L-DUAL OF RANDERS CHANGE OF MATSUMOTO METRIC

M. Y. KUMBAR, K. R. THIPPESWAMY and S. K. NARASIMHAMURTHY

Abstract

The study of L-duality of Lagrange and Finsler spaces was initiated by R. Miron in 1987. Some of the remarkable results obtained are the concrete L-duals of Randers and Kropina metrics. However, the importance of L-duality is by far limited to computing the dual of some Finsler fundamental functions. In this paper, we study L-dual of Randers change of Matsumoto metric.

1. Introduction

The (α, β)-metrics form an important class of Finsler metrics appearing iteratively in formulating Physics, Mechanics and Seismology, Biology, Control Theory, etc. This class of metrics was first introduced by Matsumoto [11]. An (α, β)-metric is a Finsler metric of the form $F:=\alpha \phi\left(\frac{\beta}{\alpha}\right)$, where $\phi=\phi(s)$ is a C^{∞} function on $\left(-b_{0}, b_{0}\right)$ with certain regularity, $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1 -form on M. The Randers and Matsumoto metrics are special and significant (α, β)-metrics which constitute a majority of actual research. The Matsumoto and Randers metrics are defined by $\phi(s)=\frac{1}{1-s}$ and $\phi(s)=1+s$, respectively. The Matsumoto metric $F=\frac{\alpha^{2}}{\alpha-\beta}$ is an important metric in Finsler geometry which is the Matsumotos slope-of-a-mountain metric. In the Matsumoto metric, the 1 -form $\beta=b_{i}(x) y^{i}$ was originally induced by earth gravity. Hence, we could regard as the infinitesimals. This metric was introduced by Matsumoto as a realization of Finslers idea of "a slope measure of a mountain with respect to a time measure" (see [10]). In [14], Miron studied the L-duality of Lagrange and Finsler spaces. In this paper, the authors study L-dual of Randers change of Matsumoto metric and find the fundamental function of two major cases.

2. The Legendre Transformation

Let $F^{n}=(M, F)$ be an n-dimensional Finsler space. The fundamental function $F(x, y)$ is called an (α, β)-metric if F is a homogeneous function of α and β of degree one, where $\alpha^{2}=a(y, y)=a_{i j} y^{i} y^{j}, y=\left.y^{i} \frac{\partial}{\partial x^{i}}\right|_{x} \in T_{x} M$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1-form on $\widetilde{T M}=T M \backslash\{0\}$.

A Finsler space with fundamental function

$$
\begin{equation*}
F(x, y)=\alpha(x, y)+\beta(x, y) \tag{2.1}
\end{equation*}
$$

is called a Randers space, whereas the space having the fundamental function

$$
\begin{equation*}
F(x, y)=\frac{\alpha^{2}(x, y)}{\beta(x, y)} \tag{2.2}
\end{equation*}
$$

is called a Kropina space.
A Finsler space with fundamental function

$$
\begin{equation*}
F(x, y)=\frac{\alpha^{2}(x, y)}{\alpha(x, y)-\beta(x, y)}, \tag{2.3}
\end{equation*}
$$

is called a Matsumoto space.
The generalized metrics

$$
\begin{equation*}
F(x, y)=\frac{\alpha^{m+1}(x, y)}{\beta^{m}(x, y)}, \quad(m \neq 0,-1) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
F(x, y)=\frac{\alpha^{m+1}(x, y)}{(\alpha(x, y)-\beta(x, y))^{m}}, \quad(m \neq 0,-1) \tag{2.5}
\end{equation*}
$$

are called generalized Kropina and Matsumoto metrics, respectively, and the spaces equipped with the corresponding metrics are called generalized m-Kropina and generalized Matsumoto spaces, respectively.

Definition 2.1. A Cartan space C^{n} is a pair (M, H) which consists of a real n-dimensional C^{∞}-manifold M and a Hamiltonian function $H: T^{x} M \backslash\{0\} \rightarrow \Re$, where $\left(T^{m} M, \pi^{x}, M\right)$ is the cotangent bundle of M such that $H(x, p)$ has the following properties:

1. It is two homogeneous with respect to $p_{i}, \quad(i, j, k=1,2, \ldots, n)$.
2. The tensor field $g^{i j}(x, p)=\frac{1}{2} \frac{\partial^{2} H}{\partial p_{i} \partial p_{j}}$ is nondegenerate.

Let $C^{n}=(M, K)$ be an n-dimensional Cartan space having the fundamental function $K(x, p)$. We also consider Cartan spaces having the metric function of the following forms (see [5]):

$$
\begin{equation*}
K(x, p)=\sqrt{a^{i j}(x) p_{i} p_{j}}+b^{i}(x) p_{i} \tag{2.6}
\end{equation*}
$$

or

$$
\begin{equation*}
K(x, p)=\frac{a^{i j} p_{i} p_{j}}{b^{i} p_{i}} \tag{2.7}
\end{equation*}
$$

or

$$
\begin{equation*}
K(x, p)=\frac{a^{i j} p_{i} p_{j}}{\sqrt{a^{i j}(x) p_{i} p_{j}}-b^{i}(x) p_{i}} \tag{2.8}
\end{equation*}
$$

with $a_{i j} a^{j k}=\delta_{i}^{k}$. We will again call these spaces Randers, Kropina and Matsumoto spaces, respectively, on the cotangent bundle $T^{*} M$.

Definition 2.2. A regular Lagrangian (Hamiltonian) on a domain $D \subset T M$ $\left(D^{*} \subset T^{*} M\right)$ is a real smooth function $L: D \rightarrow \Re\left(H: D^{*} \rightarrow \Re\right)$ such that the matrix with entries

$$
g_{a b}(x, y)=\dot{\partial}_{a} \dot{\partial}_{b} L(x, y) \quad\left(g^{* a b}(x, y)=\dot{\partial^{a}} \dot{\partial^{b}} H(x, y)\right)
$$

is everywhere nondegenerate on $D\left(D^{*}\right)$, (see [5]).
A Lagrange (Hamilton) manifold is a pair $(M, L(H))$, where M is a smooth manifold and $L(H)$ is regular Lagrangian (Hamiltonian) on $D\left(D^{*}\right)$.

Example 1.
(a) Every Finsler space $F^{n}=(M, F(x, y))$ is a Lagrange manifold with $L=\frac{1}{2} F^{2}$.
(b) Every Cartan space $C^{n}=(M, \bar{F}(x, p))$ is a Hamilton manifold with $H=\frac{1}{2} \bar{F}^{2}$. (Here \bar{F} is positively 1-homogeneous in p_{i} and the tensor $\bar{g}^{a b}=\frac{1}{2} \dot{\partial}_{a} \dot{\partial}_{b} \bar{F}^{2}$ is nondegenerate).
(c) (M, L) and (M, H) with

$$
L(x, y)=\frac{1}{2} a_{i j}(x) y^{i} y^{j}+b_{i}(x) y^{i}+c(x)
$$

and

$$
H(x, y)=\frac{1}{2} \bar{a}^{i j}(x) p_{i} p_{j}+\bar{b}^{i}(x) p_{i}+\bar{c}(x)
$$

are Lagrange and Hamilton manifolds, respectively. (Here $a_{i j}, \bar{a}^{i j}$ are the fundamental tensors of Riemannian manifold, b_{i} are components of covector field, \bar{b}^{i} are the components of a vector fields, C and \bar{C} are the smooth functions on M).

Let $L(x, y)$ be a regular Lagrangian on a domain $D \subset T M$ and let $H(x, p)$ be a regular Hamiltonian on a domain $D^{*} \subset T^{*} M$. If L is a differential map, we can consider the fiber derivative of L, locally given by the diffeomorphism between the open set $U \subset D$ and $U^{*} \subset D^{*}($ see $[\mathbf{1 3}, \mathbf{1 4}])$

$$
\begin{equation*}
\varphi(x, y)=\left(x^{i}, \dot{\partial}_{a} L(x, y)\right), \tag{2.9}
\end{equation*}
$$

which is called the Legendre transformation. In this case, we can define the function $H: U^{*} \mapsto R$

$$
\begin{equation*}
H(x, y)=p_{a} y^{a}-L(x, y) \tag{2.10}
\end{equation*}
$$

where $y=y^{a}$ is the solution of the equation

$$
\begin{equation*}
p_{a}=\dot{\partial}_{a} L(x, y) . \tag{2.11}
\end{equation*}
$$

In the same manner, the fiber derivative of H is locally given by

$$
\begin{equation*}
\varphi(x, p)=\left(x^{i}, \dot{\partial}^{a} H(x, p)\right), \tag{2.12}
\end{equation*}
$$

where φ is a diffeomorphism between the same open sets $U \subset D$ and $U^{*} \subset D^{*}$. We can consider the function $L: U \mapsto R$

$$
\begin{equation*}
L(x, y)=p_{a} y^{a}-H(x, p), \tag{2.13}
\end{equation*}
$$

where $p=\left(p_{a}\right)$ is the solution of the equation

$$
\begin{equation*}
y^{a}=\dot{\partial}^{a} H(x, p) \tag{2.14}
\end{equation*}
$$

The Hamiltonian given by (2.10) is the Legendre transformation of the Lagrangian L and the Lagrangian given by (2.13) is called the Legendre transformation of the Hamiltonian H.

If (M, K) is a Cartan space, then (M, H) is a Hamiltonian manifold (see [13, 14]), where $H(x, p)=\frac{1}{2} K^{2}(x, p)$ is 2-homogenous on a domain of $T^{*} M$. So we get the following transformation of H on U

$$
\begin{equation*}
L(x, y)=p_{a} y^{a}-H(x, p)=H(x, p) \tag{2.15}
\end{equation*}
$$

Theorem 2.1. The scalar field $L(x, y)$ defined by (2.16) is a positively 2-homogeneous regular Lagrangian on U. Therefore, we get Finsler metric F of U, so that

$$
\begin{equation*}
L=\frac{1}{2} F^{2} \tag{2.16}
\end{equation*}
$$

Thus for the Cartan space (M, K) we always can locally associate a Finsler space (M, F) which will be called the L-dual of a Cartan space $\left(M, C_{\mid U^{*}}\right)$, and vice versa, we can associate locally a Cartan space to every Finsler space which will be called the L-dual of a Finsler space $\left(M, F_{\mid U}\right)$.

3. The L-Dual of Randers change of Matsumoto Space

In this section, we consider the special (α, β)-metric $F=\frac{\alpha^{2}}{\alpha-\beta}+\beta$, we put $\alpha^{2}=y_{i} y^{i}, \beta=b_{i} y^{i}, \beta^{*}=b^{i} p_{i}, p^{i}=a^{i j} p_{j}, \alpha^{* 2}=p_{i} p^{i}=a^{i j} p_{i} p_{j}$. We have

$$
\begin{equation*}
p_{i}=\frac{1}{2} \partial^{i} F^{2}=F\left[\frac{2 F y^{i}}{\alpha^{2}}-\frac{F}{\alpha(\alpha-\beta)}\left(y^{i}-b_{i} \alpha\right)\right] . \tag{3.1}
\end{equation*}
$$

Contracting (3.1) by p^{i} and b^{i}, respectively, we get

$$
\begin{align*}
\alpha^{* 2} & =F\left[\frac{2 F^{3}}{\alpha^{2}}-\frac{F}{\alpha(\alpha-\beta)}\left(F^{2}-\alpha \beta^{*}\right)+\beta^{*}\right] \tag{3.2}\\
\beta^{*} & =F\left[\frac{2 F \beta}{\alpha^{2}}-\frac{F}{\alpha(\alpha-\beta)}\left(\beta-b^{2} \alpha\right)+b^{2}\right] \tag{3.3}
\end{align*}
$$

In [17], for a Finsler (α, β)-metric F on a manifold M, there is a positive function $\phi=\phi(s)$ on $\left(-b_{0} ; b_{0}\right)$ with $\phi(0)=1$ and $F=\alpha \phi(s), s=\frac{\beta}{\alpha}$, where $\alpha=\sqrt{a_{i j} y^{i} y^{j}}$ and $\beta=b_{i} y^{i}$ with $\|\beta\|_{x}<b_{0}$ for all $x \in M$. ϕ satisfies $\phi(s)-s \phi^{\prime}(s)+$ $\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(s)>0,\left(|s| \leq b_{0}\right)$.

A Randers change of Matsumoto metric is a special (α, β)-metric with $\phi=$ $\left[1+s-\frac{1}{s}\right]$. Using Shen's notation [19] $s=\frac{\beta}{\alpha}$, (3.1) and (3.3) become

$$
\begin{equation*}
\alpha^{* 2}=F\left[\frac{2 F}{(1-s)^{2}}-\frac{1}{(1-s)^{3}}+\frac{\beta^{*}}{(1-s)^{2}}+\beta^{*}\right] \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta^{*}=F\left[\frac{2 s}{(1-s)}-\frac{1}{(1-s)^{2}}\left(s-b^{2}\right)+b^{2}\right] . \tag{3.5}
\end{equation*}
$$

Putting $(1-s)=t$, so that $s=(1-t)$ in (3.4) and (3.5), we get

$$
\begin{equation*}
\alpha^{* 2}=F\left[\frac{2 F^{2}}{t^{2}}-\frac{F^{2}}{t^{3}}+F\left(1+\frac{1}{t^{2}}\right) \beta^{*}\right] \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta^{*}=F\left[\frac{2(1-t)}{t}-\frac{1}{t^{2}}\left(1-t-b^{2}\right)+b^{2}\right] . \tag{3.7}
\end{equation*}
$$

Now, we have following two cases:
Case I. For $b^{2}=1$ from (3.7), we get

$$
\begin{equation*}
F=\left[\frac{\beta^{*} t}{(3-t)}\right] \tag{3.8}
\end{equation*}
$$

From (3.6) and (3.8), we get

$$
\begin{equation*}
(K-1) s^{3}+3 K s^{2}+4 s-(4 K+5)=0 \tag{3.9}
\end{equation*}
$$

where $K=\frac{\alpha^{* 2}}{\beta^{* 2}}$.
Solving (3.9) for s and using maple, we get

$$
\begin{equation*}
s=\left[\frac{-q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}\right]^{\frac{1}{3}}+\left[\frac{-q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}\right]^{\frac{1}{3}}-\frac{A}{3} \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
p=\left[\frac{A^{2}-2 A^{3}+B}{3}\right], \quad q=\left[\frac{3 C-A B}{3}\right] \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
A=\frac{3 K}{(k-1)}, \quad B=\frac{4}{(K-1)}, \quad C=\frac{4 K+5}{1-K} \tag{3.12}
\end{equation*}
$$

From (3.8), we get

$$
\begin{equation*}
F=\frac{\beta^{*}\left[1-\left[\frac{-q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}\right]^{\frac{1}{3}}-\left[\frac{-q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}\right]^{\frac{1}{3}}+\frac{A}{3}\right]}{2+\left[\frac{-q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}\right]^{\frac{1}{3}}+\left[\frac{-q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}\right]^{\frac{1}{3}}-\frac{A}{3}} . \tag{3.13}
\end{equation*}
$$

From (2.15) and (2.16), we get

$$
\begin{equation*}
H(x, p)=\frac{\frac{\beta^{* 2}}{2}\left[1-\left[\frac{-q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}\right]^{\frac{1}{3}}-\left[\frac{-q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}\right]^{\frac{1}{3}}+\frac{A}{3}\right]^{2}}{\left[2+\left[\frac{-q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}\right]^{\frac{1}{3}}+\left[\frac{-q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}\right]^{\frac{1}{3}}-\frac{A}{3}\right]^{2}} . \tag{3.14}
\end{equation*}
$$

Hence we have the following theorem.
Theorem 3.1. Let (M, F) be a Randers change of Matsumoto space and $b=\left(a_{i j} b^{i} b^{j}\right)^{\frac{1}{2}}$ the Riemannian length of b_{i}. Then if $b^{2}=1$, the L-dual of (M, F) is the space having the fundamental function

$$
\begin{equation*}
H(x, p)=\frac{\frac{\beta^{* 2}}{2}\left[1-\left[\frac{-q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}\right]^{\frac{1}{3}}-\left[\frac{-q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}\right]^{\frac{1}{3}}+\frac{A}{3}\right]^{2}}{\left[2+\left[\frac{-q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}\right]^{\frac{1}{3}}+\left[\frac{-q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}\right]^{\frac{1}{3}}-\frac{A}{3}\right]^{2}} \tag{3.15}
\end{equation*}
$$

Case II. For $b^{2} \neq 1$, from (3.7), we get

$$
\begin{equation*}
F=\left[\frac{\beta^{*} t^{2}}{\left(b^{2}-2\right) t^{2}+3 t+\left(b^{2}-1\right)}\right] \tag{3.16}
\end{equation*}
$$

From (3.6) and (3.16), we get

$$
\begin{equation*}
s^{4}+A_{1} s^{3}+A_{2} s^{2}+A_{3} s+A_{4}=0 \tag{3.17}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{1}=\frac{1}{A}\left(4 K b^{4}-10 K b^{2}-4 b^{2}+4 K+6\right) \\
& A_{2}=\frac{1}{A}\left(-8 K b^{4}+12 K b^{2}+8 b^{2}-K-7\right) \\
& A_{3}=\frac{1}{A}\left(8 K b^{4}-4 K b^{2}-8 b^{2}+1\right) \\
& A_{4}=\frac{1}{A}\left(-4 K b^{4}+4 b^{2}+1\right) \\
& A=\left(-K b^{4}+4 K b^{2}+b^{2}-4 K-2\right)
\end{aligned}
$$

Using maple, after long computations solving (3.17) for s, we get

$$
\begin{equation*}
s=\left[\frac{-H_{2}+\sqrt{H_{2}^{2}-4 H_{1} H_{3}}}{2 H_{1}}-\frac{A_{1}}{4}\right], \tag{3.18}
\end{equation*}
$$

where

$$
\begin{aligned}
& H_{1}=B_{1}+2 C, \quad H_{2}=-B_{2}, \quad H_{3}=B_{1}^{2}-B_{3}+2 B_{1} C+C^{2}, \\
& B_{1}=\frac{-3 A_{1}^{2}}{8}+A_{2}, \quad B_{2}=\frac{A_{1}^{3}}{8}-\frac{A_{1} A_{2}}{8}+A_{3}, \\
& B_{3}=\frac{-3 A_{1}^{4}}{256}-\frac{A_{3} A_{1}}{4}+\frac{A_{1}^{2} A_{2}}{16}+A_{4} \\
& C=\left(\frac{-P_{2}}{2}+\sqrt{\frac{P_{2}^{2}}{4}+\frac{P_{1}^{3}}{27}}\right)^{1 / 3}+\left(\frac{-P_{2}}{2}-\sqrt{\frac{P_{2}^{2}}{4}+\frac{P_{1}^{3}}{27}}\right)^{1 / 3}-\frac{D_{1}}{3}, \\
& P_{1}=\left[\frac{D_{1}^{2}}{3}-\frac{2 D_{1}^{3}}{3}+D_{2}\right], \quad P_{2}=\left[D_{3}-\frac{D_{1} D_{2}}{3}\right],
\end{aligned}
$$

and

$$
D_{1}=\frac{5}{2} B_{1}, \quad D_{2}=2 B_{1}^{2}-B_{3}, \quad D_{3}=\frac{4 B_{1}^{3}-B_{2}^{2}-4 B_{1} B_{3}}{8} .
$$

From (3.16), we get

$$
\begin{equation*}
F=\frac{\beta^{*}\left[1-\frac{-H_{2}+\sqrt{H_{2}^{2}-4 H_{1} H_{3}}}{2 H_{1}}+\frac{A_{1}}{4}\right]^{2}}{\left(b^{2}-2\right)\left[\frac{-H_{2}+\sqrt{H_{2}^{2}-4 H_{1} H_{3}}}{2 H_{1}}+\frac{A_{1}}{4}\right]^{2}+3\left[\frac{-H_{2}+\sqrt{H_{2}^{2}-4 H_{1} H_{3}}}{2 H_{1}}+\frac{A_{1}}{4}\right]+\left(b^{2}-1\right)} . \tag{3.19}
\end{equation*}
$$

From (2.15) and (2.16), we get

$$
\begin{equation*}
H(x, p)=\frac{\frac{\beta^{* 2}}{2}\left[1-\frac{-H_{2}+\sqrt{H_{2}^{2}-4 H_{1} H_{3}}}{2 H_{1}}+\frac{A_{1}}{4}\right]^{4}}{\left[\left(b^{2}-2\right)\left[\frac{-H_{2}+\sqrt{H_{2}^{2}-4 H_{1} H_{3}}}{2 H_{1}}+\frac{A_{1}}{4}\right]^{2}+3\left[\frac{-H_{2}+\sqrt{H_{2}^{2}-4 H_{1} H_{3}}}{2 H_{1}}+\frac{A_{1}}{4}\right]+\left(b^{2}-1\right)\right]^{2}} \tag{3.20}
\end{equation*}
$$

Hence we have the following theorem.
Theorem 3.2. Let (M, F) be a Randers change of Matsumoto space and $b=$ $\left(a_{i j} b^{i} b^{j}\right)^{\frac{1}{2}}$ the Riemannian length of b_{i}. Then if $b^{2} \neq 1$, the L-dual of (M, F) is the space having the fundamental function

$$
\begin{equation*}
H(x, p)=\frac{\frac{\beta^{* 2}}{2}\left[1-\frac{-H_{2}+\sqrt{H_{2}^{2}-4 H_{1} H_{3}}}{2 H_{1}}+\frac{A_{1}}{4}\right]^{4}}{\left[\left(b^{2}-2\right)\left[\frac{-H_{2}+\sqrt{H_{2}^{2}-4 H_{1} H_{3}}}{2 H_{1}}+\frac{A_{1}}{4}\right]^{2}+3\left[\frac{-H_{2}+\sqrt{H_{2}^{2}-4 H_{1} H_{3}}}{2 H_{1}}+\frac{A_{1}}{4}\right]+\left(b^{2}-1\right)\right]^{2}} \tag{3.21}
\end{equation*}
$$

References

1. Aikon T., Hashiguchi M. and Yamaguchi K., On Matsumoto's Finsler space with time measure, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chem), 23 (1990), 1-12.
2. Antonelli P. L., Hand Book of Finsler Geometry, Kluwer Acad. Publ., FTPH, 581993.
3. Bao D., Chern S.S. and Shen Z., An Introduction to Riemann-Finsler Geometry, Graduates texts in Mathematics, Springer-Verlag 2000.
4. Bidabad B.and Rafie-Rad M., Pure pursuit navigation on Riemannian manifolds, Nonlinear Anal. RWA, 10 (2009),1265-1269.
5. Hrimiuc D.and Shimada H., On the L-duality between Lagrange and Hamilton manifolds, Nonlinear world 3 (1997), 613-641.
6. Hrimiuc D. and Shimada H., On some special problems concerning the L-duality between Finsler and Cartan spaces, Tensor N. S. 58 (1997), 48-61.
7. Masca I. M., Saban S. V. and Shimada H., The L-dual of a Matsumoto space, to appear in Publ. Math. Debrecen 2007.
8. Matsumoto M., A slope of a mountain is a Finsler surface with respect to time measure, J. Math. Kyoto Univ. 29 (1989), 17-25.
9. Matsumoto M., Theory of Finsler spaces with (α, β)-metrics. Rep. Math. Phys. 31 (1991), 43-83.
10. Matsumoto M., Foundations of Finsler Geometry and Special Finsler Spaces, Kaisheisha Press, Otsu, Japan, 1986.
11. Matsumoto M., The Berwald connection of Finsler with an (α, β)-metric, Tensor (NS), 50 (1991), 18-21.
12. The Geometry of higher-order Finsler spaces, Hadronic Press., Inc., USA, 1998.
13. Miron R., The Geometry of higher-order Hemilton spaces: Applications to Hemiltonian mechanics, Kluwer Acad. Publ., FTPH, 2003.
14. Miron R., Hrimiuc D., Shimada H. and Sabau S. V., The Geometry of Hamilton and Lagrange spaces, Kluwer Acad. Publ., FTPH, 2001.
15. Park H. S., Lee I. Y. and Park C. K., Finsler space with the general approximate Matsumoto metric, Indian J. Pure and Appl. Math., 34(1) (2002), 59-77.
16. Rafie-Rad M. and Rezaei B., On Einstein Matsumoto metrics, Nonlinear Anal. RWA, 13 (2012), 882-886.
17. Sabau S. V. and Shimada H., Classes of Finsler spaces with (α, β)-metrics, Rep. Math. Phys. 47 (2001), 31-48.
18. Shanker G. and Yadav R., The L-dual of generalized Matsumoto space, IJPAM. 78(6) (2012), 867-877.
19. Shen Z., On Landsberg (α, β)-metrics, http://www.math.iupiu.edu/uzshen/research/paper (2006).
20. Tayebi A., Peyghan E. and Sadeghi H., On Matsumoto-type Finsler metrics, Nonlinear Analysis: RWA, 13 (2012), 2556-2561.
M. Y. Kumbar, P. G. Department of Mathematics, Vijaya college, Basavangudi, Bangalore-04, Karnataka, India, e-mail: mallikarjunykumbar@gmail.com
K. R. Thippeswamy, Department of P. G. Studies and Research in Mathematics, Kuvempu University, Shankaraghatta - 577451, Shimoga, Karnataka, India, e-mail: thippesh46@gmail.com
S. K. Narasimhamurthy, Department of P. G. Studies and Research in Mathematics, Kuvempu

University, Shankaraghatta-577451, Shimoga, Karnataka, India, e-mail: nmurthysk@hotmail.com

