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ON N(k)-CONTACT METRIC MANIFOLDS ADMITTING

A TYPE OF A SEMI-SYMMETRIC NON-METRIC

CONNECTION

A. BARMAN

Abstract. The object of the present paper is to study N(k)-contact metric mani-

folds admitting a type of a semi-symmetric non-metric connection.

1. Introduction

In 1988, Tanno ([20], [21]) introduced the notion of k-nullity distribution on a
contact metric manifold. The k-nullity distribution of a Riemannian manifold
(M, g) for a real number k is a distribution

(1.1) N(k) : p→ Np(k) = [Z ∈ χp(M) : R(X,Y )Z = k{g(Y,Z)X − g(X,Z)Y }]
for any X,Y, Z ∈ χp(M) and k being a constant, where R denotes the Riemannian
curvature tensor and χp(M) denotes the tangent vector space of M2n+1 at any
point p ∈M .

If the characteristic vector field of a contact metric manifold belongs to the
k-nullity distribution, then the relation

(1.2) R(X,Y )ξ = k[η(Y )X − η(X)Y ]

holds. A contact metric manifold with ξ ∈ N(k) is called a N(k)-contact metric
manifold. Thus an N(k)-contact metric manifold is a contact metric manifold
satisfying the relation (1.2). From (1.1) and (1.2 ), it follows that an N(k)-contact
metric manifold is Sasakian if and only if k = 1.

In a recent paper [17], Majhi and De studied the classifications on N(k)-contact
metric manifolds satisfying certain curvature conditions. The N(k)-contact metric
manifolds have been also studied by several authors such as De and Gazi [12], Blair
([6], [7]), Blair, Koufogiorgos and Papantoniou [9], Ghosh, De and Taleshian [14]

Özgür and Sular [18] and many others.
In 1924, Friedmann and Schouten [13] introduced the idea of a semi-symmetric

connection on a differentiable manifold. A linear connection ∇̃ on a differentiable
manifold M is said to be a semi-symmetric connection if the torsion tensor T̃ of
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the connection ∇̃ satisfies T̃ (X,Y ) = u(Y )X − u(X)Y, where u is a 1-form and ρ
is a vector field defined by u(X) = g(X, ρ) for all vector fields X ∈ χ(M), χ(M)
is the set of all differentiable vector fields on M .

In 1932, Hayden [15] introduced the idea of semi-symmetric metric connections

on a Riemannian manifold (M, g). A semi-symmetric connection ∇̃ is said to be

a semi-symmetric metric connection if ∇̃g = 0.
After a long gap the study of a semi-symmetric connection ∇ satisfying

(1.3) ∇g 6= 0

was initiated by Prvanovič [19] with the name pseudo-metric semi-symmetric con-
nection and was just followed by Andonie [2]. A semi-symmetric connection ∇ is
said to be a semi-symmetric non-metric connection if it satisfies the condition (1.3).

In 1992, Agashe and Chafle [1] studied a semi-symmetric non-metric connection
∇, whose torsion tensor T satisfies T (X,Y ) = u(Y )X−u(X)Y and (∇Xg)(Y,Z) =
−u(Y )g(X,Z) − u(Z)g(X,Y ). They proved that the projective curvature tensor
of the manifold with respect to these two connections are equal to each other.

The semi-symmetric non-metric connection has been further developed by sev-
eral authors such as Barman ([3], [4]), Barman and De [5], De and Biswas [10],
De and Kamilya [11], Liang [16] and many others.

A Riemannian manifold M is said to be a semisymmetric manifold if the relation

R̄(X,Y ) · R̄ = 0

holds and a Riemannian manifold M is said to be a Ricci-semisymmetric manifold
if the relation

R̄(X,Y ) · S̄ = 0

holds, where R̄(X,Y ) is the curvature operator, R̄ and S̄ denotes the curvature
tensor and the Ricci tensor of the N(k)-contact metric manifold with respect to
the semi-symmetric non-metric connection, respectively.

In this paper, we study a type of a semi-symmetric non-metric connection due
to Agashe and Chafle [1] on N(k)-contact metric manifolds. The paper is orga-
nized as follows: After introduction in Section 2, we give a brief account of the
N(k)-contact metric manifolds. In Section 3, we study the semi-symmetric non-
metric connection on Riemannian manifolds. Section 4 is devoted to obtain the
relation between the curvature tensor with respect to the semi-symmetric non-
metric connection and the Levi-Civita connection. In the next section, we study
R̄ · S̄ = 0 in an N(k)-contact metric manifold with respect to the semi-symmetric
non-metric connection. In Section 6, we investigate a semisymmetric condition in
an N(k)-contact metric manifold with respect to the semi-symmetric non-metric
connection and prove that the manifold is an η-Einstein manifold. Finally, we
construct an example of a 3-dimensional N(k)-contact metric manifold admitting
the semi-symmetric non-metric connection whose curvature tensor satisfies the
skew-symmetric property in Section 4, and also supports the result obtained in
Section 5.
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2. N(k)-contact metric manifolds

A (2n+ 1)-dimensional manifold M is called an almost contact Riemannian mani-
fold if either its structural group can be reduced to U(n)× 1 or equivalently, there
is an almost contact structure (φ, ξ, η) consisting of a (1, 1) tensor field φ, a vector
field ξ and a 1-form η satisfying

φ2(X) = −X + η(X)ξ, g(X, ξ) = η(X),(2.1)

η(ξ) = 1, φ(ξ) = 0, η(φ(X)) = 0,(2.2)

g(φX, φY ) = g(X,Y )− η(X)η(Y ),(2.3)

g(φX, Y ) = −g(X,φY )(2.4)

for any vector fields X,Y ∈ χ(M) [7].
On a contact metric manifold the relation

− div ξ =

2n+1∑
i=1

g(φei, ei) +

2n+1∑
i=1

g(φhei, ei) = 0.(2.5)

∇Xξ = −φX − φhX,(2.6)

where h = 1
2£ξφ, £ denotes the Lie differentiation holds.

In an N(k)-contact metric manifold M2n+1 the following relations hold ([8],
[9]):

(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX),(2.7)

(∇Xη)(Y ) = g(X + hX, φY ),(2.8)

R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X],(2.9)

R(X,Y )ξ = k[η(Y )X − η(X)Y ],(2.10)

R(X, ξ)Y = k[η(Y )X − g(X,Y )ξ],(2.11)

S(X,Y ) = 2(n− 1)g(X,Y ) + 2(n− 1)g(hX, Y )

+ 2[nk − (n− 1)]η(X)η(Y ), n ≥ 1,(2.12)

S(φX, φY ) = S(X,Y )− 2nkη(X)η(Y )− 4(n− 1)g(hX, Y ),(2.13)

S(Y, ξ) = 2knη(X),(2.14)

η(R(X,Y )Z) = k[g(Y, Z)η(X)− g(X,Z)η(Y )],(2.15)

(∇Xh)(Y ) = [(1− k)g(X,φY ) + g(X,hφY )]ξ + η(Y )[h(φX + φhX)](2.16)

where R, S and r are the curvature tensor, the Ricci tensor and scalar curvature
respectively with respect to the Levi-Civita connection.

3. Semi-symmetric non-metric connection

Let M be a (2n+ 1)-dimensional Riemannian manifold with the Levi-Civita con-
nection ∇. If ∇ is the semi-symmetric non-metric connection of a Riemannian
manifold M , a linear connection ∇ is given by [1]

(3.1) ∇XY = ∇XY + η(Y )X.
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Using (3.1), the torsion tensor T of M with respect to the connection ∇ is given
by

(3.2) T (X,Y ) = ∇XY −∇YX − [X,Y ] = η(Y )X − η(X)Y.

Hence a relation satisfying (3.2) is called a semi-symmetric connection.
From (3.1), it yields

(3.3) (∇Ug)(X,Y ) = −η(X)g(Y,U)− η(Y )g(X,U) 6= 0.

∇ defined by (3.1), satisfying (3.2) and (3.3) is a type of a semi-symmetric non-
metric connection.

Then R̄ and R are related by [1]

(3.4) R̄(X,Y )Z = R(X,Y )Z + α(X,Z)Y − α(Y,Z)X,

for all vector fields X,Y, Z on M , where α is a (0, 2) tensor field denoted by

(3.5) α(X,Z) = (∇Xη)(Z)− η(X)η(Z).

4. Curvature tensor of an N(k)-contact metric manifold with
respect to the semi-symmetric non-metric connection

Using (2.8) in (3.5), we get

(4.1) α(X,Z) = g(X,φZ) + g(hX, φZ)− η(X)η(Z).

Combining (4.1) and (3.4), we have

(4.2)
R̄(X,Y )Z = R(X,Y )Z + g(X,φZ)Y + g(hX, φZ)Y

− η(X)η(Z)Y − g(Y, φZ)X − g(hY, φZ)X + η(Y )η(Z)X.

Putting X = ξ in (4.2) and using (2.2), (2.4) and (2.9), we concern that

(4.3)
R̄(ξ, Y )Z = kg(Y, Z)ξ − (k + 1)η(Z)Y − g(Y, φZ)ξ

− g(hY, φZ)ξ + η(Y )η(Z)ξ.

Now putting Y = ξ in (4.3) and using (2.1), (2.2) and (2.4), imply that

(4.4) R̄(ξ, ξ)Z = 0.

Again putting Z = ξ in (4.3) and using (2.1) and (2.2), it follows that

(4.5) R̄(ξ, Y )ξ = (k + 1)[η(Y )ξ − Y ].

From (4.2), we derive

(4.6) R̄(X,Y )Z = −R̄(Y,X)Z.

We call (4.6) the curvature tensor satisfying the skew-symmetric property with
respect to the semi-symmetric non-metric connection ∇.

Taking the inner product in (4.2) with W and using (2.1), we obtain
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(4.7)
˜̄R(X,Y, Z,W ) = R̃(X,Y, Z,W ) + g(X,φZ)g(Y,W )

+ g(hX, φZ)g(Y,W )− η(X)η(Z)g(Y,W )− g(Y, φZ)g(X,W )

− g(hY, φZ)g(X,W ) + η(Y )η(Z)g(X,W ),

where R̃(X,Y, Z,W ) = g(R(X,Y )Z,W ).
Let {e1, . . . , e2n, e2n+1} be a local orthonormal basis of vector fields in M .

Putting X = W = ei, where 1 ≤ i ≤ 2n + 1, in (4.7) and also using (2.1),
we derive

(4.8) S̄(Y,Z) = S(Y,Z)− 2ng(Y, φZ)− 2ng(hY, φZ) + 2nη(Y )η(Z).

Putting Z = ξ in (4.8) and using (2.2) and (2.14), we have

(4.9) S̄(Y, ξ) = 2n(k + 1)η(Y ).

Again putting Y = ξ in (4.8) and using (2.2), (2.4) and (2.14), we conclude that

(4.10) S̄(ξ, Z) = 2n(k + 1)η(Z).

Let {e1, . . . , e2n, e2n+1} be a local orthonormal basis of vector fields in M . Putting
Y = Z = ei, where 1 ≤ i ≤ 2n + 1, in (4.8) and also using (2.4) and (2.5), we
obtain

(4.11) r̄ = r + 2n.

Combining (2.8) and (3.1), it follows that

(4.12) (∇Uη)(X) = g(U, φX) + g(hU, φX)− η(X)η(U).

Summing up we can state the following proposition

Proposition 4.1. For an N(k)-contact metric manifold M with respect to the
semi-symmetric non-metric connection ∇,

(i) The curvature tensor R̄ is given by (4.2).
(ii) The Ricci tensor S̄ is given by (4.8).
(iii) R̄(ξ, Y )Z = kg(Y, Z)ξ−(k+1)η(Z)Y −g(Y, φZ)ξ−g(hY, φZ)ξ+η(Y )η(Z)ξ.
(iv) R̄(X,Y )Z = −R̄(Y,X)Z.
(v) The scalar curvature tensor r̄ is given by (4.11).

(vi) The Ricci tensor S̄ is not symmetric.
(vii) S̄(Y, ξ) = 2n(k + 1)η(Y ) = S(ξ, Y ).
(viii) (∇Uη)(X) = g(U, φX) + g(hU, φX)− η(X)η(U).

5. N(k)-contact metric manifolds satisfying R̄ · S̄ = 0

Definition 5.1. An N(k)-contact metric manifold is said to be an Einstein
manifold if its Ricci tensor S of the Levi-Civita connection is of the form S(X,Y ) =
ag(X,Y ), where a is a constant.
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In this section, we suppose that the N(k)-contact metric manifold under con-
sideration is Ricci-semisymmetric with respect to the semi-symmetric non-metric
connection, that is,

(R̄(X,Y ) · S̄)(U, V ) = 0.

Then we have

(5.1) S̄(R̄(X,Y )U, V ) + S̄(U, R̄(X,Y )V ) = 0.

Putting X = ξ in (5.1), it follows that

(5.2) S̄(R̄(ξ, Y )U, V ) + S̄(U, R̄(ξ, Y )V ) = 0.

Using (4.3), (4.9) and (4.10) in (5.2), we obtain
(5.3)

2nk(k + 1)η(V )g(Y,U)− (k + 1)η(U)S̄(Y, V )− 2n(k + 1)η(V )g(Y, φU)

−2n(k + 1)η(V )g(hY, φU) + 2nk(k + 1)η(U)g(Y, V )− (k + 1)η(V )S̄(U, Y )

−2n(k + 1)η(U)g(Y, φV )− 2n(k + 1)η(U)g(hY, φV )

+4n(k + 1)η(Y )η(U)η(V ) = 0.

Again putting U = ξ in (5.3) and using (2.1) and (2.2), we get

(5.4)
2n(k + 1)η(V )η(Y )− (k + 1)S̄(Y, V ) + 2nk(k + 1)g(Y, V )

−2n(k + 1)g(Y, φV )− 2n(k + 1))g(hY, φV ) = 0.

In view of (4.8) and (5.4), we conclude that

(5.5) S(Y, V ) = 2nkg(Y, V ).

Therefore, S(Y, Z) = ag(Y, Z), where a = 2nk. From which it follows that the
manifold is an Einstein manifold.

Now, we are in a position to state the following theorem.

Theorem 5.1. If an N(k)-contact metric manifold is Ricci-semisymmetric
with respect to the semi-symmetric non-metric connection, then the manifold is
an Einstein manifold.

6. N(k)-contact metric manifolds satisfying R̄ · R̄ = 0

Definition 6.1. An N(k)-contact metric manifold M is said to be an η-Einstein
manifold if its Ricci tensor S of the Levi-Civita connection is of the form

S(Z,W ) = ag(Z,W ) + bη(Z)η(W ),

where a and b are smooth functions on the manifold.

In this section, we suppose that the manifold under consideration is semi-symmetric
with respect to the semi-symmetric non-metric connection M2n+1, that is,

(R̄(U, V ) · R̄)(X,Y )Z = 0.

Then we have

(6.1)
R̄(U, V )R̄(X,Y )Z − R̄(R̄(U, V )X,Y )Z

−R̄(X, R̄(U, V )Y )Z − R̄(X,Y )R̄(U, V )Z = 0.
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Putting U = ξ in (6.1), it follows that

(6.2)
R̄(ξ, V )R̄(X,Y )Z − R̄(R̄(ξ, V )X,Y )Z

−R̄(X, R̄(ξ, V )Y )Z − R̄(X,Y )R̄(ξ, V )Z = 0.

Combining (4.3) and (6.2), we obtain

(6.3)

R̄(ξ, V )R̄(X,Y )Z − kg(X,V )R̄(ξ, Y )Z + (k + 1)η(X)R̄(V, Y )Z

+g(V, φX)R̄(ξ, Y )Z + g(hV, φX)R̄(ξ, Y )Z − η(X)η(V )R̄(ξ, Y )Z

−kg(Y, V )R̄(X, ξ)Z + (k + 1)η(Y )R̄(X,V )Z + g(V, φY )R̄(X, ξ)Z

+g(hV, φY )R̄(X, ξ)Z − η(Y )η(V )R̄(X, ξ)Z − kg(V,Z)R̄(X,Y )ξ

+(k + 1)η(Z)R̄(X,Y )V + g(V, φZ)R̄(X,Y )ξ + g(hV, φZ)R̄(X,Y )ξ

−η(V )η(Z)R̄(X,Y )ξ.

Again putting X = ξ in (6.3), we get

(6.4)

R̄(ξ, V )R̄(ξ, Y )Z − kg(ξ, V )R̄(ξ, Y )Z + (k + 1)η(ξ)R̄(V, Y )Z

+g(V, φξ)R̄(ξ, Y )Z + g(hV, φξ)R̄(ξ, Y )Z − η(ξ)η(V )R̄(ξ, Y )Z

−kg(Y, V )R̄(ξ, ξ)Z + (k + 1)η(Y )R̄(ξ, V )Z + g(V, φY )R̄(ξ, ξ)Z

+g(hV, φY )R̄(ξ, ξ)Z − η(Y )η(V )R̄(ξ, ξ)Z − kg(V,Z)R̄(ξ, Y )ξ

+(k + 1)η(Z)R̄(ξ, Y )V + g(V, φZ)R̄(ξ, Y )ξ + g(hV, φZ)R̄(ξ, Y )ξ

−η(V )η(Z)R̄(ξ, Y )ξ.

Using (2.1), (2.2), (4.3), (4.4), and (4.5) in (6.4), we have
(6.5)

k(k + 1)g(Y,Z)[η(V )ξ − V ]− (k + 1)g(Y, φZ)[η(V )ξ − V ]

−(k + 1)g(hY, φZ)[η(V )ξ − V ] + (k + 1)η(Y )η(Z)[η(V )ξ − V ]

+(k + 1)R̄(V, Y )Z − k(k + 1)η(Z)g(V, Y )ξ + (k + 1)2η(Y )η(Z)V

+(k + 1)η(Z)g(V, φY )ξ + (k + 1)η(Z)g(hV, φY )ξ − (k + 1)η(Y )η(Z)η(V )ξ

−k(k + 1)η(V )g(Z, Y )ξ + (k + 1)2η(V )η(Z)Y + (k + 1)η(V )g(Y, φZ)ξ

+(k + 1)η(V )g(hY, φZ)ξ − (k + 1)η(Y )η(Z)η(V )ξ + k(k + 1)η(Y )g(V,Z)ξ

−(k + 1)2η(Y )η(Z)V − (k + 1)η(Y )g(V, φZ)ξ − (k + 1)η(Y )g(hV, φZ)ξ

+(k + 1)η(Y )η(Z)η(V )ξ + k(k + 1)η(Z)g(V, Y )ξ − (k + 1)2η(V )η(Z)Y

−(k + 1)η(Z)g(Y, φV )ξ − (k + 1)η(Z)g(hY, φV )ξ + (k + 1)η(Y )η(Z)η(V )ξ

+(k + 1)[g(V, φZ) + g(hV, φZ)− kg(V,Z)− η(V )η(Z)][η(Y )ξ − Y ] = 0.

Now contracting V in (6.5) and using (2.1), (2.2) and (4.8), we conclude that

(6.6) S(Y, Z) = 2nkg(Y,Z) + (−k − 1)η(Y )η(Z).

Therefore, S(Y,Z) = ag(Y,Z) + bη(Y )η(Z), where a = 2nk and b = (−k − 1),
which implies that the manifold is an η-Einstein manifold.

In view of above discussions, we state the following proposition.



88 A. BARMAN

Proposition 6.1. If an N(k)-contact metric manifold is semisymmetric with
respect to the semi-symmetric non-metric connection, then the manifold is an
η-Einstein manifold.

Definition 6.2. An N(k)-contact metric manifold is said to have an η-parallel
Ricci tensor if the Ricci tensor with respect to the Levi-Civita connection satisfies
(∇US)(φY, φZ) = 0.

Putting Y = φY and Z = φZ in (6.6), implies that

S(φY, φZ) = 2nkg(φY, φZ).

From the above equation, it yields,

(∇US)(φY, φZ) = −2nk[η(φY )g(U, φZ) + η(φZ)g(U, φY )] = 0.

Therefore, considering all the cases, we can state the following theorem.

Theorem 6.2. If an N(k)-contact metric manifold is semisymmetric with re-
spect to the semi-symmetric non-metric connection, then the manifold with respect
to the Levi-Civita connection satisfies an η-parallel Ricci tensor condition.

7. Example

In this section, we construct an example of an N(k)-contact metric manifold.
We consider 3-dimensional manifold M = (x, y, z) ∈ R3, where (x, y, z) are the
standard coordinate in R3. Let e1, e2, e3 be three vector fields in R3 which satisfy
[e1, e2] = (1 + λ)e3, [e2, e3] = 2e1, [e3, e1] = (1− λ)e2, where λ is a real number.

Let g be the Riemannian metric defined by

g(ei, ej) =

{
1 if i = j
0 if i 6= j; i, j = 1, 2, 3.

Let η be the 1-form defined by η(U) = g(U, e1) for any U ∈ χ(M).
Let φ be the (1, 1)-tensor field defined by φe1 = 0, φe2 = e3, φe3 = −e2. Using
the linearity of φ and g, we have

η(e1) = 1,

φ2(U) = −U + η(U)e1

and
g(φU, φW ) = g(U,W )− η(U)η(W )

for any U,W ∈ χ(M). Moreover, he1 = 0, he2 = λe2, he3 = −λe3. The Riemann-
ian connection ∇ of the metric tensor g is given by Koszul’s formula which is given
by

(7.1)
2g(∇XY,Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

Using Koszul’s formula, we get the following:

∇e1e1 = 0, ∇e1e2 = 0, ∇e1e3 = 0,

∇e2e1 = −(1 + λ)e3, ∇e2e2 = 0, ∇e2e3 = (1 + λ)e1,
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∇e3e1 = (1− λ)e2, ∇e3e2 = −(1− λ)e1, ∇e3e3 = 0.

In view of the above relations, we have ∇Xξ = −φX −φhX for e1 = ξ. Therefore,
the manifold is a contact metric manifold with the contact structure (φ, η, ξ, g).

Using (3.1) in the above equations, we obtain

∇e1e1 = e1, ∇e1e2 = 0, ∇e1e3 = 0,

∇e2e1 = −(1 + λ)e3 + e2, ∇e2e2 = 0, ∇e2e3 = (1 + λ)e1,

∇e3e1 = (1− λ)e2 + e3, ∇e3e2 = −(1− λ)e1, ∇e3e3 = 0.

Now, we can easily obtain the non-zero components of the curvature tensors with
respect to the Levi-Civita connection as follows:

R(e1, e2)e2 = (1− λ2)e1, R(e1, e3)e3 = (1− λ2)e1,

R(e3, e2)e2 = −(1− λ2)e3, R(e2, e3)e3 = −(1− λ2)e2,

R(e2, e1)e1 = (1− λ2)e2, R(e3, e1)e1 = (1− λ2)e3.

In view of the expressions of the curvature tensors, we conclude that the manifold
is an N(1− λ2)-contact metric manifold.

Thus, we get the non-zero components of the curvature tensors with respect to
the semi-symmetric non-metric connection as follows:

R̄(e1, e2)e2 = (1− λ2)e1, R̄(e1, e3)e3 = (1− λ2)e1,

R̄(e1, e2)e3 = −(1 + λ)e1, R̄(e3, e2)e2 = −(1− λ2)e3 + e2,

R̄(e2, e3)e3 = −(1− λ2)e2 − (1 + λ)e3, R̄(e1, e2)e1 = −(2− λ2)e2,

R̄(e3, e1)e1 = (2− λ2)e3, R̄(e1, e3)e2 = −(1− λ)e1.

With the help of the above results we find the Ricci tensors as follows:

S(e1, e1) = 2(1− λ2), S(e2, e2) = S(e3, e3) = 0

and
S̄(e1, e1) = 2(2− λ2), S̄(e2, e2) = S̄(e3, e3) = 0.

Also, it follows that the scalar curvature tensors with respect to the Levi-Civita
connection and the semi-symmetric non-metric connection are r = 2(1 − λ2) and
r̄ = 2(2− λ2), respectively.

Let X, Y, U and V be any four vector fields given by X = a1e1 + a2e2 + a3e3,
Y = b1e1 + b2e2 + b3e3, U = c1e1 + c2e2 + c3e3 and V = d1e1 + d2e2 + d3e3, where
ai, bi, ci, di, for all i = 1, 2, 3 are all non-zero real numbers.
Using the above equations, we obtain

R̄(X,Y )Z = [(1− λ2)a1b2c2 + (1− λ2)a1b3c3 − (1 + λ)a1b2c3 − (1− λ)a1b3c2]e1

+ [a3b2c2 − (1− λ2)a2b3c3 − (2− λ2)a1b2c1]e2

+ [−(1− λ2)a3b2c2 − (1 + λ)a2b3c3 + (2− λ2)a3b1c1]e3

= − R̄(Y,X)Z.

Hence, the curvature tensor of an N(k)-contact metric manifold with respect to
the semi-symmetric non-metric connection satisfies the skew-symmetric property.
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From (5.1), we obtain
(R̄(X,Y ) · S̄)(U, V ) = 2(2− λ2)[(1− λ2)a1b2c2d1

+(1− λ2)a1b3c3d1 − (1 + λ)a1b2c3d1 − (1− λ)a1b3c2d1].
Therefore, the N(k)-contact metric manifold has the property R̄ · S̄ = 0 with

respect to the semi-symmetric non-metric connection if λ2 = 2.
Acknowledgement. The author is thankful to the referee for his/her valuable

comments towards the improvement of my paper.
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