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FACTORISABLE MONOID OF GENERALIZED
HYPERSUBSTITUTIONS OF TYPE 7 = (n)

A. BOONMEE AnD S. LEERATANAVALEE

ABSTRACT. A generalized hypersubstitution of type 7 maps any operation symbols
to the set of all terms. The extensions of generalized hypersubstitutions are map-
pings on the set of all terms. The set of all such generalized hypersubstitutions
forms a monoid. In this paper, we determine the set of all unit-regular elements of
this monoid of type 7 = (n). We also conclude a submonoid of the monoid of all
generalized hypersubstitutions of type 7 = (n) which is factorisable.

1. INTRODUCTION

The concept of generalized hypersubstitutions was introduced by S. Leeratanavalee
and K. Denecke [6]. It is a convenient method to describe the considered tree
transformations. A sequence of tree transformations can be described by products
of generalized hypersubstitutions. In 2002, K. Denecke and S. Leeratanavalee used
extensions of generalized hypersubstitutions to define tree transformations and
describe algebraic properties of sets of tree transformations by algebraic properties
of the set of all generalized hypersubstitutions [5]. In this paper, we study a monoid
of generalized hypersubstitutions of type 7 = (n). In 2015, A. Boonmee and S.
Leeratanavalee [2] characterized all unit elements of this monoid of type 7 = (n).
The set of all regular elements of this monoid of type 7 = (n) was studied by W.
Puninagool and S. Leeratanavalee [7]. We used the concepts of unit elements and
regular elements as tools to determine the set of all unit-regular elements of the
monoid of all generalized hypersubstitutions of type 7 = (n).

We recall first the concept of the monoid of all generalized hypersubstitutions
of type 7 = (n). Let {f; : i € I'} be an indexed set of operation symbols of type T,
where f; is n;-ary, n; € N. Let W,(X) be the set of all terms of type 7 built up
by operation symbols from {f; : i € I'} and variables from X := {z1, 2, 3,...}.
A generalized hypersubstitution is a mapping o which maps each n;-ary operation
symbol of type 7 to a term of this type which does not necessarily preserve the
arity. To define the extension ¢ of o, we define inducively the concept of generalized
superposition of terms S™: W, (X)™H — W, (X) as follows:
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(i) ft =25, 1 <j<m,then S"(z;,t1,...,tn) =t;.
(ii) Ift =x;, m < j €N, then S™(x;,t1,...,tm) = ;.
(iil) If t = fi(s1,82,-.-,8n,), then
Sm(t,tl, . ,tm) = fi<Sm(817t1, U 0 R Sm(sn“th A ,tm)).
Then we extend every generalized hypersubstitution o to a mapping : W, (X) =}
W, (X) defined as follows:
(i) olz] =z € X,
(ii) o[fi(t1,ta, ..., tn,)] == S™(o(fi),0[t1],...,0[tn,]) for any n;-ary operation
symbol f; supposed that &[t;], 1 < j < n; are already defined.

Let Hyps(7) be the set of all generalized hypersubstitutions of type 7. We
define a binary operation og on Hypg(T) by 01 og 03 := 71 o o9 for every
01,02 € Hypy(7), where o denotes the usual composition of mappings. Let 044
be a hypersubstitution which maps each n;-ary operation symbol f; to the term
fi(x1,29,...,2,,). In [6], S. Leeratanavalee and K. Denecke proved the following.

For arbitrary terms ¢,¢1,...,t, € W,(X) and for arbitrary generalized hyper-
substitutions o, 01, 09, we have:

(i) S™(a[t],a[t1],...,Ttn]) = T[S™(t, t1,. .., tn)],
(11) (/0'\1 9] 0'2)’\: 81 (¢} /0'\2.
Then Hyps(7) = (Hype(7), oG, 0i4) is a monoid and the set of all hypersubsti-

tutions of type 7 forms a submonoid of Hyp (7).

2. FACTORISABLE MONOID OF GENERALIZED HYPERSUBSTITUTIONS
OF TYPE 7 = (n)

From now on, we fix a type 7 = (n). That means we have only one n-ary operation,
say f. To factorize monoid of generalized hypersubstitutions of type 7 = (n), we
introduce some notations which will be used throughout this paper.
Let t € W,y (X), we denote
ot := the generalized hypersubstitution o of type 7 = (n) which maps f to
the term ¢,
var(t) := the set of all variables occurring in the term ¢,

vb!(z) := number of occurrences of a variable x in t.
Then we introduce the following definitions.

Definition 2.1. Let t € W(,)(X), a subterm of t, is defined inductively by the
following.
(i) Every variable x € var(t) is a subterm of t.
(ii) If t = f(t1,...,t,), then ¢ itself, ¢1,...,t,, and all subterms of ¢;,1 <i < n,
are subterms of ¢.
We denote the set of all subterms of ¢ by sub(t).

Definition 2.2. Let t € W,,)(X)\ X, where t = f(t1,...,t,) forsomety,... t, €
Winy(X). For each s € sub(t), s # t, a set seq(s) of sequences of s in ¢, is defined
by

seq'(s) = {(i1,..-,im):m ENand s =m; o---om, ()},
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where m;, 1 Wiy (X) N X — W) (X) by the formula m;, (f(1,...,t,)) = t;,. Maps
m;, are defined for ¢; = 1,2,...,n.

Lemma 2.3. Lett,s € W,)(X)\X, xcvar(t) and var(s)N X, ={x.,,..., 22, }.
If (i1, ... im) € seq'(z), where i1,...,im € {z1,..., 2k}, then x € var(cs[t]) =
var(o, oG 0¢) and there is (a;,, ..., a;,) € seq’*(z), where a;, is a sequence of
natural numbers ji, ..., jn such that (ji,...,jn) € seq®(x;,) for all j € {1,...,m}.

Proof. Let t = f(t1,...,t,) for some ti,...,t, € W, (X) and (iy,...,im) €

seq’(x), where iy, ..., iy € {21,..., 2k }. Let us proceed by mathematical induction
on m. If (i1) € seq’(x), where i1 € {z1,...,2x}, then z = m;, (t) = t;,, where
ti, € {t1,...,tn}. Hence 7[t;,] = 7s[x] = 2. Consider

osog oi(f) = 04[t] = S™(s,05[t1], - - -, Ts[tn]),

Since x;, € var(s) N X, © = G4[t;,] € var(d,[t]) and there is (a;,) € seq”:[(x),
where a;, is a sequence of natural numbers ji,...,j, such that (ji,...,jn) €
seq®(w;, ). Let m be a natural number and assume that for each u€ W,y (X)\ X,
x € var(u) and (I4,...,1,) € seq*(x), where ly,...,l, € {#z1,...,2}, then x €
var(os[u]) = var(os og 0,) and there is (ay,,...,a;,) € seq”s["(z), where ai,
is a sequence of natural numbers ¢i,...,qp- such that (qi,...,qa) € seq®(zy,)
for all ¢ € {1,...,p}, is true for all natural numbers p < m. If (i1,...,4,,) €
seq’(z), where i1,...,im € {z1,...,25}, then z =m; o---om (t) =m, o---o0
mi, (i), e, © € var(t;,) and (ia,...,i,) € seqti(z). By our assumption, we
get © € var(c[t;,]) and there is (as,,...,q;,) € seq?:[tul(z), where a;, is a se-
quence of natural numbers ji,...,j, such that (ji,...,7n) € seq®(zy,) for all
j€42,...,m}. Since x;; € var(s) N X, 0s[ti,] € sub(S™(s,s[t1],...,0s[tn])) =
sub(a,[t]) and seq®[1(G,[t;,]) = seq®(x;,). Hence z € var(d,[t]) and there is
(@iy, iys - - - ai,) € seq”s [ (x) where a;, is a sequence of natural numbers ji, ..., jn
such that (ji,...,jn) € seq®(x;;) for all j € {1,2,...,m}. O

Definition 2.4 ([4]). For any monoid S, an element v € S is called unit if
there exists u~! € S such that uu~! = e = u~1u, where ¢ is the identity element
of S, and let U(S) denotes the set of all unit elements of S.

Theorem 2.5 ([2]). An element oy € U(Hypg(n)) if and only if t = f(xq),
oy Try), where m € S, and S, is the set of all permutations on {1,...,n}.

Definition 2.6 ([4]). An element a of a semigroup S is called regular if there
exists x € S such that axa = a. The semigroup S is called regularif all its elements
are regular.

Lemma 2.7 ([1]). Let 05,0, € Hypa(n), where t = f(t1,...,t,) such that
ti, =xj,,... b, =xj, forsomeir, ... im,j1,...,im€{1,...,n} andvar(t)NX, =
{zjy,--- x4, }. Then 0,0 050 0, = oy if and only if s = f(s1,...,n), where
sj, =, foralll € {1,...,m}.
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Let
R = {O'M X € X},
Ry = {0y € Hypg(n) : var(t) N X,, = 0},
R3 = {0y € Hypg(n) : t = f(t1,...,tn), where t;;, = x;,,...,t;, = x;, for
SOME %1, ..., 0m, J1s--->Jm € {1,...,n} and var(t) N X, = {zj,,..., 2, }}-
In 2010, W. Puninagool and S. Leeratanavalee [7] showed that Ule R; is the set
of all regular elements in Hypg(n).

Definition 2.8 ([4]). An element e of a semigroup S is called idempotent if
2

e = ee = e, and we denote the set of all idempotent elements in S by E(S).
Let E = {0, € Hypg(n) : t = f(t1,...,tn), where t;, = x4,...,t;,, = x;,, for
some i1, ...,4m € {1,...,n} and var(t) N X,, = {z;,,...,x;, }}. Clearly, E C Rs.
In 2010, W. Puninagool and S. Leeratanavalee [7] showed that E(Hypgs(n)) =
Ry U Ry UE is the set of all idempotent elements in Hypg(n).

Definition 2.9 ([4]). An element a of a monoid S is called unit-regular if there
exists u € U(S) such that aua = a. The monoid S is called unit-regular if all its
elements are unit-regular.

3
Theorem 2.10. |J R; is a set of all unit-regular elements in Hypqs(n).
=1

1=

Proof. Let oy € Ule R;. If 0y € R{URy, then 0y € E(Hypa(n)), so otogoidoa
o =0,0q 0, =0y If 0y € Ry, then t = f(t1,...,t,), where t;, = x;,,...,t,
xj,, for some i1,...,0m, j1,...,Jm € {1,...,n} and var(t) N X,, = {z;,,...,2;,.}.
Choose o, € U(Hypg(n)), where u = f(u1,...,un) = f(Zra),. .., Tr(n)) for some
7w € Sy such that 7(j1) = i1,...,7(jm) = im. Then u;, = 2.4, = x5 for
all I € {1,...,m}. By Lemma 2.7, oy og 0y, og 0+ = 0. Hence o, is a unit-
regular element in Hyps(n). Since U§:1 R; is a set of all regular elements and

all its elements are unit-regular, so U?Zl R; is a set of all unit-regular elements in
Hypg(n). O

Lemma 2.11. Let t = f(t1,...,t,), where t;, = xj,...,t;, =x;, for some
Wy bms J1, - Jm €41, ..., n} and var(t)NX,, = {z;,,..., 2, }. Ifx; € var(ty)
for somel € {1,...,m} and k € {1,....,n} ~ {i1,...,im}, where (k1,...,kp) €
seq'*(x;,) for some ky,... k, € {1,...,n} ~{i;}, then there exists o5 € Hypg(n)
such that o5 oG oy is not a unit-regular element in Hypa(n).

Proof. Assume that the condition holds. Since (ki,...,k,) € seq™(z;,), then
(k,k1,....kp) €seq’(zj,). Let hq, ..., hg be distinet from k, k1, ..., kp, then ¢ < n.
Choose o, € Hypg(n), where s = f(s1,...,5,) such that s; = xp,,...,5, = xp,
and sg11,...,8, € Wy,)(X) and var(s,) N X,, =0 for all r € {g+1,...,n}. Then
s; # x;, for all ¢ € {1,...,n}. Consider

(050G o¢)(f) = Gs[f(t1, ... tn)]
= Sn(f(slaasn)76\9[t1]aaﬁ[tn}) = f(u17-"aun)a
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where u; = S"(s;, 04[t1], ..., 04[tn]) foralli € {1,...,n}. Since s; #x;,, u; #x;, for
allie{l,...,n}. By Lemma 2.3 we get x;, € var(c; og o) such that z;, € var(u;),
where u; € W,,)(X) \ X for some j € {1,...,n}. Hence o, oq 01 ¢ Ule R;, so
0s oG 0y is not a unit-regular element in Hypg(n). O

Example 2.12. Let 7 = (3) and 0y € Ule R;, where t = f(xq, f(f(x4,x4,5),
X9, x5), f(x5, x2,25)). Choose os € R3, where s = f (22, x3,24). Consider

(os0qoi)(f) = 3s[f($2, J(f (x4, 24, 25), 22, 25), f($5,x27955))}
= S%(s, x2, f(x2, 5, 74), f(T2,T5,74))

= f(f(z2,25,24)), f(22, 75, 24), T4).

We see that os060¢ ¢ Ule R;, so 0;0G0¢ is not a unit-regular element in Hyps(3).
Therefore U?:1 R; is not closed under og.

Let Ry = {0, € Hype(n) : t = f(t1,...,ts), where t;, =x;,,...,t;, = x;,, for
SOME 41,. .., 0m, J1,--.,Jm € {1,...,n} and var(t) N X,, = {z;,,...,x;, } and if
xj, € var(ty) for some l € {1,...,m} and k € {1,...,n} ~ {i1,...,%m}, then there
exists (k1,...,kp) € seq'*(z;,) such that k, = i; for some g € {1,...,p}}.

We denote (UR)uyp,(n) = R1 U Ry U R3.

Theorem 2.13. (UR)uyp,(n) 5 a unit-regular submonoid of Hypg(n).

Proof. We have (UR)uyp,(n) C Hypg(n) and all its elements are unit-regular.
So we will show that (UR)myp,,(n) is a submonoid of Hypg(n), i.e., o5 0g 01 €
(UR)HypG(n) for all 0,04 € (UR)HypG(n)'

If 0, € Ry, then 040G 01 € Ry for all o5 € (UR)nyp,, (n)-

If 0 € Ry, then o, 0g 0y € Ry for all 05 € Ry, and o, og 0y € Ry for all
s € Ra U RS,

If o+ € Rj, then o506 04 € Ry for all o5 € Ry and o5 og 01 € Ry for all
0s € Ry. Denote t = f(t1,...,t,), where t;, = z;,,...,t;,, = z;, for some
Wy tmy J1s -5 Jm € {1,...,n} and var(t) N X,, = {z;,,...,xj,, }. Let o5 € Rj,
denote s = f(s1,...,5n), where s, =xp,,..., Sy . = &p, . fOr some ri,..., Ty,
hi,....;hm« € {1,...,n} and var(s) N X,, = {zp,,...,2p,,. }. Hence

(050G o) (f) = 0s[f(t1, ... tn)]
=S"(f(s1,--.,8n),0s[t1], -, Os[tn]) = flug, ..., un),

where u; = S™(s;,0s[t1],...,0s[tn]) for all i € {1,...,n}.
Case 1. Let i € {ry,...,rm=}. Then i = r, for some a € {1,...,m*}. So
u; = S"(Spy,0s[t1]s -, 0s[tn]) = S™(xh,, 0s[t1], - -, Os[tn]) = Ts[tn,]-

Case 1.1. Let hy € {i1,...,%m}. Then h, = ig for some § € {1,...,m} and
= Ijﬁ? SO U; = Es[tiﬂ] = Tjg-
Case 1.2. Let hy, =k, where k € {1,...,n} ~ {i1,...,im}. Then u; = 7,[tg).
Case 1.2.1. Let var(tg) N X,, = . Then var(u;) N X,, = 0.
Case 1.2.2. Let var(ty) N X,, # 0. Then there exists x;, € var(ty), where
= x;, for some § € {1,...,m}, and there exists (ki,...,k,) € seq™(z;,) such

tis

tis
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that k, = ig for some ¢ € {1,...,p}. If zp,,..., 2%, € var(s), then z;, = xp, €
var(s), where k, # k, so 2, = x;, = s,, for some ¢ € {1,...,m"} and there exists
(re) € seq®(wy,) such that 7. # ro, = i. Hence u,, = S"(s,,,0s[t1],...,0s[tn]) =
S™(xi5,0s[t1], ..., 0s[tn]) =0s[tis]) =75,. By Lemma 2.3, we get x;,€ var(ds[ty]) =
var(u;) and there exists (ay,,...,ax,) € seq" (x;,), where ap, = 7, and ay; is a
sequence ji, ..., jn such that (ji,...,jn) € seq®(zy,) for all j € {1,...,p} \ {q}.
If . ¢ var(s) for some 1 <~ < p then z;, ¢ var(u;), so var(u;) N X, = (.

Case 2. Let i = k*, where k* € {1,...,n} ~{r1,...,7m~}. Then

U; = S"(si,ﬁs[tl], ‘e ,Es[tn]) = S”(sk*,&\s[tl], RPN ,Es[tn}).

Case 2.1. Let var(sg«) N X, = 0. Then u; = sg~ and var(u;) N X, = 0.

Case 2.2. Let var(sg«)NX,, # 0. Then xp,,, € var(sg) for some o € {1,...,m*}.
So s, = xp, and there exists (ki,...,k;) € seq®*" (zp,) such that kj = r, for
some ¢q € {1,...,p}.

Case 2.2.1. Let hy € {i1,...,4m}. Then hy = ig for some g € {1,...,m
so xj, = xp, € var(s). By Lemma 2.3, we get x;, € var(0,[t]) and seq (xlﬁ)
seq”:[(z;,). Since (o) € seq®(z;,) and (k*, 1o k) € seq®(wi, ), then (rq)
seq”:((z;,) and (k*, k7, o ky) € seq”s ! (xm) Hence u,, = x;, x;, € var(uy-) =
var(u;) and there ex1sts (ki,.... k) €seq” (xjﬁ) such that k; = r,.

Case 2.2.2. Let ho = k, where k € {1,...,n} ~ {i1,...,im}, Wwe can prove
similar to Case 1.2.

Therefore, 05 o 01 € Ro U R3 C (UR)Hypg(n)-

Hence (UR)uyp,,(n) is closed under og and we have 0iq € (UR)uyp,(n), i-€.
(UR)Hyp,, (n) is a submonoid of Hypg(n).

}
-
€

Theorem 2.14. (UR)uyp,,(n) 95 @ mazimal unit-regular semigroup of Hypg(n).

Proof. Let H be a proper unit-regular semigroup of Hypq(n) such that
(UR)typ,(n) © H C Hypg(n). Let oy € H, where 0y € R3 \ R3. By Lemma 2.11,
we can choose o, € R} such that o, oG oy is not unit-regular. So o¢ ¢ H. Hence
H = (UR)nyp, (n)- O

Definition 2.15 ([3]). Let S be a semigroup and E(S) be the set of all idem-
potents in S. We say S is left [right] factorisable if S = GE(S) [S = E(S)H] for
some subgroup G[H] of S. S is factorisable if S is both left and right factorisable.

Theorem 2.16 ([3]). A monoid S is factorisable if and only if it is unit-regular.
Corollary 2.17. (UR)uyp,,(n) is factorisable.
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