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CONCERNING THE CESARO MATRIX
AND ITS IMMEDIATE OFFSPRING

H. C. RHALY JR.

ABSTRACT. For the Cesaro matrix C' € B(¢?) and the unilateral shift U, it is known
that C' and its immediate offspring U*CU are both hyponormal and noncompact,
and they have the same norm and the same spectrum. Here we investigate similarity
and unitary equivalence for C and U*CU, as well as further generations of offspring.

Necessary conditions are found for a lower triangular factorable matrix to be
unitarily equivalent to its immediate offspring. A specialized result is obtained for
factorable matrices having a constant main diagonal. Along the way, a more general
result is also obtained: necessary conditions are found for two lower triangular
factorable matrices to be unitarily equivalent.

1. INTRODUCTION

A lower triangular infinite matrix M = [m;;], acting through multiplication to
give a bounded linear operator on £2, is factorable if its entries are
- a;Cj if j S i,

MMij _{ 0 it >,
where a; depends only on 7 and c¢; depends only on j. If ¢; = 1 for all j, then
M is a terraced matrix (see [3], [5]). The Cesaro matrix C is the terraced matrix
that occurs when a; = H—% for all 4. In [1] it is shown that C' € B(¢?), the set
of all bounded linear operators on ¢2, and that C' is noncompact and hyponor-
mal. Recall that an operator T on a Hilbert space H is hyponormal if it satisfies
(T*T —TT*)f, f) >0forall f € H.

Recalling the notation and terminology of [2] with an appropriate adjustment,
the immediate offspring of M, denoted M’, is the factorable matrix that occurs
when the first row and the first column are deleted from M. Note that if U denotes
the unilateral shift on ¢2, then M’ = U*MU.

CoQo 0 0 ‘e ci1a1 0 0
Cpa1 Ci10a1 0 e C1ao C202 0
M = M =
- [cpag cCcrag C2a9 ... - |ci1as c2a3 C3a3

Received November 17, 2013; revised January 15, 2014.
2010 Mathematics Subject Classification. Primary 47B99.
Key words and phrases. Cesaro matrix; factorable matrix, similarity; unitary equivalence.



28 H. C. RHALY JR.

We recall that operators Ty, Ty € B(H) are similar if there exists an invertible
operator ) € B(H) such that To = Q~'T1Q. The operators T3, Ty are unitarily
equivalent if Q71 = Q*.

Proposition 1.1. C and C' are similar operators.

Proof. Suppose Q := C* — U; then @ is invertible and Q~! = C’ — W*, where
W is the unilateral weighted shift with weights Z—i% :n > 0}. A straightforward
calculation reveals that CQ = C* = QC’ and hence C’ = Q~'CQ. Therefore C
and C’ are similar. O

In [2] it is demonstrated that the infinite Hilbert matrix A and its immediate
offspring A’ (obtained by deleting the first row or the first column of A) are
unitarily equivalent. Note that A’ = U*A = AU.
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In view of Proposition 1.1, together with the fact that C’ is also known to be
hyponormal (see [6], [9]), it now seems natural to ask whether C' and C’ are
unitarily equivalent. The next section will provide the answer.

2. NECESSARY CONDITIONS FOR UNITARY EQUIVALENCE
OF FACTORABLE MATRICES

Throughout this section, we continue to assume that M = [a;c;] € B(¢?) is a lower
triangular factorable matrix and {a;},{c;} are strictly positive sequences.

2.1. For a factorable matrix and its immediate offspring

The following two lemmas are useful in obtaining a necessary condition for M and
M to be unitarily equivalent. They also provide some information about what is
required for similarity.

Lemma 2.1. If {a;} and {c;} are strictly positive sequences and T := [t;;] €
B(¢?) satisfies TM = M T, then for each i, t; i1 = Y 1_o (L~ %)tm@
and t;; = 0 when j > i+ 2.

Proof. Assume X = [z;;] :=TM and Y = [y,;] := M'T. Observe that

[eS) i
Tij = Cy ( Z ti,j+kaj+k> and Yij = Ai41 ( Z Ck+1tk,j) for all Z,j
k=0 k=0

Then
C1 C1
—xo0 — o1 = —Yoo — Yo1
Co €o
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yields
c
to) = — (1 -
Co
Similarly,
2
—Zo1 — To2 =
C1

yields tOQ =0.

Cn+1

ZTon — Tont1 =
n

yields £g 41 = 0 for all n > 1. Next,

C2
—Yo1 — Yo2
C1

By induction on the subscript j,

Cn+1
Cn

Yo,n — Yo,n+1

C2
—Y11 — Y12
C1

Cra

C2
—T11 — 12 =
C1
yields
! c
k+1
tp=» —+ (1 -
c
k=0
and
C3
—T12 — 13 =
C2

yields ¢35 = 0. By induction,
Cn+1

Cn

Tin — Tin+l =

)tkk
Ck4+10k+1

C3
—Y12 — Y13
C2
Cn+41
Yin — Yin+1
Cn,

yields ¢ ,41 = 0 for all n > 2. Now assume that

%

Crayg

Crk+1
tiit1 = Z o (1 -

k=0

)tkk
Cht1QKk+1

and t;; =0 when j > i 42 for i =0,1,...,m. Then

Cm+2 _ Cm+2
Tm4+1,m+1 — Tm+1l,m+2 = Ym+1,m+1 — Ym+1,m+2
Cm+1 Cm+41
yields
e CcLa
k1 KOk
tm+1,m+2 == § (1 - )tkk
=0 Ck Ck4+10k+1
and
Cm+3 Cm+3
Tm4+1,m+2 — Tm+1,m+3 = Ym4+1,m+2 — Ym+1,m+3
Cm+2 Cm+42
yields ¢y, 41,m+3 = 0. By strong induction,
Cm+1+n _ Cm+41+4n
Tm+1,m+n — Tm4+1,m+14+n = Ym+1,m+n — Ym+1,m+1+n
Cm+n m+n

yields ¢y, 41,m+14n = 0 for all n > 2. This

completes the proof.

29
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Lemma 2.2. If {a;} and {c;} are strictly positive sequences and T := [t;;] €
B(¢?) satisfies MT = TM', then t;; = %too for all i and for all j > 1,
J
tij = M[ H (1 — cmam)}too.
C1Q0 m—it1 Coag

Proof. Assume X = [z;;] := MT and Y = [y;;] := TM’. Observe that

i o)
Tij = Q4 ( Z thk7j) and Yij = Cj+1 ( Zti7j+ka]‘+k+1> for all Z,j
k=0

k=0
Then
Co C2
—xo0 — o1 = —Yoo — Yo1
(&1 C1
yields
C2 ci1ax
tor = — (1 — —)too-
C1 Coao
Similarly,
Cc3 C3
—Zo1 — Zo2 = —Yo1 — Yo2
[65) C2
yields
C3 C20a2 C3 ci1a1 C209
tog - *(1 — 7)t01 = 7(1 — 7) (1 — 7>t00.
C2 Coao C1 Coao Coao

By induction on the subscript j,

Cn+2 o Cn+2
Ton — LOon+l = Yo,n — Yon+1
Cn+41 Cn+41
yields
n+1
Cn+2 CmQm
ton+1 = H 1- too
e Loy CoQo
for all n > 0. Next,
C2 C2
—x10 —T11 = —Y10 — Y11
C1 C1
yields
CoQ1
t11 = ——too-
Cc1ag
Then
C3 C3
—T11 — 12 = Y11 — Y12
C2 C2
yields
c3a1 C203
t1g = 7(1 - 7)1500
Cc1ag Coao
Again by induction,
Cn+2 Cn+2
Tin — Tint1 = Yin — Yin+1
Cn+41 n+1
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yields
Cn+4201 ntl CmQAm
U1 = 7[ H (1 - )}too
crap L2 Colo
for all n > 1. Now assume that t;; = %too fori=0,1,2,...,n, and
J
Cit10; Cma@
o ==Lt L (=220 ) o
m=i+1

for all j > i+ 1. Then

Cn42 _ Cn+42
Tn+in — Tntlnt+l = —  Yn+ln — Yn+lntl
Cn+1 Cn+l
gives
n—1 c
n+2
an+1|: E (C ctin —Cltz,n+1)
=0 Tt
Cn+2
+ 7Cntn,n - cntn,n+1 + Cn+2tn+1,n - Cn+1tn+1,n+1
Cn+1
- Cn+2an+ltn+17n§
then
Cni2Cni1d s i Cm@
2 1 1
[ n+2Cn+4 2n+ Z (Clal H (1 _Cm m))
CoC1ag =0 m—it1 Coagn
Cn42Cnan CnCn+20anp Cn+10n41
— 1-— too
Cc1a0 C1a0 CpQo
- cn+1tn+1,n+1;
SO
|:cn+26n+1an+1 (1 o cnan) + (Cncn+2an) (Cn+1an+1 )j|t00
C1a0 CoGo C1a0 Coao
- Cn+1tn+1,n+17
or
_ Cn42Gn+41
thyinel = ———too-
C1a0
Next,
Cn+3 _ Cn+3
Tn+int+l — Tntlntd2 = Yn+1,n+1 — Yn+1,n+2
Cn42 Cn42
leads to

n

Cn+3
Gn41 {Z (icltl,n—kl - Cltl,n+2>
n+

=0
Cn+43

+ Cn+1tn+1,n+1 - cn+1tn+1,n+2:|

Cn4-2
= Cn+3an+2tn+1,n+1 .
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Then
n+1
Cn+3cn+20m+2 z : Cmam
Cn+1tn+1,n+2 - coc a ca H tOO
0¢1%0 m=l+1 Codo
Cn+3
+ (Cnt1Gn+1 — Cnt2an+2)too
C1a0
- |:Cn+33n+2an+2 (1 . Cn+1an+1>
C1a0 Coag
Cn+3
+ (Cn+1a'7b+1 - C7L+2an+2):| t007
C1a0
SO
o Cn4+30n+41 Cn420n42
tntint2 = 1- too
Cc1a0 CpQo
Now assume that
n+k
_ Cntk+10n41 CmGm
b1k = — H 1=—"=")too
1@0 2 00
for some k > 2. Then
Cn+k+2 Cn+k+2
n+l,n+k — Ln+ln+k+1 = n+1ln+k — Yn+l,n+k+1
x k X k Y k Y k
Cn4k+1 Cntk+1
yields
n
Cn+k+2
Qni1 E ———Clintk — Clintrktt
=0 Cn+k+1
Cn+k+2
+ ———cCntilntintk — Cn+1tn+1,n+k+l:|
Cntk+1
= Cptk+20n+k+1tnt1 ntk-
Therefore,

Cn+1tn+1,n+k+1

n+k
_ Cn+k+2Cn+k+10n+k+1 H (1 Cmam>t
= - 0
C1a0 me—mnt1 CoQo
c ik Crn @
n+k+2 mUm
+ [ H (1- )} (Cnt1@n41 = Cntk+1an+k+1)t0o
Ci1Qp CpoQo
m=n+2
n+k

_ Cntk+2 |: H (1 B CmGm )}

cag L 2L, coto

Cn410n+1
X [Cn+k+1an+k+1 (1 - #) + Cn+1Gn+t1 — Cn+k+1an+k:+1:| too,
0ao
SO
n+k+1
Cn+k4+20n+41 Cmam
tntlntk+1 = E— H 1- s t0o-
1a0 a2 0ao

This completes the proof.
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Suppose that we wish to determine an invertible operator @ € B(¢?) such that
M’ = Q~'MQ; that is, we wish to show that M and M’ are similar operators.
Since it is required that M’'Q~! = Q' M, Lemma 2.1 specifies some of the entries
of Q~1, and since it is required that MQ = QM’, Lemma 2.2 specifies some of
the entries of (). That still leaves infinitely many entries of the two matrices
and Q! undetermined. Consequently, we see that the somewhat serendipitous
success of Proposition 1.1 may not be that easy to duplicate in other examples.
However, if @ is unitary, then all of its entries are determined by Lemmas 2.1 and
2.2 once qqq is specified. This observation leads to the following result.

Proposition 2.3. Suppose M = [a;c;] € B({?) is a lower triangular factorable
matriz. If V € B((?) is a unitary operator such that M' = V*MV , then V must
have the form V =

i c2 (] _ aa <3 1712 _ Cmam ca 173 _ tmam 1
1 c1 (1 coao) c1 Hm:l(l coag ) c1 Hm:1(1 coag )
cial—cpag coaq czal ( _ c2a2) cqaq H3 ( _ cmam)
cpal cirap cirag cpag cirag m=2 cpag
c3az cqa2 __ c3a3
0 521 clap clap (1 coao)
Voo c4a3 ’

0 0 S32 c1a0 .
0 0 O 543

Ck+1 ( _ Crag )Ck+1ak

where the entries on the first subdiagonal satisfy siy1: = 1 _g o i) Terao

for each i.

Proof. This result is an immediate consequence of two facts:
(1) T = V* satisfies Lemma 2.1 and
(2) T =V satisfies Lemma 2.2. O

Theorem 2.4. Suppose M = [a;c;] € B({?) is a lower triangular factorable
matriz with a constant main diagonal. Then M and M’ are unitarily equivalent if
and only if M’ = M.

Proof. Suppose V € B(¢?) is a unitary operator such that M’ = V*MV. Then
V must have the form specified in Proposition 2.3. Since {c,a,} is a constant
sequence, the non-diagonal entries of V are all 0. For M and M’ to be unitarily
equivalent in this case, it is necessary that V = vgol where |vgg| = 1. O

Remark 2.5. We note that in the above proof it can be verified that V =

. Cn . . 7 . . . . .

%Uoo dlag{T+1 :n > 0}; so, for M and M’ to be unitarily equivalent, it is
necessary that ¢,41 = (%cn for all n.

All of the matrices that satisfy the condition in Remark 2.5 in reference to
Theorem 2.4 are scalar multiples of the following example.

Example 2.6 (Toeplitz matrix). Suppose M = [a;c;] € B(¢?) is the lower
triangular factorable matrix given by ¢; = A7 and a; = A for 0 < j < i and
0 < A< 1. Since M’ = M, we know that M and M’ must be unitarily equivalent.
Clearly the condition in Remark 2.5 is satisfied.
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For similarity, it turns out that with appropriate modifications, the serendipi-
tous success of Proposition 1.1 can be repeated in the following situation.

Theorem 2.7. Suppose M = [a;c;] € B(€?) is a lower triangular factorable
matriz such that {%} is a bounded sequence and cpa, = a (constant) for all n.
Then M and M’ are similar operators.

Proof. Take Q := diag{% :n > 0} — U. Suppose that the entries of T' = [t;;]

are given by
Ci . . .
t..—{ iz
ij —

0 if i< j.
Note that T € B(¢?) since T = 2U*(M — af). It can be verified that
MQ = diag{cp11a, :n >0} = QM’
and QT =1 =TQ; so Q' =T, and M and M’ are similar operators. O

Example 2.8. Suppose M = [a;c;] € B(¢?) is the lower triangular factorable
m for all 4, . Then co = 7 but
%01 =9, 80 ¢y # i—écl. So by Remark 2.5, M’ cannot be unitarily equivalent to
M. However, M and M’ are similar operators by Thereom 2.7. Moreover, we note
that it was proved in [8] that M is hyponormal, so M’ is also hyponormal (by [6]).

matrix given by ¢; = Zi:o 2% and a; =

Let {e,, : n =0,1,2,...} denote the standard orthonormal basis for ¢2.

Theorem 2.9. Suppose M = [a;c;] € B(€?) is a lower triangular factorable
matriz. In order for M and M’ to be unitarily equivalent, it is necessary that

[eS) n
Z Cn+1 H (1 B ck:ak) ’2 _ ’clal — CpQo
n=1

c1 Coao Coa1

Proof. If V € B(£?) is a unitary operator such that M’ = V*MV then V must
have the form specified in Proposition 2.3. Since ||[Veo|? = 1 = ||[V*eol|?, the
result is immediate. (]

‘ 2

Remark 2.10. To see that the necessary condition of Theorem 2.9 is not suffi-
cient for unitary equivalence, note that the condition is satisfied by all lower trian-
gular factorable matrices M having a constant main diagonal. However, Example
2.8 presents such a matrix M for which it was shown that M and its immediate
offspring M’ are not unitarily equivalent.

In the following proposition, C” := U*C'U = (U*)2CU?. Recall that it was
shown in the introduction that C' and C’ are similar operators.
Proposition 2.11.

(a) C and C' are not unitarily equivalent.
(b) C" and C" are similar operators, but they are not unitarily equivalent.
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Proof. (a) The necessary condition in Theorem 2.9 is not satisfied since %2 —1+#1,
so C and C' are not unitarily equivalent.
(b) Suppose the entries of @ = [g¢;;] are given by

2(i+1) e

GG+ if <55
gij =4 —1 if i=j+1;
0 i i> 41

A direct calculation shows that @ is invertible and Q! = 2C" — W*, where W is
the unilateral weighted shift with weights Z—ié :n >0}, IfY = [y;5] is defined by

i+1 . . .
g = | TEGED if @ <J;
! 0 if >,
then it can be verified that C'Q =Y = QC”, so C' and C” are similar.
Since § + 35 + 4> pey m) < 1, the necessary condition in Theorem 2.9
is not satisfied, so C’ and C" are not unitarily equivalent. O

2.2. A more general result

Since some of the most useful information in the previous subsection emerged
from considering the first row and first column of the unitary operator V (see
Theorem 2.9), we employ the same approach here in a more general setting.

Theorem 2.12. Suppose M, := [a;c;] € B({?) and My := [bid;] € B({?)
are lower triangular factorable matrices associated with strictly positive sequences
{a;}, {¢;}, {b:i}, {d;}. In order for My and My to be unitarily equivalent, it is
necessary that
>

n=0

dpaq 1 dib
d+1 H(l A0k
0 120 Coo

2

’ 2

Cri1 T Cray -
1— =
o U0 an =2
Proof. Suppose that V' € B(£?) is a unitary operator satisfying My = V*M; V.
We note that VM, = M7V, Assume X = [z;;] := VM, and Y = [y;,] := M V.
Observe that xg; = d; Zfzj bpvon and yo; = coagvg; for all j. Then

do do
Zoo — d*3001 = Yoo — d*ym
1 1

)

yields
dy dobg
Vo1 = dio 1-— Cotio )’Uoo.
Similarly,
dy dy
To1 — d*29302 = Yo1 — d*2y02
yields

o= (1 it (),

Coao
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By induction on the second subscript,

dn

T n
0,n d

To,n+1 = Yo,n — Yo,n+1
1

n+1 dnJr
yields

n

dy, dib
Vo,nt1 = + H (1 . k)voo
do ;5 Coao
for all n > 0. By using V*M; = MsV* and similar reasoning, one obtains

n
Cn+1 Crap \___
mero = ot 1L (- G0 )
Co 0Y0

for all n > 0. Since ||[Veg||? =1 = ||[V*egl|?, the result is now immediate. O

Note that Theorem 2.9 is the special case of Theorem 2.12 that occurs when
bi = a;+1 and d; = c;j41 for all 4, j.

Corollary 2.13. In order for terraced matrices My := [a; - 1] and Ma = [b; - 1]
to be unitarily equivalent, it is necessary that

S oo -5 i
-5 =3 |TIa -2
n=0 k=0 bo n=0 k=0 @0
Remark 2.14. It is worth noting that the condition in Theorem 2.12 is satisfied
whenever coag = dgbg, but that is not sufficient to guarantee unitary equivalence.
To see this, consider the terraced matrices determined by a; = ﬁ and b; = H—Ll
for all 5. These matrices cannot be unitarily equivalent since the first matrix is not
hyponormal (see [4]), but the second matrix is the Cesaro matrix, which is known

to be hyponormal.

We already know that C and C” are not unitarily equivalent. Corollary 2.13 will
allow us to settle the question of unitary equivalence for C' and its non-immediate
offspring C”.

Proposition 2.15. C and C” are similar operators, but they are not unitarily
equivalent.

Proof. Similarity can be justified by pairing Propositions 1.1 and 2.11(b) and

using transitivity. Next, suppose that a; = H% and b; = lJ%l for all 7. Note that
C” =la;- 1], C = [b; - 1] and by = ag. Since 372 — 5 # 5, the necessary condition
for unitary equivalence in Corollary 2.13 is not satisfied. O

In investigating further generations of offspring of C, we find it convenient to
depart from the traditional usage of the prime symbol and introduce alternative
notation. For a fixed positive integer m, consider

Cn = (U™ tcum,

Note that C; = C, Cy = €’ and C3 = C”. It is known that all of these operators
have the same norm and the same spectrum and are hyponormal.
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Proposition 2.16. If m > 1 is a positive integer, then C,, and Cp,4+1 are
similar operators.

Proof. f Y = [y;;] € B(£?) is defined by
175 (+k) e o
gy = 4 TG+ if i <5
0 if > 7,
and Q := mY — U, then Q is invertible and Q= = mC,, ;1 — W* where W is the

unilateral weighed shift with weights {n_f#H :n > 0}. It can be verified that

Cn@Q =Y = QCmy1,

so Cy, and C,,4+1 are similar operators. O

Proposition 2.17. If m > 1 is a fized positive integer, then C' and C,, are
similar operators, but they are not unitarily equivalent.

Proof. Similarity is a consequence of Propositions 1.1 and 2.16 (and induction),
so our attention turns to the question of unitary equivalence. In preparation for
an application of Corollary 2.13, consider C,,, = M; = [a; - 1], where a; = H_Lm
and C = My = [b; - 1], where b; = H%l for each nonnegative integer i. Note that
bm—1 = ag. The necessary condition in the corollary requires that

R VIR o I (C= 8

but this is clearly impossible since the right side is a rational number while the
left side is irrational. O

We close with a proposition that presents a non-terraced factorable matrix M
with all entries nonnegative that is unitarily equivalent to C'. A double dose
of serendipity seems to be required here since (1) there is no general procedure
available for identifying a good candidate M and (2) there is no analogue of Propo-
sition 2.3 available to help supply the associated unitary operator V.

Regarding the choice for M here, it should be noted that (1) the nonzero entries
of M are strictly smaller than the corresponding entries of C, (2) the main diagonal
of M is exactly the same as the main diagonal of U*CU, and (3) M is known to
be hyponormal (see [7]).

Proposition 2.18. If a; = m and ¢; = ,/Hl for all i, j, then the

lower triangular factorable matriz M = [a;c;] € B(¢?) is unitarily equivalent to C.

Proof. Suppose V := Z* — W where Z is the terraced matrix Z := [a; - 1] and
W is the unilateral weighted shift with weights {4,/ "+1 :n > 0}. Straightforward
computations demonstrate that V is unitary and M = V*CV. (]

One may easily verify that the operators M and C from Proposition 2.18 satisfy
Theorem 2.12.
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