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L-DUAL OF RANDERS CHANGE OF MATSUMOTO METRIC

M. Y. KUMBAR, K. R. THIPPESWAMY and S. K. NARASIMHAMURTHY

Abstract. The study of L-duality of Lagrange and Finsler spaces was initiated by

R. Miron in 1987. Some of the remarkable results obtained are the concrete L-duals
of Randers and Kropina metrics. However, the importance of L-duality is by far

limited to computing the dual of some Finsler fundamental functions. In this paper,
we study L-dual of Randers change of Matsumoto metric.

1. Introduction

The (α, β)-metrics form an important class of Finsler metrics appearing iteratively
in formulating Physics, Mechanics and Seismology, Biology, Control Theory, etc.
This class of metrics was first introduced by Matsumoto [11]. An (α, β)-metric

is a Finsler metric of the form F := αφ
(
β
α

)
, where φ = φ(s) is a C∞ function

on (−b0, b0) with certain regularity, α =
√
aij(x)yiyj is a Riemannian metric and

β = bi(x)yi is a 1-form on M . The Randers and Matsumoto metrics are special
and significant (α, β)-metrics which constitute a majority of actual research. The
Matsumoto and Randers metrics are defined by φ(s) = 1

1−s and φ(s) = 1 + s,

respectively. The Matsumoto metric F = α2

α−β is an important metric in Finsler

geometry which is the Matsumotos slope-of-a-mountain metric. In the Matsumoto
metric, the 1-form β = bi(x)yi was originally induced by earth gravity. Hence, we
could regard as the infinitesimals. This metric was introduced by Matsumoto as a
realization of Finslers idea of “a slope measure of a mountain with respect to a time
measure” (see [10]). In [14], Miron studied the L-duality of Lagrange and Finsler
spaces. In this paper, the authors study L-dual of Randers change of Matsumoto
metric and find the fundamental function of two major cases.

2. The Legendre Transformation

Let Fn = (M,F ) be an n-dimensional Finsler space. The fundamental function
F (x, y) is called an (α, β)-metric if F is a homogeneous function of α and β of
degree one, where α2 = a(y, y) = aijy

iyj , y = yi ∂
∂xi |x ∈ TxM is a Riemannian

metric and β = bi(x)yi is a 1-form on T̃M = TM r {0}.
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A Finsler space with fundamental function

(2.1) F (x, y) = α(x, y) + β(x, y),

is called a Randers space, whereas the space having the fundamental function

(2.2) F (x, y) =
α2(x, y)

β(x, y)
,

is called a Kropina space.
A Finsler space with fundamental function

(2.3) F (x, y) =
α2(x, y)

α(x, y)− β(x, y)
,

is called a Matsumoto space.
The generalized metrics

F (x, y) =
αm+1(x, y)

βm(x, y)
, (m 6= 0,−1),(2.4)

and

F (x, y) =
αm+1(x, y)

(α(x, y)− β(x, y))m
, (m 6= 0,−1),(2.5)

are called generalized Kropina and Matsumoto metrics, respectively, and the
spaces equipped with the corresponding metrics are called generalized m-Kropina
and generalized Matsumoto spaces, respectively.

Definition 2.1. A Cartan space Cn is a pair (M,H) which consists of a real
n-dimensional C∞-manifold M and a Hamiltonian function H : T xM r {0} → <,
where (TmM,πx,M) is the cotangent bundle of M such that H(x, p) has the
following properties:

1. It is two homogeneous with respect to pi, (i, j, k = 1, 2, . . . , n).

2. The tensor field gij(x, p) = 1
2

∂2H
∂pi∂pj

is nondegenerate.

Let Cn = (M,K) be an n-dimensional Cartan space having the fundamental
function K(x, p). We also consider Cartan spaces having the metric function of
the following forms (see [5]):

(2.6) K(x, p) =
√
aij(x)pipj + bi(x)pi,

or

(2.7) K(x, p) =
aijpipj
bipi

,

or

(2.8) K(x, p) =
aijpipj√

aij(x)pipj − bi(x)pi
,

with aija
jk = δki . We will again call these spaces Randers, Kropina and Matsumoto

spaces, respectively, on the cotangent bundle T ∗M .
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Definition 2.2. A regular Lagrangian (Hamiltonian) on a domain D ⊂ TM
(D∗ ⊂ T ∗M) is a real smooth function L : D → < (H : D∗ → <) such that the
matrix with entries

gab(x, y) = ∂̇a∂̇bL(x, y) (g∗ab(x, y) = ∂̇a∂̇bH(x, y))

is everywhere nondegenerate on D(D∗), (see [5]).
A Lagrange (Hamilton) manifold is a pair (M,L(H)), where M is a smooth

manifold and L(H) is regular Lagrangian (Hamiltonian) on D(D∗).

Example 1.
(a) Every Finsler space Fn = (M,F (x, y)) is a Lagrange manifold with L = 1

2F
2.

(b) Every Cartan space Cn = (M, F̄ (x, p)) is a Hamilton manifold with H = 1
2 F̄

2.

(Here F̄ is positively 1-homogeneous in pi and the tensor ḡab = 1
2 ∂̇a∂̇bF̄

2 is
nondegenerate).

(c) (M,L) and (M,H) with

L(x, y) =
1

2
aij(x)yiyj + bi(x)yi + c(x)

and

H(x, y) =
1

2
āij(x)pipj + b̄i(x)pi + c̄(x)

are Lagrange and Hamilton manifolds, respectively. (Here aij , ā
ij are the fun-

damental tensors of Riemannian manifold, bi are components of covector field,
b̄i are the components of a vector fields, C and C̄ are the smooth functions
on M).

Let L(x, y) be a regular Lagrangian on a domain D ⊂ TM and let H(x, p) be
a regular Hamiltonian on a domain D∗ ⊂ T ∗M . If L is a differential map, we can
consider the fiber derivative of L, locally given by the diffeomorphism between the
open set U ⊂ D and U∗ ⊂ D∗ (see [13, 14])

(2.9) ϕ(x, y) = (xi, ∂̇aL(x, y)),

which is called the Legendre transformation. In this case, we can define the func-
tion H : U∗ 7→ R

(2.10) H(x, y) = pay
a − L(x, y),

where y = ya is the solution of the equation

(2.11) pa = ∂̇aL(x, y).

In the same manner, the fiber derivative of H is locally given by

(2.12) ϕ(x, p) = (xi, ∂̇aH(x, p)),

where ϕ is a diffeomorphism between the same open sets U ⊂ D and U∗ ⊂ D∗.
We can consider the function L : U 7→ R

(2.13) L(x, y) = pay
a −H(x, p),
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where p = (pa) is the solution of the equation

(2.14) ya = ∂̇aH(x, p).

The Hamiltonian given by (2.10) is the Legendre transformation of the Lagrangian
L and the Lagrangian given by (2.13) is called the Legendre transformation of the
Hamiltonian H.

If (M,K) is a Cartan space, then (M,H) is a Hamiltonian manifold (see [13,
14]), where H(x, p) = 1

2K
2(x, p) is 2-homogenous on a domain of T ∗M . So we

get the following transformation of H on U

(2.15) L(x, y) = pay
a −H(x, p) = H(x, p).

Theorem 2.1. The scalar field L(x, y) defined by (2.16) is a positively
2-homogeneous regular Lagrangian on U . Therefore, we get Finsler metric F of
U , so that

(2.16) L =
1

2
F 2.

Thus for the Cartan space (M,K) we always can locally associate a Finsler
space (M,F ) which will be called the L-dual of a Cartan space (M,C|U∗), and
vice versa, we can associate locally a Cartan space to every Finsler space which
will be called the L-dual of a Finsler space (M,F|U ).

3. The L-Dual of Randers change of Matsumoto Space

In this section, we consider the special (α, β)-metric F = α2

α−β + β, we put

α2 = yiy
i, β = biy

i, β∗ = bipi, p
i = aijpj , α

∗2 = pip
i = aijpipj . We have

(3.1) pi =
1

2
˙∂iF 2 = F

[
2Fyi

α2
− F

α(α− β)
(yi − biα)

]
.

Contracting (3.1) by pi and bi, respectively, we get

α∗2 = F

[
2F 3

α2
− F

α(α− β)
(F 2 − αβ∗) + β∗

]
,(3.2)

β∗ = F

[
2Fβ

α2
− F

α(α− β)
(β − b2α) + b2

]
.(3.3)

In [17], for a Finsler (α, β)-metric F on a manifold M , there is a positive func-

tion φ = φ(s) on (−b0; b0) with φ(0) = 1 and F = αφ(s), s = β
α , where

α =
√
aijyiyj and β = biy

i with ‖β‖x < b0 for all x ∈M . φ satisfies φ(s)−sφ′(s)+
(b2 − s2)φ′′(s) > 0, (|s| ≤ b0).

A Randers change of Matsumoto metric is a special (α, β)-metric with φ =

[1 + s− 1
s ]. Using Shen’s notation [19] s = β

α , (3.1) and (3.3) become

(3.4) α∗2 = F

[
2F

(1− s)2
− 1

(1− s)3
+

β∗

(1− s)2
+ β∗

]
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and

(3.5) β∗ = F

[
2s

(1− s)
− 1

(1− s)2
(s− b2) + b2

]
.

Putting (1− s) = t, so that s = (1− t) in (3.4) and (3.5), we get

(3.6) α∗2 = F

[
2F 2

t2
− F 2

t3
+ F (1 +

1

t2
)β∗
]

and

(3.7) β∗ = F

[
2(1− t)

t
− 1

t2
(1− t− b2) + b2

]
.

Now, we have following two cases:
Case I. For b2 = 1 from (3.7), we get

(3.8) F =

[
β∗t

(3− t)

]
.

From (3.6) and (3.8), we get

(3.9) (K − 1)s3 + 3Ks2 + 4s− (4K + 5) = 0,

where K = α∗2

β∗2 .

Solving (3.9) for s and using maple, we get

(3.10) s =

[
−q
2

+

√
q2

4
+
p3

27

] 1
3

+

[
−q
2
−
√
q2

4
+
p3

27

] 1
3

− A

3
,

where

(3.11) p =

[
A2 − 2A3 +B

3

]
, q =

[
3C −AB

3

]
and

(3.12) A =
3K

(k − 1)
, B =

4

(K − 1)
, C =

4K + 5

1−K
.

From (3.8), we get

(3.13) F =

β∗

[
1−

[
−q
2 +

√
q2

4 + p3

27

] 1
3

−
[
−q
2 −

√
q2

4 + p3

27

] 1
3

+ A
3

]

2 +

[
−q
2 +

√
q2

4 + p3

27

] 1
3

+

[
−q
2 −

√
q2

4 + p3

27

] 1
3

− A
3

.

From (2.15) and (2.16), we get

(3.14) H(x, p) =

β∗2

2

[
1−

[
−q
2 +

√
q2

4 + p3

27

] 1
3

−
[
−q
2 −

√
q2

4 + p3

27

] 1
3

+ A
3

]2
[

2 +

[
−q
2 +

√
q2

4 + p3

27

] 1
3

+

[
−q
2 −

√
q2

4 + p3

27

] 1
3

− A
3

]2 .
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Hence we have the following theorem.

Theorem 3.1. Let (M,F ) be a Randers change of Matsumoto space and

b = (aijb
ibj)

1
2 the Riemannian length of bi. Then if b2 = 1, the L-dual of (M,F )

is the space having the fundamental function

(3.15) H(x, p) =

β∗2

2

[
1−

[
−q
2 +

√
q2

4 + p3

27

] 1
3

−
[
−q
2 −

√
q2

4 + p3

27

] 1
3

+ A
3

]2
[

2 +

[
−q
2 +

√
q2

4 + p3

27

] 1
3

+

[
−q
2 −

√
q2

4 + p3

27

] 1
3

− A
3

]2 .

Case II. For b2 6= 1, from (3.7), we get

(3.16) F =

[
β∗t2

(b2 − 2)t2 + 3t+ (b2 − 1)

]
.

From (3.6) and (3.16), we get

(3.17) s4 +A1s
3 +A2s

2 +A3s+A4 = 0,

where

A1 =
1

A
(4Kb4 − 10Kb2 − 4b2 + 4K + 6),

A2 =
1

A
(−8Kb4 + 12Kb2 + 8b2 −K − 7),

A3 =
1

A
(8Kb4 − 4Kb2 − 8b2 + 1),

A4 =
1

A
(−4Kb4 + 4b2 + 1),

A = (−Kb4 + 4Kb2 + b2 − 4K − 2).

Using maple, after long computations solving (3.17) for s, we get

(3.18) s =

[
−H2 +

√
H2

2 − 4H1H3

2H1
− A1

4

]
,

where

H1 = B1 + 2C, H2 = −B2, H3 = B2
1 −B3 + 2B1C + C2,

B1 =
−3A2

1

8
+A2, B2 =

A3
1

8
− A1A2

8
+A3,

B3 =
−3A4

1

256
− A3A1

4
+
A2

1A2

16
+A4

C =

(
−P2

2
+

√
P 2
2

4
+
P 3
1

27

)1/3

+

(
−P2

2
−
√
P 2
2

4
+
P 3
1

27

)1/3

− D1

3
,

P1 =

[
D2

1

3
− 2D3

1

3
+D2

]
, P2 =

[
D3 −

D1D2

3

]
,
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and

D1 =
5

2
B1, D2 = 2B2

1 −B3, D3 =
4B3

1 −B2
2 − 4B1B3

8
.

From (3.16), we get

(3.19)

F =

β∗
[
1− −H2+

√
H2

2−4H1H3

2H1
+ A1

4

]2
(b2 − 2)

[
−H2+

√
H2

2−4H1H3

2H1
+ A1

4

]2
+ 3

[
−H2+

√
H2

2−4H1H3

2H1
+ A1

4

]
+ (b2 − 1)

.

From (2.15) and (2.16), we get

(3.20)

H(x, p)=

β∗2

2

[
1− −H2+

√
H2

2−4H1H3

2H1
+ A1

4

]4
[
(b2−2)

[
−H2+

√
H2

2−4H1H3

2H1
+ A1

4

]2
+3
[
−H2+

√
H2

2−4H1H3

2H1
+ A1

4

]
+(b2−1)

]2 .
Hence we have the following theorem.

Theorem 3.2. Let (M,F ) be a Randers change of Matsumoto space and b =

(aijb
ibj)

1
2 the Riemannian length of bi. Then if b2 6= 1, the L-dual of (M,F ) is

the space having the fundamental function

(3.21)

H(x, p)=

β∗2

2

[
1− −H2+

√
H2

2−4H1H3

2H1
+ A1

4

]4
[
(b2−2)

[
−H2+

√
H2

2−4H1H3

2H1
+ A1

4

]2
+3
[
−H2+

√
H2

2−4H1H3

2H1
+ A1

4

]
+(b2−1)

]2 .
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