(0)β2

)
if q(∞) > 0.

Corollary 3.3. Let (A) be oscillatory. If p(t) and q(t) are monotone functions
such that 0 < p(∞) < ∞ and 0 < q(∞) < ∞, then S∗[y] < ∞ and S∗[y] > 0 for
all solutions y(t) of (A).

It may occur that the sequence {|y′(σk)|} tends to 0 or to ∞ as k → ∞. In
fact, a closer look at (3.19)–(3.22) will lead to the following finding.

Corollary 3.4. Let (A) be oscillatory and let y(t) be any of its solution having
a sequence of zeros {σk}. Then, it holds that

(i) limk→∞ y′(σk) = 0 if p′(t) ≥ 0, q′(t) ≤ 0 and p(∞) = ∞, or if p′(t) ≥ 0,
q′(t) ≥ 0 and limt→∞ q(t)/p(t) = 0, and

(ii) limk→∞ |y′(σk)| = ∞ if p′(t) ≤ 0, q′(t) ≥ 0 and p(∞) = 0, or if p′(t) ≤ 0,
q′(t) ≤ 0 and limt→∞ q(t)/p(t) =∞.

We note here that information on the derivatives of oscillatory solutions of (A)
can be drawn from the quadratic form W[y] defined by (2.5)–(2.8).

Theorem 3.3. Let (A) be oscillatory and let y(t) be the solution of it satisfying
the initial condition (3.5).

(i) Suppose that p′(t) ≥ 0 and q′(t) ≤ 0 for t ≥ 0. Then,

sup
t
|y′(t)| ≤

√
q(0)α2 + p(0)β2

p(0)
,

lim
t→∞

y′(t) = 0 if p(∞) =∞.

(ii) Suppose that p′(t) ≤ 0 and q′(t) ≥ 0 for t ≥ 0. Then,

sup
t
|y′(t)| ≤

√
p(0)q(∞)

p(∞)2q(0)

(
q(0)α2 + p(0)β2

)
if p(∞) > 0 and q(∞) <∞.

(iii) Suppose that p′(t) ≥ 0 and q′(t) ≥ 0 for t ≥ 0. Then,

sup
t
|y′(t)| ≤

√
q(∞)

p(0)q(0)

(
q(0)α2 + p(0)β2

)
if q(∞) <∞,(3.23)
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lim
t→∞

y′(t) = 0 if lim
t→∞

q(t)

p(t)
= 0.

(iv) Suppose that p′(t) ≤ 0 and q′(t) ≤ 0 for t ≥ 0. Then,

sup
t
|y′(t)| ≤

√
p(0)

p(∞)2
(
q(0)α2 + p(0)β2

)
if p(∞) > 0.

Proof. Only the statement (iii) is proved. Since p′(t) ≥ 0 and q′(t) ≥ 0, W[y]
is given by (2.7) and we see that

p(t)

q(t)
y′(t)2 ≤ W[y](t) ≤ W[y](0) = M0, or |y′(t)| ≤

√
M0q(t)

p(t)
, t ≥ 0.

From this, it follows that limt→∞ y′(t) = 0 if limt→∞ q(t)/p(t) = 0 and that

supt |y′(t)| ≤
√
M0q(∞)/p(0) if q(∞) < ∞. The last inequality coincides with

(3.23) since M0 =
(
q(0)α2 + p(0)β2

)
/q(0). �

The object of our final study in this section is the sequences of zeros and extrema
points of solutions of (A). We are interested in explicit laws or rules, if any,
governing the arrangement of these sequences.

Assume that (A) is oscillatory. Let y(t) be any of its solutions on [0,∞) and
let {σk} and {τk} represent the sequences of zeros and extrema points of y(t),
respectively. The first result concerns the sequence {σk}.

Theorem 3.4. (i) The sequence {σk+1 − σk} is decreasing or increasing ac-
cording to p′(t) ≤ 0 and q′(t) ≥ 0, or p′(t) ≥ 0 and q′(t) ≤ 0.
(ii) Consider the case where p′(t) ≥ 0 and q′(t) ≥ 0 for t ≥ 0. Suppose that∫∞
0

dt/p(t)<∞. Put π(t)=
∫∞
t

ds/p(s) and assume that π(t)2p(t) and π(t)4p(t)q(t)
are monotone for t ≥ 0. Then, the sequence {σk+1−σk} is decreasing or increasing
according to whether

(3.24) (π(t)2p(t))′ ≤ 0 and (π(t)4p(t)q(t))′ ≥ 0 for t ≥ 0,

or

(3.25) (π(t)2p(t))′ ≥ 0 and (π(t)4p(t)q(t))′ ≤ 0 for t ≥ 0.

Proof. (i) This was proved by Hille [7, Theorem 8.1.7] by using the generalized
comparison theorem on the basis of Picone’s identity. The special case where
p(t) ≡ 1 was dealt with independently by Hartman [5, p 510, Theorem 3.1].
(ii) The change of variables s = 1/π(t), Y (s) = sy(t) transforms (A) into

d2Y

ds2
+R(s)Y = 0, R(s) =

p(t)q(t)

s4
= π(t)4p(t)q(t),

where s ∈ [1/π(0),∞). Clearly, the zeros of y(t) correspond to those of Y (s),
which means that the zeros of Y (s) are given by {sk = 1/π(σk)}.

Assume that (3.24) holds. Then, dR(s)/ds ≥ 0, and so it follows from (i) that
the sequence {sk+1 − sk} is decreasing. On the other hand, since (1/π(t))′ =
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1/π(t)2p(t), the function 1/π(t) is convex and hence, satisfies

1/π(t2)− 1/π(t1)

t2 − t1
≤ 1/π(t3)− 1/π(t2)

t3 − t2
for any t1, t2, t3 such that 0 < t1 < t2 < t3. Combining the two things mentioned
above, we obtain

(3.26) 1 ≥ sk+2 − sk+1

sk+1 − sk
=

1/π(σk+2)− 1/π(σk+1)

1/π(σk+1)− 1/π(σk)
≥ σk+2 − σk+1

σk+1 − σk
for all k = 1, 2, . . . , which implies that {σk+1 − σk} is decreasing. If (3.25) is
assumed, then a parallel argument to the above shows that {sk+1−sk} is increasing
and 1/π(t) is concave, and finally leads to (3.26) with all the inequality signs
reversed, ensuring that {σk+1 − σk} is increasing. This completes the proof. �

In order to say something about the sequence of extrema points of oscillatory
solutions, we consider the equation

(B) (Q(t)z′)′ + P (t)z = 0, P (t) =
1

p(t)
, Q(t) =

1

q(t)
.

As mentioned in Section 2, equations (A) and (B) are interrelated via z = p(t)y′

and y = Q(t)z′. This means that y′(τ) = 0 implies z(τ) = 0, and vice versa.
Hence the sequence of extrema points of y(t) coincides with that of zeros of the
corresponding z(t), and conversely. This observation suggests that Theorem 3.4
applied to (B) will provide information as to the monotonicity of the distances of
consecutive extrema points of solutions of (A).

Theorem 3.5. Suppose that (A) is oscillatory. Let {τk} denote the sequence
of extrema points of its arbitrary solution.
(i) The sequence {τk+1 − τk} is decreasing or increasing according to p′(t) ≤ 0

and q′(t) ≥ 0, or p′(t) ≥ 0 and q′(t) ≤ 0.

(ii) Consider the case where p′(t) ≤ 0 and q′(t) ≤ 0 for t ≥ 0. Suppose that∫∞
0
q(t)dt < ∞. Put ρ(t) =

∫∞
t
q(s)ds and assume that ρ(t)2/q(t) and

ρ(t)4/p(t)q(t) are monotone for t ≥ 0. Then, the sequence {τk+1 − τk} is
decreasing or increasing according to whether

(ρ(t)2/q(t))′ ≤ 0 and (ρ(t)4/p(t)q(t))′ ≥ 0 for t ≥ 0,

or

(ρ(t)2/q(t))′ ≥ 0 and (ρ(t)4/p(t)q(t))′ ≤ 0 for t ≥ 0.

To prove (i), apply (i) of Theorem 3.4 to equation (B) by noting that Q′(t) =
−q′(t)/q(t)2 and P ′(t) = −p′(t)/p(t)2.

To prove (ii), apply (ii) of Theorem 3.4 to equation (B) by using Q(t), P (t) and
ρ(t) instead of p(t), q(t) and π(t), respectively.

This section concludes with some examples illustrating the main results stated
above.
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Example 3.1. Consider the linear differential equation

(3.27)
(
(t+ 1)λy′

)′
+ ϕ(t)(t+ 1)−λy = 0

on [0,∞), where λ ∈ (0, 1] is a constant and ϕ : [0,∞) → (0,∞) is a decreasing
C1-function such that ϕ(∞) > 0. It is clear that (3.27) is oscillatory. Observe
that

p′(t) ≥ 0, q′(t) ≤ 0, and (p(t)q(t))′ = ϕ′(t) ≤ 0.

Let y(t) be a solution of (3.27) on [0,∞) satisfying the initial condition (3.5).
Since p(∞) = ∞ and q(∞) = 0, (i) of Theorem 3.1 cannot be used to estimate
A∗[y] and A∗[y]. However, (iv) of Theorem 3.1 applies and gives

(3.28) A∗[y] ≤

√
ϕ(0)α2 + β2

ϕ(∞)
, A∗[y] ≥

√
ϕ(0)α2 + β2

ϕ(0)
.

This shows that all solutions of (3.27) are moderately bounded in accordance with
the statement (iv) of Corollary 3.2. From (3.28), it follows that if in particular
ϕ(t) ≡ ω2 > 0 a constant, then the upper and lower amplitudes coincide, that is,

(3.29) A∗[y] = A∗[y] =

√
α2ω2 + β2

ω2
.

This value may well be called the amplitude A[y] on [0,∞) of the solution y(t)
satisfying (3.5) of the equation

(3.30)
(
(t+ 1)λy′

)′
+ ω2(t+ 1)−λy = 0.

As regards the slopes of y(t) satisfying (3.5), using (i) of Theorem 3.2, one
obtains an upper bound for S∗[y]

(3.31) S∗[y] ≤
√
ϕ(0)α2 + β2.

However, there exists, no positive lower bounds for S∗[y] because (i) of Theorem
3.3 implies that limt→∞ y′(t) = 0 for all solutions of (A).

Finally, let {σk} and {τk}, respectively, be the sequences of zeros and extrema
points of any given solution y(t) of (3.27). The first statements of Theorems 3.4
and 3.5 guarantee that both {σk+1−σk} and {τk+1−τk} are increasing sequences.

Remark 3.1. Notice that the general solution of equation (3.30) is given ex-
plicitly by

(3.32) y(t) =


A cos(ω log(t+ 1)) +B sin(ω log(t+ 1)) if λ = 1

A cos
(
ω(t+1)1−λ

1−λ

)
+B sin

(
ω(t+1)1−λ

1−λ

)
if λ ∈ (0, 1),

where A and B are arbitrary constants. It is a matter of elementary computation
to verify directly that the solutions (3.32) satisfy (3.29), (3.31) (with ϕ(0) = ω2)
and that the sequences of their zeros and extrema points enjoy the monotonicity
properties as described above.
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Example 3.2. Consider the equation

(3.33) (coth(t+ a) · y′)′ + ψ(t) tanh(t+ a) · y = 0,

where a > 0 is a constant and ψ : [0,∞) → (0,∞) is an increasing C1-function
such that ψ(∞) < ∞. This equation is clearly oscillatory. Since the functions
p(t) = coth(t+ a) and q(t) = ψ(t) tanh(t+ a) satisfy

p′(t) ≤ 0, q′(t) ≥ 0, and (p(t)q(t))′ = ψ′(t) ≥ 0

and

p(0) = coth a, p(∞) = 1, q(0) = ψ(0) tanh a, q(∞) = ψ(∞),

all nontrivial solutions of equation (3.33) are moderately bounded by (ii) or (iii)
of Corollary 3.2. To estimate A∗[y] and A∗[y] for a solution y(t) satisfying (3.5),
both (ii) and (iii) of Theorem 3.1 can be used. For example, from (iii), it follows
that

A∗[y] ≤

√
α2 +

coth2 a

ψ(0)
β2, A∗[y] ≥

√
ψ(0)

ψ(∞)
α2 +

coth2 a

ψ(∞)
β2,

which, when specialized to the case where ψ(t) ≡ ω2 > 0 a constant, gives the
amplitude on [0,∞)

A[y] =

√
α2 +

(
coth a

ω

)2

β2

for the solution y(t) in question. It turns out that all oscillatory solutions of the
equation

(3.34) (coth(t+ a) · y′)′ + ω2 tanh(t+ a) · y = 0

have finite amplitudes on [0,∞).
It can also be shown that S∗[y] <∞ and S∗[y] > 0 for all solutions of (3.33) by

applying either (ii) or (iii) of Theorem 3.2. The results derived through (ii) for a
solution y(t) satisfying (3.5), read:

S∗[y] ≤

√
ψ(∞)

ψ(0)

(
ψ(0) coth a · α2 + coth3 a · β2

)
,(3.35)

S∗[y] ≥
√
ψ(0) tanh2 a · α2 + β2.(3.36)

It is easy to see that the estimates obtained via (iii) of Theorem 3.2 are not as
sharp as (3.35), (3.36).

From the first statements of Theorems 3.4 and 3.5 applied to equation (3.33),
it follows that the sequences {σk} and {τk} of zeros and extrema points of any
solution of it are arranged in such a way that both {σk+1 − σk} and {τk+1 − τk}
are decreasing.

Remark 3.2. Note that equation (3.34) possesses general solutions expressed
explicitly by

y(t) = A cos(ω log cosh(t+ a)) +B sin(ω log cosh(t+ a)),

where A and B are arbitrary constants.
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4. Small or large oscillatory solutions

In this section, we study the existence of small or large oscillatory solutions of
equation (A). It is known (cf. Corollary 3.2) that such solutions possibly exist
only if the coefficients p(t) and q(t) satisfy one of the following conditions:
(i) p′(t) ≥ 0, q′(t) ≤ 0, p(∞) =∞ and/or q(∞) = 0;

(ii) p′(t) ≤ 0, q′(t) ≥ 0, p(∞) = 0 and/or q(∞) =∞;

(iii) (p(t)q(t))′ ≥ 0, p(∞)q(∞) =∞;

(iv) (p(t)q(t))′ ≤ 0, p(∞)q(∞) = 0.
Our objective is to demonstrate that in each of the above cases there do exist

small or large oscillatory solutions of (A) on the basis of a theory of Hartman [4,
Remark] regarding the second order system of linear differential equations of the
type

(∗) y′′ +B(t)y′ +A(t)y = 0,

where y is a d-dimensional vector, A(t) is a continuously differentiable d×d matrix
function on [0,∞) which is symmetric and positive definite for all t, and B(t) is a
continuous d× d matrix function on [0,∞).

We need the following two theorems due to Hartman in which, for any square
matrix function M(t), M(t) ≥ 0 [or ≤ 0] means that M(t) is non-negative definite
[or non-positive definite] for any t, and M(t)T denotes the transpose of M(t).

Theorem 4.1 (Hartman [4]). Assume that

A′(t) +B(t)A(t) +A(t)B(t)T ≥ 0 [or ≤ 0].

Then, if y(t) is a solution of (∗),(
y(t) · y(t) +A−1(t)y′(t) · y′(t)

)′ ≤ 0 [or ≥ 0],

where the dot · denotes the scalar product. If in addition,

[det A(t)] exp

[
2

∫ t

0

tr B(s)ds

]
→∞ [or 0] as t→∞,

then (∗) possesses a solution y0(t) satisfying

y0(t) · y0(t) +A−1(t)y′0(t) · y′0(t)→ 0 [or ∞] as t→∞.

Theorem 4.2 (Hartman [4]). Assume that

A′(t) ≤ 0 [or ≥ 0]

and
B(t) +B(t)T ≥ 0 [or ≤ 0].

Then, if y(t) is a solution of (∗),(
A(t)y(t) · y(t) + y′(t) · y′(t)

)′ ≤ 0 [or ≥ 0].

If in addition,

[det A(t)] exp

[
− 2

∫ t

0

tr B(s)ds

]
→ 0 [or ∞] as t→∞,
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then (∗) possesses a solution y1(t) satisfying

A(t)y1(t) · y1(t) + y′1(t) · y′1(t)→ 0 [or ∞] as t→∞.

Our first result pertaining to the cases (iii) and (iv) mentioned above is proved
by means of the one-dimensional version of Theorem 4.1.

Theorem 4.3. Assume that

(p(t)q(t))′ ≥ 0 [or ≤ 0].

Then, for any solution y(t) of (A), the functions p(t)
q(t)y

′(t)2+y(t)2 and p(t)2y′(t)2+

p(t)q(t)y(t)2 are monotone, in fact,(
p(t)

q(t)
y′(t)2 + y(t)2

)′
≤ 0 [or ≥ 0],(

p(t)2y′(t)2 + p(t)q(t)y(t)2
)′ ≥ 0 [or ≤ 0].

Furthermore, if

p(∞)q(∞) =∞ [or 0] ,

then (A) possesses linearly independent solutions y0(t) and y1(t) satisfying

(4.1)
lim
t→∞

[
p(t)

q(t)
y′0(t)2 + y0(t)2

]
= 0 [or ∞],

lim
t→∞

[
p(t)2y′1(t)2 + p(t)q(t)y1(t)2

]
=∞ [or 0].

Proof. The first statement readily follows from (2.3) and (2.4) of Lemma 2.1.
See (2.7) and (2.8). Let y0(t) and y1(t) be linearly independent solutions of (A).
Then we see from (2.9) of Lemma 2.2 that

0 < C2 ≤
(
p(t)

q(t)
y′0(t)2 + y0(t)2

)(
p(t)2y′1(t)2 + p(t)q(t)y1(t)2

)
for some constant C2. Hence, if there exists a solution y0(t)( 6≡ 0) such that

(4.10) lim
t→∞

[
p(t)

q(t)
y′0(t)2 + y0(t)2

]
= 0,

then any solution y1(t) which is linearly independent of y0(t) satisfies

lim
t→∞

[
p(t)2y′1(t)2 + p(t)q(t)y1(t)2

]
=∞.

Similarly, if there exists a solution y1(t)( 6≡ 0) satisfying

lim
t→∞

[
p(t)2y′1(t)2 + p(t)q(t)y1(t)2

]
= 0,

then any solution y0(t) which is linearly independent of y1(t) satisfies

lim
t→∞

[
p(t)

q(t)
y′0(t)2 + y0(t)2

]
=∞.
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First we consider the case where (p(t)q(t))′ ≥ 0 and p(∞)q(∞) = ∞. We begin
by transforming equation (A) into

y′′ +
p′(t)

p(t)
y′ +

q(t)

p(t)
y = 0,(4.2)

which can be regarded as a one-dimensional version of system (∗) with A(t) =
q(t)/p(t) and B(t) = p′(t)/p(t). Note that

A′(t) +B(t)A(t) +A(t)B(t)T =

(
p(t)q(t)

)′
p(t)2

≥ 0,

[det A(t)] exp

[
2

∫ t

0

tr B(s)ds

]
=
q(t)

p(t)
exp

[
2

∫ t

0

p′(s)

p(s)
ds

]
= cp(t)q(t)→∞

as t→∞ for some constant c > 0, and

y(t) · y(t) +A−1(t)y′(t) · y′(t) =
p(t)

q(t)
y′(t)2 + y(t)2.

Application of Theorem 4.1 to (4.2) ensures the existence of a solution y0(t)(6≡ 0)
of (A) satisfying (4.10).

Next we treat the case where (p(t)q(t))′ ≤ 0 and p(∞)q(∞) = 0. Here Theo-
rem 4.1 will be applied to equation (B) defined in Section 2. Since(

Q(t)P (t)
)′

=

(
1

p(t)q(t)

)′
≥ 0, Q(∞)P (∞) =∞,

by the same arguments as in the case where (p(t)q(t))′ ≥ 0 and p(∞)q(∞) = ∞,
we conclude that there exists a solution z1(t)(6≡ 0) of (B) such that

lim
t→∞

[
Q(t)

P (t)
z′1(t)2 + z1(t)2

]
= 0.

From this fact, using Lemma 2.3, we deduce that there exists a solution y1(t)(6≡ 0)
of (A) satisfying

lim
t→∞

[
p(t)2y′1(t)2 + p(t)q(t)y1(t)2

]
= 0.

The proof is complete. �

We are now in a position to deal with the remaining cases (i) and (ii) with the
help of Hartman’s Theorem 4.2.

Theorem 4.4. Assume that

p′(t) ≥ 0 [or ≤ 0],(4.3)

q′(t) ≤ 0 [or ≥ 0].(4.4)

Then, for any solution y(t) of (A), the functions p(t)y′(t)2 + q(t)y(t)2 and
p(t)2

q(t) y
′(t)2 + p(t)y(t)2 are monotone, in fact,(

p(t)y′(t)2 + q(t)y(t)2
)′ ≤ 0 [or ≥ 0],
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p(t)2

q(t)
y′(t)2 + p(t)y(t)2

)′
≥ 0 [or ≤ 0].

Furthermore, if

p(∞) <∞ [or > 0],(4.5)

q(∞) = 0 [or ∞],(4.6)

then (A) possesses linearly independent solutions y0(t) and y1(t) satisfying

lim
t→∞

[
p(t)y′0(t)2 + q(t)y0(t)2

]
= 0 [or ∞],(4.7)

lim
t→∞

[
p(t)2

q(t)
y′1(t)2 + p(t)y1(t)2

]
=∞ [or 0].(4.8)

Proof. The first paragraph is a consequence of (2.1) and (2.2) of Lemma 2.1.
See (2.5) and (2.6). Let y0(t) and y1(t) be linearly independent solutions of (A).
Using (2.9) of Lemma 2.2, we obtain

0 < C2 ≤
(
p(t)y′0(t)2 + q(t)y0(t)2

)(p(t)2
q(t)

y′1(t)2 + p(t)y1(t)2
)
.

Hence, if there exists a solution y0(t)( 6≡ 0) such that

(4.70) lim
t→∞

[
p(t)y′0(t)2 + q(t)y0(t)2

]
= 0,

then any solution y1(t) which is linearly independent of y0(t) satisfies

(4.8∞) lim
t→∞

[
p(t)2

q(t)
y′1(t)2 + p(t)y1(t)2

]
=∞.

Analogously, if there exists a solution y1(t)( 6≡ 0) satisfying

(4.80) lim
t→∞

[
p(t)2

q(t)
y′1(t)2 + p(t)y1(t)2

]
= 0,

then any solution y0(t) which is linearly independent of y1(t) satisfies

(4.7∞) lim
t→∞

[
p(t)y′0(t)2 + q(t)y0(t)2

]
=∞.

First we consider the case where p′(t) ≥ 0, q′(t) ≤ 0, p(∞) < ∞ and q(∞) = 0.
To show the existence of a solution y0(t)( 6≡ 0) satisfying (4.70), we apply Theorem
4.2 to equation (4.2) which is equivalent to (A). It is easy to check that

A′(t) =
q′(t)p(t)− q(t)p′(t)

p(t)2
≤ 0,

B(t) +B(t)T = 2
p′(t)

p(t)
≥ 0,

A(t)y(t) · y(t) + y′(t) · y′(t) =
q(t)

p(t)
y(t)2 + y′(t)2,

[det A(t)] exp

[
−2

∫ t

0

tr B(s)ds

]
= c

q(t)

p(t)3
(4.9)
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for some constant c > 0. Taking account of

0 ≤ c q(t)
p(t)3

≤ c q(t)
p(0)3

,

we find that (4.9) tends to 0 as t → ∞. It follows from Theorem 4.2 that there
exists a solution y0(t)(6≡ 0) of (A) satisfying

lim
t→∞

[
q(t)

p(t)
y0(t)2 + y′0(t)2

]
= 0.

Since
0 ≤ p(t)y′0(t)2 + q(t)y0(t)2

= p(t)

[
y′0(t)2 +

q(t)

p(t)
y0(t)2

]
≤ p(∞)

[
y′0(t)2 +

q(t)

p(t)
y0(t)2

]
,

we conclude that
lim
t→∞

[
p(t)y′0(t)2 + q(t)y0(t)2

]
= 0,

and therefore there exists a solution y0(t)( 6≡ 0) satisfying (4.70).
Next we deal with the case where p′(t) ≤ 0, q′(t) ≥ 0, p(∞) > 0 and q(∞) =∞.

Introduce the new independent variable s defined by

s =

∫ t

0

q(ξ)

p(ξ)
dξ,

and let

P(s) =
1

p(t)
, Q(s) =

1

q(t)
.

Then we see that

Ṗ(s) =

(
1

p(t)

)′/ds

dt
= − p′(t)

p(t)q(t)
≥ 0,

Q̇(s) =

(
1

q(t)

)′/ds

dt
= −p(t)q

′(t)

q(t)3
≤ 0,

and that

P(∞) =
1

p(∞)
<∞, Q(∞) =

1

q(∞)
= 0.

We note that
∫∞
0

q(ξ)
p(ξ) dξ = ∞ is satisfied in view of q(ξ)/p(ξ) ≥ q(0)/p(0) > 0.

Applying Theorem 4.2 to equation (C), we observe that there exists a solution
w1(s)(6≡ 0) such that

lim
s→∞

[
P(s)ẇ1(s)2 +Q(s)w1(s)2

]
= 0.

Using Lemma 2.4, we deduce that there exists a solution y1(t)( 6≡ 0) of (A) satis-
fying

lim
t→∞

[
p(t)2

q(t)
y′1(t)2 + p(t)y1(t)2

]
= 0,

which is (4.80). The proof is complete. �

The next theorem shows that the hypotheses (4.5), (4.6) can be replaced by the
following “dual” limit conditions (4.10), (4.11).
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Theorem 4.5. Assume that (4.3) and (4.4) hold. If

p(∞) =∞ [or 0],(4.10)

q(∞) > 0 [or <∞],(4.11)

then (A) possesses linearly independent solutions y0(t) and y1(t) satisfying (4.7),
(4.8).

Proof. First we deal with the case where p′(t) ≥ 0, q′(t) ≤ 0, p(∞) = ∞ and
q(∞) > 0. Let Q(t) = 1/q(t), P (t) = 1/p(t). Since

Q′(t) ≥ 0, P ′(t) ≤ 0, Q(∞) <∞, P (∞) = 0,

Theorem 4.4 applies to equation (B) implying that the functions Q(t)z′(t)2 +

P (t)z(t)2 and Q(t)2

P (t) z
′(t)2 + Q(t)z(t)2 are decreasing and increasing, respectively,

for any solution z(t) of (B), and that there exist linearly independent solutions
z0(t) ( 6≡ 0) and z1(t) ( 6≡ 0) of equation (B) satisfying

lim
t→∞

[
Q(t)z′0(t)2 + P (t)z0(t)2

]
= 0, lim

t→∞

[
Q(t)2

P (t)
z′1(t)2 +Q(t)z1(t)2

]
=∞,

respectively. We are now able to apply Lemma 2.3 concluding that equation (A)
does possess linearly independent solutions y0(t)( 6≡ 0) and y1(t)( 6≡ 0) satisfying

lim
t→∞

[
p(t)y′0(t)2 + q(t)y0(t)2

]
= 0, lim

t→∞

[
p(t)2

q(t)
y′1(t)2 + p(t)y1(t)2

]
=∞,

respectively. Next we consider the case where p′(t) ≤ 0, q′(t) ≥ 0, p(∞) = 0 and
q(∞) <∞. Since

Q′(t) ≤ 0, P ′(t) ≥ 0, Q(∞) > 0, P (∞) =∞,

from Theorem 4.4 applied to (B), it follows that there exist linearly independent
solutions z0(t)( 6≡ 0) and z1(t)(6≡ 0) of equation (B) satisfying

lim
t→∞

[
Q(t)2

P (t)
z′0(t)2 +Q(t)z0(t)2

]
= 0, lim

t→∞

[
Q(t)z′1(t)2 + P (t)z1(t)2

]
=∞,

respectively. This fact combined with Lemma 2.3 then leads to the conclusion that
(A) possesses linearly independent solutions y0(t)( 6≡ 0) and y1(t)( 6≡ 0) such that

lim
t→∞

[
p(t)2

q(t)
y′0(t)2 + p(t)y0(t)2

]
= 0, lim

t→∞

[
p(t)y′1(t)2 + q(t)y1(t)2

]
=∞,

respectively. This completes the proof. �

The following theorem is a direct consequence of Theorem 4.2.

Theorem 4.6. Assume that (4.3) and (4.4) hold. Then, for any solution y(t)

of (A), the function q(t)
p(t)y(t)2 + y′(t)2 is monotone, in fact,(
q(t)

p(t)
y(t)2 + y′(t)2

)′
≤ 0 [or ≥ 0].
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Furthermore, if

p(∞) =∞ [or 0],

q(∞) = 0 [or ∞],

then (A) possesses a solution y(t) satisfying

lim
t→∞

[
q(t)

p(t)
y(t)2 + y′(t)2

]
= 0 [or ∞].

Proof. The conclusion follows immediately from the one-dimensional version of
Theorem 4.2 applied to equation (4.2). A crucial role is played by (4.9). �

It is natural to ask whether there really exist small or large oscillatory solutions
of equation (A) among the solutions described in the above theorems. The answer
is in the affirmative as long as Theorems 4.3, 4.4 and 4.5 are concerned.

Corollary 4.1. Let equation (A) be oscillatory. If (p(t)q(t))′ ≥ 0 [or ≤ 0]
and p(∞)q(∞) =∞ [or 0], then there exists a small [or large ] oscillatory solution
of (A).

Proof. Let (p(t)q(t))′ ≥ 0 and p(∞)q(∞) = ∞. It follows from Theorem 4.3
that there exists an oscillatory solution y0(t) of (A) such that

lim
t→∞

[
p(t)

q(t)
y′0(t)2 + y0(t)2

]
= 0.

This clearly implies that limt→∞ y0(t)2 = 0, i.e., limt→∞ y0(t) = 0, which means
that y0(t) is a small oscillatory solution of (A). On the other hand, if (p(t)q(t))′ ≤ 0
and p(∞)q(∞) = 0, then by Theorem 4.3 there exists an oscillatory solution y0(t)
of (A) such that

lim
t→∞

[
p(t)

q(t)
y′0(t)2 + y0(t)2

]
=∞,

which means that limk→∞ |y0(τk)| = ∞, where {τk}∞k=1 denotes the sequence of
points at which y0(t) takes on extrema. This shows that y0(t) is a large oscillatory
solution of (A). �

Corollary 4.2. Let equation (A) be oscillatory. Assume that p′(t) ≥ 0 and
q′(t) ≤ 0. If p(∞) = ∞ [or < ∞] and q(∞) > 0 [or = 0], then there exists a
small [or large ] oscillatory solution of (A).

Proof. In case p(∞) = ∞ and q(∞) > 0, we see from Theorem 4.5 that there
exists a solution y0(t) of (A) satisfying (4.70). Since

p(t)y′0(t)2 + q(t)y0(t)2 ≥ q(∞)y0(t)2 ≥ 0,

we observe that limt→∞ y0(t)2 = 0, and hence, limt→∞ y0(t) = 0. Therefore, there
exists a small oscillatory solution y0(t) of (A). Next let p(∞) <∞ and q(∞) = 0.
Theorem 4.4 implies that there exists a solution y1(t) of (A) satisfying (4.8∞).
Since p(t) ≤ p(∞), we find that

lim
t→∞

[
p(t)2

q(t)
y′1(t)2 + p(∞)y1(t)2

]
=∞.
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As in the proof of Corollary 4.1, we conclude that the solution y1(t) is a large
oscillatory solution of (A). �

Corollary 4.3. Let equation (A) be oscillatory. Assume that p′(t) ≤ 0 and
q′(t) ≥ 0. If p(∞) > 0 [or = 0] and q(∞) = ∞ [or < ∞], then there exists a
small [or large ] oscillatory solution of (A).

Proof. If p(∞) > 0 and q(∞) =∞, then it follows from Theorem 4.4 that there
exists a solution y1(t) of (A) satisfying (4.80). Since p(t) ≥ p(∞), we obtain

lim
t→∞

p(∞)y1(t)2 = 0,

which implies that y1(t) is a small oscillatory solution of (A). In the case where
p(∞) = 0 and q(∞) <∞, Theorem 4.5 means that there exists a solution y0(t) of
(A) satisfying (4.7∞). Since q(t) ≤ q(∞), it can be shown that

lim
t→∞

[
p(t)y′0(t)2 + q(∞)y0(t)2

]
=∞.

Arguing as in the proof of Corollary 4.1, we deduce that the solution y0(t) is a
large oscillatory solution of (A). �

Remark 4.1. It remains to consider equation (A) in which p(t) and q(t) satisfy
p′(t)q′(t) ≤ 0 and {p(∞) = ∞, q(∞) = 0} or {p(∞) = 0, q(∞) = ∞}. There
seems to be no effective criteria for the presence of small or large oscillatory solu-
tions for such equations, since the pair of functions {p(t), q(t)} can be chosen so
that (A) possesses any one of the three types of oscillatory solutions, moderately
bounded, small or large. To observe that such a situation occurs consider the
oscillatory equation (

e−αt y′
)′

+ k eβt y = 0,(4.12)

where k, α and β are positive constants. Here p(t) = e−αt and q(t) = k eβt. Since
p(t)q(t) = k e(β−α)t, we are able to apply Corollary 4.1 to (4.12) and conclude
that it has a small or large oscillatory solution according as β > α or β < α.
If β = α, then (4.12) has linearly independent moderately bounded oscillatory

solutions
(
cos(
√
k eαt /α), sin(

√
k eαt /α)

)
.

Example 4.1. Consider the equation(
eαt y′

)′
+ k eβt y = 0,(4.13)

where α, β and k are positive constants. Assume that β ≥ 3α. Here p(t) = eαt

and q(t) = k eβt. Observe that (4.13) is oscillatory via (1.2) with µ = 2. Since
(p(t)q(t))′ ≥ 0 and p(∞)q(∞) =∞, it follows from Corollary 4.1 that there exists
a small oscillatory solution of (4.13). If in particular β = 3α and k = α2, then
this equation possesses linearly independent small oscillatory solutions e−αt cos eαt,
e−αt sin eαt.

Analogously, it is shown that the equation(
(t+ a)αy′

)′
+ k(t+ a)βy = 0,(4.14)
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a, k, α and β being positive constants such that α ≥ 3/2 and β ≥ 2α − 3, is
oscillatory and possesses a small oscillatory solution by virtue of Corollary 4.1. It
is easy to see that if in particular, β = 3α− 4 and k = (α− 1)4, then the linearly
independent functions

(t+ a)1−α cos
(
(α− 1)(t+ a)α−1

)
, (t+ a)1−α sin

(
(α− 1)(t+ a)α−1

)
are small oscillatory solutions of (4.14).

Example 4.2. Consider the equation(
(t+ a)−αy′

)′
+ k(t+ a)−βy = 0,(4.15)

where a, k, α and β are positive constants. This equation is a special case of (A)
with p(t) = (t + a)−α and q(t) = k(t + a)−β , and is shown to be oscillatory if
β ≤ α+ 2 and k > (α+ 1)2/4. Since (p(t)q(t))′ ≤ 0 and p(∞)q(∞) = 0, Corollary
4.1 ensures the existence of a large oscillatory solution of (4.15). If in particular,
β = α + 2 and k = (α + 1)2, then (4.15) possesses linearly independent large
oscillatory solutions

(t+ a)
α+1
2 cos

√
3

2
log

(t+ a)α+1

α+ 1
, (t+ a)

α+1
2 sin

√
3

2
log

(t+ a)α+1

α+ 1
.

Similarly, it can be shown that the equation(
e−αt y′

)′
+ k e−βt y = 0,

k, α and β being positive constants, is oscillatory if β ≤ 2α and k > α2/4 and has
a large oscillatory solution by way of Corollary 4.1. It is elementary to see that in
the special case α = β this equation has two large oscillatory solutions

e
α
2 t cos

√
4k − α2

2
t, e

α
2 t sin

√
4k − α2

2
t.

Example 4.3. Consider the equations(
cosh(t+ a) · y′

)′
+ k coth(t+ a) · y = 0,(4.16) ( ((t+ a)2 − 1)

1
2

t+ a
y′
)′

+
k(t+ a)

((t+ a)2 − 1)
3
2

y = 0,(4.17)

where a > 1 and k are positive constants. It is easy to check that these equations
are oscillatory and satisfy the hypotheses of Corollary 4.2. It follows that (4.16)
has a small oscillatory solution while (4.17) has a large oscillatory solution. Note
that if k = 1/2 (4.17), possesses two exact unbounded oscillatory solutions

((t+ a)2 − 1)
1
4 cos

1

4
log((t+ a)2 − 1), ((t+ a)2 − 1)

1
4 sin

1

4
log((t+ a)2 − 1).

Example 4.4. Corollary 4.3 is applicable to the equations

(coth(t+ a) · y′)′ + k cosh(t+ a) · y = 0,(4.18) ( t+ a

((t+ a)2 − 1)
3
2

y′
)′

+ k
((t+ a)2 − 1)

1
2

t+ a
y = 0,(4.19)
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where a > 1 and k are positive constants. It is concluded that (4.18) has a small
oscillatory solution while (4.19) has a large oscillatory solution.

It is well-known that Bessel’s differential equation of order ν ∈ R, which can
be expressed as (

ty′
)′

+
(
t− ν2

t

)
y = 0,

has two small oscillatory solutions Jν(t) and Yν(t) termed, respectively, the Bessel
functions of the first and second kind of order ν. Taking this fact into account
together with some equations appearing in Examples 4.1–4.3, one would expect
that under the specified hypotheses on p(t) and q(t) in Corollaries 4.1–4.3, equa-
tion (A) possesses two linearly independent solutions, small or large, with similar
asymptotic behavior as t→∞.
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