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CONCERNING THE CESÀRO MATRIX

AND ITS IMMEDIATE OFFSPRING

H. C. RHALY JR.

Abstract. For the Cesàro matrix C ∈ B(`2) and the unilateral shift U , it is known

that C and its immediate offspring U∗CU are both hyponormal and noncompact,

and they have the same norm and the same spectrum. Here we investigate similarity
and unitary equivalence for C and U∗CU , as well as further generations of offspring.

Necessary conditions are found for a lower triangular factorable matrix to be

unitarily equivalent to its immediate offspring. A specialized result is obtained for
factorable matrices having a constant main diagonal. Along the way, a more general

result is also obtained: necessary conditions are found for two lower triangular

factorable matrices to be unitarily equivalent.

1. Introduction

A lower triangular infinite matrix M = [mij ], acting through multiplication to
give a bounded linear operator on `2, is factorable if its entries are

mij =

{
aicj if j ≤ i,
0 if j > i,

where ai depends only on i and cj depends only on j. If cj = 1 for all j, then
M is a terraced matrix (see [3], [5]). The Cesàro matrix C is the terraced matrix
that occurs when ai = 1

i+1 for all i. In [1] it is shown that C ∈ B(`2), the set

of all bounded linear operators on `2, and that C is noncompact and hyponor-
mal. Recall that an operator T on a Hilbert space H is hyponormal if it satisfies
〈(T ∗T − TT ∗)f , f〉 ≥ 0 for all f ∈ H.

Recalling the notation and terminology of [2] with an appropriate adjustment,
the immediate offspring of M , denoted M ′, is the factorable matrix that occurs
when the first row and the first column are deleted from M . Note that if U denotes
the unilateral shift on `2, then M ′ = U∗MU .

M =


c0a0 0 0 . . .
c0a1 c1a1 0 . . .
c0a2 c1a2 c2a2 . . .

...
...

...
. . .

 M ′ =


c1a1 0 0 . . .
c1a2 c2a2 0 . . .
c1a3 c2a3 c3a3 . . .

...
...

...
. . .


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We recall that operators T1, T2 ∈ B(H) are similar if there exists an invertible
operator Q ∈ B(H) such that T2 = Q−1T1Q. The operators T1, T2 are unitarily
equivalent if Q−1 = Q∗.

Proposition 1.1. C and C ′ are similar operators.

Proof. Suppose Q :≡ C∗ − U ; then Q is invertible and Q−1 = C ′ −W ∗, where
W is the unilateral weighted shift with weights {n+1

n+2 : n ≥ 0}. A straightforward

calculation reveals that CQ = C∗ = QC ′ and hence C ′ = Q−1CQ. Therefore C
and C ′ are similar. �

In [2] it is demonstrated that the infinite Hilbert matrix A and its immediate
offspring A′ (obtained by deleting the first row or the first column of A) are
unitarily equivalent. Note that A′ = U∗A = AU .

A =



1 1
2

1
3

1
4 . . .

1
2

1
3

1
4

1
3

1
4

1
4

...
. . .


A′ =



1
2

1
3

1
4

1
5 . . .

1
3

1
4

1
5

1
4

1
5

1
5

...
. . .


In view of Proposition 1.1, together with the fact that C ′ is also known to be
hyponormal (see [6], [9]), it now seems natural to ask whether C and C ′ are
unitarily equivalent. The next section will provide the answer.

2. Necessary Conditions for Unitary Equivalence
of Factorable Matrices

Throughout this section, we continue to assume that M = [aicj ] ∈ B(`2) is a lower
triangular factorable matrix and {ai},{cj} are strictly positive sequences.

2.1. For a factorable matrix and its immediate offspring

The following two lemmas are useful in obtaining a necessary condition for M and
M
′

to be unitarily equivalent. They also provide some information about what is
required for similarity.

Lemma 2.1. If {ai} and {cj} are strictly positive sequences and T :≡ [tij ] ∈
B(`2) satisfies TM = M

′
T , then for each i, ti,i+1 =

∑i
k=0

ck+1

ck
(1 − ckak

ck+1ak+1
)tkk

and tij = 0 when j ≥ i+ 2.

Proof. Assume X = [xij ] :≡ TM and Y = [yij ] :≡M ′T . Observe that

xij = cj

( ∞∑
k=0

ti,j+kaj+k

)
and yij = ai+1

( i∑
k=0

ck+1tk,j

)
for all i, j.

Then
c1
c0
x00 − x01 =

c1
c0
y00 − y01



CONCERNING THE CESÀRO MATRIX AND ITS OFFSPRING 29

yields

t01 =
c1
c0

(
1− c0a0

c1a1

)
t00.

Similarly,
c2
c1
x01 − x02 =

c2
c1
y01 − y02

yields t02 = 0. By induction on the subscript j,

cn+1

cn
x0,n − x0,n+1 =

cn+1

cn
y0,n − y0,n+1

yields t0,n+1 = 0 for all n ≥ 1. Next,

c2
c1
x11 − x12 =

c2
c1
y11 − y12

yields

t12 =

1∑
k=0

ck+1

ck

(
1− ckak

ck+1ak+1

)
tkk

and
c3
c2
x12 − x13 =

c3
c2
y12 − y13

yields t13 = 0. By induction,

cn+1

cn
x1,n − x1,n+1 =

cn+1

cn
y1,n − y1,n+1

yields t1,n+1 = 0 for all n ≥ 2. Now assume that

ti,i+1 =

i∑
k=0

ck+1

ck

(
1− ckak

ck+1ak+1

)
tkk

and tij = 0 when j ≥ i+ 2 for i = 0, 1, ...,m. Then

cm+2

cm+1
xm+1,m+1 − xm+1,m+2 =

cm+2

cm+1
ym+1,m+1 − ym+1,m+2

yields

tm+1,m+2 =

m+1∑
k=0

ck+1

ck

(
1− ckak

ck+1ak+1

)
tkk

and
cm+3

cm+2
xm+1,m+2 − xm+1,m+3 =

cm+3

cm+2
ym+1,m+2 − ym+1,m+3

yields tm+1,m+3 = 0. By strong induction,

cm+1+n

cm+n
xm+1,m+n − xm+1,m+1+n =

cm+1+n

cm+n
ym+1,m+n − ym+1,m+1+n

yields tm+1,m+1+n = 0 for all n ≥ 2. This completes the proof. �
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Lemma 2.2. If {ai} and {cj} are strictly positive sequences and T :≡ [tij ] ∈
B(`2) satisfies MT = TM ′, then tii = ci+1ai

c1a0
t00 for all i and for all j > i,

tij =
cj+1ai
c1a0

[ j∏
m=i+1

(
1− cmam

c0a0

)]
t00.

Proof. Assume X = [xij ] :≡MT and Y = [yij ] :≡ TM ′. Observe that

xij = ai

( i∑
k=0

cktk,j

)
and yij = cj+1

( ∞∑
k=0

ti,j+kaj+k+1

)
for all i, j.

Then
c2
c1
x00 − x01 =

c2
c1
y00 − y01

yields

t01 =
c2
c1

(1− c1a1
c0a0

)t00.

Similarly,
c3
c2
x01 − x02 =

c3
c2
y01 − y02

yields

t02 =
c3
c2

(
1− c2a2

c0a0

)
t01 =

c3
c1

(
1− c1a1

c0a0

)(
1− c2a2

c0a0

)
t00.

By induction on the subscript j,

cn+2

cn+1
x0,n − x0,n+1 =

cn+2

cn+1
y0,n − y0,n+1

yields

t0,n+1 =
cn+2

c1

[ n+1∏
m=1

(
1− cmam

c0a0

)]
t00

for all n ≥ 0. Next,
c2
c1
x10 − x11 =

c2
c1
y10 − y11

yields

t11 =
c2a1
c1a0

t00.

Then
c3
c2
x11 − x12 =

c3
c2
y11 − y12

yields

t12 =
c3a1
c1a0

(
1− c2a2

c0a0

)
t00.

Again by induction,

cn+2

cn+1
x1,n − x1,n+1 =

cn+2

cn+1
y1,n − y1,n+1
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yields

t1,n+1 =
cn+2a1
c1a0

[ n+1∏
m=2

(
1− cmam

c0a0

)]
t00

for all n ≥ 1. Now assume that tii = ci+1ai
c1a0

t00 for i = 0, 1, 2, . . . , n, and

tij =
cj+1ai
c1a0

[ j∏
m=i+1

(
1− cmam

c0a0

)]
t00

for all j ≥ i+ 1. Then

cn+2

cn+1
xn+1,n − xn+1,n+1 =

cn+2

cn+1
yn+1,n − yn+1,n+1

gives

an+1

[ n−1∑
l=0

(cn+2

cn+1
cltl,n − cltl,n+1

)
+
cn+2

cn+1
cntn,n − cntn,n+1 + cn+2tn+1,n − cn+1tn+1,n+1

]
= cn+2an+1tn+1,n;

then [cn+2cn+1an+1

c0c1a20

n−1∑
l=0

(
clal

n∏
m=l+1

(
1− cmam

c0a0

))
+
cn+2cnan
c1a0

− cncn+2an
c1a0

(
1− cn+1an+1

c0a0

)]
t00

= cn+1tn+1,n+1,

so [cn+2cn+1an+1

c1a0

(
1− cnan

c0a0

)
+
(cncn+2an

c1a0

)(cn+1an+1

c0a0

)]
t00

= cn+1tn+1,n+1,

or

tn+1,n+1 =
cn+2an+1

c1a0
t00.

Next,
cn+3

cn+2
xn+1,n+1 − xn+1,n+2 =

cn+3

cn+2
yn+1,n+1 − yn+1,n+2

leads to

an+1

[ n∑
l=0

(cn+3

cn+2
cltl,n+1 − cltl,n+2

)
+
cn+3

cn+2
cn+1tn+1,n+1 − cn+1tn+1,n+2

]
= cn+3an+2tn+1,n+1.
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Then

cn+1tn+1,n+2 =
cn+3cn+2an+2

c0c1a20

[ n∑
l=0

clal

n+1∏
m=l+1

(
1− cmam

c0a0

)
t00

]
+
cn+3

c1a0
(cn+1an+1 − cn+2an+2)t00

=
[cn+3cn+2an+2

c1a0

(
1− cn+1an+1

c0a0

)
+
cn+3

c1a0
(cn+1an+1 − cn+2an+2)

]
t00,

so

tn+1,n+2 =
cn+3an+1

c1a0

(
1− cn+2an+2

c0a0

)
t00.

Now assume that

tn+1,n+k =
cn+k+1an+1

c1a0

n+k∏
m=n+2

(
1− cmam

c0a0

)
t00

for some k ≥ 2. Then
cn+k+2

cn+k+1
xn+1,n+k − xn+1,n+k+1 =

cn+k+2

cn+k+1
yn+1,n+k − yn+1,n+k+1

yields

an+1

[ n∑
l=0

(cn+k+2

cn+k+1
cltl,n+k − cltl,n+k+1

)
+
cn+k+2

cn+k+1
cn+1tn+1,n+k − cn+1tn+1,n+k+1

]
= cn+k+2an+k+1tn+1,n+k.

Therefore,

cn+1tn+1,n+k+1

=
cn+k+2cn+k+1an+k+1

c1a0

n+k∏
m=n+1

(
1− cmam

c0a0

)
t00

+
cn+k+2

c1a0

[ n+k∏
m=n+2

(1− cmam
c0a0

)
]
(cn+1an+1 − cn+k+1an+k+1)t00

=
cn+k+2

c1a0

[ n+k∏
m=n+2

(1− cmam
c0a0

)
]

×
[
cn+k+1an+k+1

(
1− cn+1an+1

c0a0

)
+ cn+1an+1 − cn+k+1an+k+1

]
t00,

so

tn+1,n+k+1 =
cn+k+2an+1

c1a0

[ n+k+1∏
m=n+2

(
1− cmam

c0a0

)]
t00.

This completes the proof. �
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Suppose that we wish to determine an invertible operator Q ∈ B(`2) such that
M ′ = Q−1MQ; that is, we wish to show that M and M ′ are similar operators.
Since it is required that M ′Q−1 = Q−1M , Lemma 2.1 specifies some of the entries
of Q−1, and since it is required that MQ = QM ′, Lemma 2.2 specifies some of
the entries of Q. That still leaves infinitely many entries of the two matrices Q
and Q−1 undetermined. Consequently, we see that the somewhat serendipitous
success of Proposition 1.1 may not be that easy to duplicate in other examples.
However, if Q is unitary, then all of its entries are determined by Lemmas 2.1 and
2.2 once q00 is specified. This observation leads to the following result.

Proposition 2.3. Suppose M = [aicj ] ∈ B(`2) is a lower triangular factorable
matrix. If V ∈ B(`2) is a unitary operator such that M ′ = V ∗MV , then V must
have the form V =

v00



1 c2
c1
(1− c1a1

c0a0
) c3

c1

∏2
m=1(1−

cmam
c0a0

) c4
c1

∏3
m=1(1−

cmam
c0a0

) . . .

c1a1−c0a0
c0a1

c2a1
c1a0

c3a1
c1a0

(1− c2a2
c0a0

) c4a1
c1a0

∏3
m=2(1−

cmam
c0a0

) . . .

0 s21
c3a2
c1a0

c4a2
c1a0

(1− c3a3
c0a0

) . . .

0 0 s32
c4a3
c1a0

. . .

0 0 0 s43 . . .

...
...

...
...

. . .


,

where the entries on the first subdiagonal satisfy si+1,i =
∑i

k=0

ck+1

ck
(1− ckak

ck+1ak+1
)
ck+1ak

c1a0

for each i.

Proof. This result is an immediate consequence of two facts:
(1) T = V ∗ satisfies Lemma 2.1 and
(2) T = V satisfies Lemma 2.2. �

Theorem 2.4. Suppose M = [aicj ] ∈ B(`2) is a lower triangular factorable
matrix with a constant main diagonal. Then M and M ′ are unitarily equivalent if
and only if M ′ = M .

Proof. Suppose V ∈ B(`2) is a unitary operator such that M ′ = V ∗MV . Then
V must have the form specified in Proposition 2.3. Since {cnan} is a constant
sequence, the non-diagonal entries of V are all 0. For M and M ′ to be unitarily
equivalent in this case, it is necessary that V = v00I where |v00| = 1. �

Remark 2.5. We note that in the above proof it can be verified that V =
c0
c1
v00 diag{ cn+1

cn
: n ≥ 0}; so, for M and M ′ to be unitarily equivalent, it is

necessary that cn+1 = c1
c0
cn for all n.

All of the matrices that satisfy the condition in Remark 2.5 in reference to
Theorem 2.4 are scalar multiples of the following example.

Example 2.6 (Toeplitz matrix). Suppose M = [aicj ] ∈ B(`2) is the lower
triangular factorable matrix given by cj = λ−j and ai = λi for 0 ≤ j ≤ i and
0 < λ < 1. Since M ′ = M , we know that M and M ′ must be unitarily equivalent.
Clearly the condition in Remark 2.5 is satisfied.
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For similarity, it turns out that with appropriate modifications, the serendipi-
tous success of Proposition 1.1 can be repeated in the following situation.

Theorem 2.7. Suppose M = [aicj ] ∈ B(`2) is a lower triangular factorable
matrix such that { cn+1

cn
} is a bounded sequence and cnan = α (constant) for all n.

Then M and M ′ are similar operators.

Proof. Take Q :≡ diag{ cn+1

cn
: n ≥ 0}−U . Suppose that the entries of T = [tij ]

are given by

tij =

{
cj
ci+1

if i ≥ j;
0 if i < j.

Note that T ∈ B(`2) since T = 1
αU
∗(M − αI). It can be verified that

MQ = diag{cn+1an : n ≥ 0} = QM ′

and QT = I = TQ; so Q−1 = T , and M and M ′ are similar operators. �

Example 2.8. Suppose M = [aicj ] ∈ B(`2) is the lower triangular factorable

matrix given by cj =
∑j
k=0 2k and ai = 1∑i

k=0 2k
for all i, j. Then c2 = 7 but

c1
c0
c1 = 9, so c2 6= c1

c0
c1. So by Remark 2.5, M ′ cannot be unitarily equivalent to

M . However, M and M ′ are similar operators by Thereom 2.7. Moreover, we note
that it was proved in [8] that M is hyponormal, so M ′ is also hyponormal (by [6]).

Let {en : n = 0, 1, 2, . . .} denote the standard orthonormal basis for `2.

Theorem 2.9. Suppose M = [aicj ] ∈ B(`2) is a lower triangular factorable
matrix. In order for M and M ′ to be unitarily equivalent, it is necessary that

∞∑
n=1

∣∣∣cn+1

c1

n∏
k=1

(
1− ckak

c0a0

)∣∣∣2 =
∣∣∣c1a1 − c0a0

c0a1

∣∣∣2.
Proof. If V ∈ B(`2) is a unitary operator such that M ′ = V ∗MV , then V must

have the form specified in Proposition 2.3. Since ‖V e0‖2 = 1 = ‖V ∗e0‖2, the
result is immediate. �

Remark 2.10. To see that the necessary condition of Theorem 2.9 is not suffi-
cient for unitary equivalence, note that the condition is satisfied by all lower trian-
gular factorable matrices M having a constant main diagonal. However, Example
2.8 presents such a matrix M for which it was shown that M and its immediate
offspring M ′ are not unitarily equivalent.

In the following proposition, C ′′ :≡ U∗C ′U = (U∗)2CU2. Recall that it was
shown in the introduction that C and C ′ are similar operators.

Proposition 2.11.

(a) C and C ′ are not unitarily equivalent.
(b) C ′ and C ′′ are similar operators, but they are not unitarily equivalent.
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Proof. (a) The necessary condition in Theorem 2.9 is not satisfied since π2

6 −1 6=1,
so C and C ′ are not unitarily equivalent.

(b) Suppose the entries of Q = [qij ] are given by

qij =


2(i+1)

(j+1)(j+2) if i ≤ j;
−1 if i = j + 1;

0 if i > j + 1.

A direct calculation shows that Q is invertible and Q−1 = 2C ′′ −W ∗, where W is
the unilateral weighted shift with weights {n+1

n+3 : n ≥ 0}. If Y = [yij ] is defined by

yij =

{
i+1

(j+1)(j+2) if i ≤ j;
0 if i > j,

then it can be verified that C ′Q = Y = QC ′′, so C ′ and C ′′ are similar.
Since 1

9 + 1
36 + 4(

∑∞
k=4

1
k2(k+1)2 ) < 1

4 , the necessary condition in Theorem 2.9

is not satisfied, so C ′ and C ′′ are not unitarily equivalent. �

2.2. A more general result

Since some of the most useful information in the previous subsection emerged
from considering the first row and first column of the unitary operator V (see
Theorem 2.9), we employ the same approach here in a more general setting.

Theorem 2.12. Suppose M1 :≡ [aicj ] ∈ B(`2) and M2 :≡ [bidj ] ∈ B(`2)
are lower triangular factorable matrices associated with strictly positive sequences
{ai}, {cj}, {bi}, {dj}. In order for M1 and M2 to be unitarily equivalent, it is
necessary that

∞∑
n=0

∣∣∣cn+1

c0

n∏
k=0

(1− ckak
d0b0

)
∣∣∣2 =

∞∑
n=0

∣∣∣dn+1

d0

n∏
k=0

(1− dkbk
c0a0

)
∣∣∣2.

Proof. Suppose that V ∈ B(`2) is a unitary operator satisfying M2 = V ∗M1V .
We note that VM2 = M1V . Assume X = [xij ] :≡ VM2 and Y = [yij ] :≡ M1V .
Observe that x0j = dj

∑∞
n=j bnv0n and y0j = c0a0v0j for all j. Then

x00 −
d0
d1
x01 = y00 −

d0
d1
y01

yields

v01 =
d1
d0

(1− d0b0
c0a0

)v00.

Similarly,

x01 −
d1
d2
x02 = y01 −

d1
d2
y02

yields

v02 =
d2
d0

(
1− d0b0

c0a0

)(
1− d1b1

c0a0

)
v00
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By induction on the second subscript,

x0,n −
dn
dn+1

x0,n+1 = y0,n −
dn
dn+1

y0,n+1

yields

v0,n+1 =
dn+1

d0

n∏
k=0

(
1− dkbk

c0a0

)
v00

for all n > 0. By using V ∗M1 = M2V
∗ and similar reasoning, one obtains

vn+1,0 =
cn+1

c0

n∏
k=0

(
1− ckak

d0b0

)
v00

for all n > 0. Since ‖V e0‖2 = 1 = ‖V ∗e0‖2, the result is now immediate. �

Note that Theorem 2.9 is the special case of Theorem 2.12 that occurs when
bi = ai+1 and dj = cj+1 for all i, j.

Corollary 2.13. In order for terraced matrices M1 :≡ [ai · 1] and M2 :≡ [bi · 1]
to be unitarily equivalent, it is necessary that

∞∑
n=0

∣∣∣ n∏
k=0

(1− ak
b0

)
∣∣∣2 =

∞∑
n=0

∣∣∣ n∏
k=0

(1− bk
a0

)
∣∣∣2.

Remark 2.14. It is worth noting that the condition in Theorem 2.12 is satisfied
whenever c0a0 = d0b0, but that is not sufficient to guarantee unitary equivalence.
To see this, consider the terraced matrices determined by ai = 1

(i+1)2 and bi = 1
i+1

for all i. These matrices cannot be unitarily equivalent since the first matrix is not
hyponormal (see [4]), but the second matrix is the Cesàro matrix, which is known
to be hyponormal.

We already know that C and C ′ are not unitarily equivalent. Corollary 2.13 will
allow us to settle the question of unitary equivalence for C and its non-immediate
offspring C ′′.

Proposition 2.15. C and C ′′ are similar operators, but they are not unitarily
equivalent.

Proof. Similarity can be justified by pairing Propositions 1.1 and 2.11(b) and
using transitivity. Next, suppose that ai = 1

i+3 and bi = 1
i+1 for all i. Note that

C ′′ = [ai · 1], C = [bi · 1] and b2 = a0. Since 2
3π

2 − 5 6= 5, the necessary condition
for unitary equivalence in Corollary 2.13 is not satisfied. �

In investigating further generations of offspring of C, we find it convenient to
depart from the traditional usage of the prime symbol and introduce alternative
notation. For a fixed positive integer m, consider

Cm :≡ (U∗)m−1CUm−1.

Note that C1 = C, C2 = C ′ and C3 = C ′′. It is known that all of these operators
have the same norm and the same spectrum and are hyponormal.
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Proposition 2.16. If m > 1 is a positive integer, then Cm and Cm+1 are
similar operators.

Proof. If Y = [yij ] ∈ B(`2) is defined by

yij =

{ ∏m−1
k=1 (i+k)∏m
k=1(j+k)

if i ≤ j;
0 if i > j,

and Q :≡ mY −U , then Q is invertible and Q−1 = mCm+1 −W ∗ where W is the
unilateral weighed shift with weights { n+1

n+m+1 : n ≥ 0}. It can be verified that

CmQ = Y = QCm+1,

so Cm and Cm+1 are similar operators. �

Proposition 2.17. If m > 1 is a fixed positive integer, then C and Cm are
similar operators, but they are not unitarily equivalent.

Proof. Similarity is a consequence of Propositions 1.1 and 2.16 (and induction),
so our attention turns to the question of unitary equivalence. In preparation for
an application of Corollary 2.13, consider Cm = M1 = [ai · 1], where ai = 1

i+m

and C = M2 = [bi · 1], where bi = 1
i+1 for each nonnegative integer i. Note that

bm−1 = a0. The necessary condition in the corollary requires that

(m− 1)2
(π2

6
−
m−1∑
n=1

1

n2

)
=

m−2∑
n=0

n∏
k=0

(m− k − 1

k + 1

)2
,

but this is clearly impossible since the right side is a rational number while the
left side is irrational. �

We close with a proposition that presents a non-terraced factorable matrix M
with all entries nonnegative that is unitarily equivalent to C. A double dose
of serendipity seems to be required here since (1) there is no general procedure
available for identifying a good candidate M and (2) there is no analogue of Propo-
sition 2.3 available to help supply the associated unitary operator V .

Regarding the choice for M here, it should be noted that (1) the nonzero entries
of M are strictly smaller than the corresponding entries of C, (2) the main diagonal
of M is exactly the same as the main diagonal of U∗CU , and (3) M is known to
be hyponormal (see [7]).

Proposition 2.18. If ai = 1√
(i+1)(i+2)

and cj =
√

j+1
j+2 for all i, j, then the

lower triangular factorable matrix M = [aicj ] ∈ B(`2) is unitarily equivalent to C.

Proof. Suppose V :≡ Z∗ −W where Z is the terraced matrix Z :≡ [ai · 1] and

W is the unilateral weighted shift with weights {
√

n+1
n+2 : n ≥ 0}. Straightforward

computations demonstrate that V is unitary and M = V ∗CV . �

One may easily verify that the operators M and C from Proposition 2.18 satisfy
Theorem 2.12.
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