CONTACT CR-WARPED PRODUCT SUBMANIFOLDS OF $(LCS)_n$ -MANIFOLDS

S. K. HUI, M. ATÇEKEN AND S. NANDY

ABSTRACT. The present paper deals with a study of doubly warped product contact CR-submanifolds of $(LCS)_n$ -manifolds and warped product contact CR-submanifolds of $(LCS)_n$ -manifolds. It is shown that there exists no doubly warped product contact CR-submanifolds of $(LCS)_n$ -manifolds. However, we obtain some results for the existence or non-existence of warped product contact CR-submanifolds of $(LCS)_n$ -manifolds and the existence is also ensured by an interesting example.

1. INTRODUCTION

In 2003, Shaikh [15] introduced the notion of Lorentzian concircular structure manifolds (briefly, $(LCS)_n$ -manifolds) with an example, which generalizes the notion of LP-Sasakian manifolds introduced by Matsumoto [10] and also by Mihai and Rosca [11]. Then Shaikh and Baishya ([16], [17]) investigated the applications of $(LCS)_n$ -manifolds to the general theory of relativity and cosmology.

The contact CR-submanifolds are a rich and very interesting subject. The study of the differential geometry of contact CR-submanifolds as a generalization of invariant and anti-invariant submanifolds of almost contact metric manifolds was initiated by Bejancu [3]. Thereafter, several authors studied contact CR-submanifolds of different classes of almost contact metric manifolds such as Atceken ([1], [2]), Chen ([5], [6]), Hasegawa and Mihai [7], Khan et. al. [9], Munteanu [12], Murathan et. al. [13] and many others.

The notion of warped product manifolds were introduced by Bishop and O'Neill [4] and later it has been studied by many mathematicians and physicists. These manifolds are generalization of Riemannian product manifolds. The existence or non-existence of warped product manifolds plays an important role in differential geometry as well as physics.

Motivated by the studies, the present paper deals with the study of contact CR-warped product submanifolds of $(LCS)_n$ -manifolds. The paper is organized as follows. Section 2 is concerned with preliminaries. The notion of doubly warped products is introduced by Unal [18]. The doubly warped product contact CR-submanifolds were studied by Munteanu [12], Khan et. al [9] and many

Received October 7, 2015; revised March 1, 2016.

²⁰¹⁰ Mathematics Subject Classification. Primary 53C15, 53C25.

Key words and phrases. Warped product; CR-submanifold; $(LCS)_n$ -manifold.

others. Section 3 is devoted to the study of doubly warped product contact CR-submanifolds of $(LCS)_n$ -manifolds. It is shown that there exists no doubly warped product contact CR-submanifolds of $(LCS)_n$ -manifolds. In [8], first two authors studied warped product semi-slant submanifolds of $(LCS)_n$ -manifolds and in [8], all results are the nonexistence of warped product semi-slant submanifolds of $(LCS)_n$ -manifolds, and all results of [8] are related to proper semi-slant submanifolds, that is, the slant distribution is neither invariant nor anti-invariant. Now in the last section, we study warped product contact CR-submanifolds $M = N_{\perp} \times_f N_T$ of $(LCS)_n$ -Manifolds M such that N_T is an invariant submanifold tangent to ξ and N_{\perp} is an anti-invariant submanifold of \overline{M} . We distinguish two cases: (i) ξ tangent to N_T and (ii) ξ tangent to N_{\perp} . In case (i) it is proved that there do not exist warped product contact CR-submanifolds $M = N_{\perp} \times_f N_T$ such that N_T is an invariant submanifold tangent to ξ and N_{\perp} is anti-invariant submanifold of \overline{M} . However, in the case (ii), it is proved that there exist warped product contact CR-submanifolds $M = N_{\perp} \times_f N_T$ of $(LCS)_n$ -manifolds \overline{M} such that N_{\perp} is an anti-invariant submanifold of dimension p tangent to ξ and N_T is an invariant submanifold of \overline{M} . Thus it is an interesting result for researchers. Moreover, it is important that finally we present an example of such type of a contact CR-warped product submanifold of $(LCS)_7$ -manifolds.

2. Preliminaries

An *n*-dimensional Lorentzian manifold \overline{M} is a smooth connected paracompact Hausdorff manifold with a Lorentzian metric g, that is, \overline{M} admits a smooth symmetric tensor field g of type (0, 2) such that for each point $p \in \overline{M}$, the tensor $g_p: T_p\overline{M} \times T_p\overline{M} \to \mathbb{R}$ is a non-degenerate inner product of signature $(-, +, \dots, +)$, where $T_p\overline{M}$ denotes the tangent vector space of \overline{M} at p and \mathbb{R} is the real number space. A non-zero vector $v \in T_p\overline{M}$ is said to be timelike (resp., non-spacelike, null, spacelike) if it satisfies $g_p(v, v) < 0$ (resp., $\leq 0, = 0, > 0$) [14].

Definition 2.1. [19] A vector field P on \overline{M} is said to be concircular if the (1,1) tensor field defined by g(X,P) = A(X) for any $X \in \Gamma(T\overline{M})$, satisfies

$$(\overline{\nabla}_X A)(Y) = \alpha \{ g(X, Y) + \omega(X) A(Y) \},\$$

where α is a non-zero scalar, ω is a closed 1-form and $\overline{\nabla}$ denotes the operator of covariant differentiation with respect to the Lorentzian metric g.

Let \overline{M} be an *n*-dimensional Lorentzian manifold admitting a unit timelike concircular vector field ξ called the characteristic vector field of the manifold. Then we have

(2.1)
$$g(\xi,\xi) = -1.$$

Since ξ is a unit concircular vector field, it follows that there exists a non-zero 1-form η such that for

(2.2)
$$g(X,\xi) = \eta(X),$$

the equation of the following form holds

(2.3)
$$(\overline{\nabla}_X \eta)(Y) = \alpha \{ g(X, Y) + \eta(X) \eta(Y) \}, \qquad \alpha \neq 0,$$

that is,

(2.4)
$$\overline{\nabla}_X \xi = \alpha \{ X + \eta(X) \xi \}, \qquad \alpha \neq 0,$$

for all vector fields X, Y, where $\overline{\nabla}$ denotes the operator of covariant differentiation with respect to the Lorentzian metric g and α is a non-zero scalar function satisfying

(2.5)
$$\overline{\nabla}_X \alpha = (X\alpha) = d\alpha(X) = \rho \eta(X)$$

 ρ being a certain scalar function given by $\rho = -(\xi \alpha)$. If we put

(2.6)
$$\phi X = \frac{1}{\alpha} \overline{\nabla}_X \xi,$$

then from (2.3) and (2.6), we have

(2.7)
$$\phi X = X + \eta(X)\xi,$$

from which it follows that ϕ is a symmetric (1, 1) tensor called the structure tensor of the manifold. Thus the Lorentzian manifold \overline{M} together with the unit timelike concircular vector field ξ , its associated 1-form η and an (1, 1) tensor field ϕ is said to be a Lorentzian concircular structure manifold (briefly, $(LCS)_n$ -manifold), [15]. Especially, if we take $\alpha = 1$, then we can obtain the LP-Sasakian structure of Matsumoto [10]. In a $(LCS)_n$ -manifold (n > 2), the following relations hold [15]:

(2.8)
$$\eta(\xi) = -1, \quad \phi\xi = 0, \quad \eta(\phi X) = 0, \quad g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y),$$

(2.9)
$$\phi^2 X = X + \eta(X)\xi$$

(2.10)
$$S(X,\xi) = (n-1)(\alpha^2 - \rho)\eta(X)$$

(2.11)
$$R(X,Y)\xi = (\alpha^2 - \rho)[\eta(Y)X - \eta(X)Y],$$

(2.12)
$$R(\xi, Y)Z = (\alpha^2 - \rho)[g(Y, Z)\xi - \eta(Z)Y],$$

(2.13)
$$(\nabla_X \phi)Y = \alpha \{g(X,Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X\},\$$

(2.14)
$$(X\rho) = d\rho(X) = \beta\eta(X),$$

(2.15)
$$R(X,Y)Z = \phi R(X,Y)Z + (\alpha^2 - \rho)\{g(Y,Z)\eta(X) - g(X,Z)\eta(Y)\}\xi$$

for all X, Y, $Z \in \Gamma(T\overline{M})$.

and

Let M be a submanifold of a $(LCS)_n$ -manifold \overline{M} with induced metric g. Also let ∇ and ∇^{\perp} be the induced connections on the tangent bundle TM and the normal bundle $T^{\perp}M$ of M, respectively. Then the Gauss and Weingarten formulae are given by

(2.16)
$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y),$$

(2.17)
$$\overline{\nabla}_X V = -A_V X + \nabla_X^{\perp} V$$

103

for all $X, Y \in \Gamma(TM)$ and $V \in \Gamma(T^{\perp}M)$, where h and A_V are second fundamental form and the shape operator (corresponding to the normal vector field V), respectively, for the immersion of M into \overline{M} . The second fundamental form h and the shape operator A_V are related by

(2.18)
$$g(h(X,Y),V) = g(A_VX,Y)$$

for any $X, Y \in \Gamma(TM)$ and $V \in \Gamma(T^{\perp}M)$.

For any $X \in \Gamma(TM)$, we can write

(2.19)
$$\phi X = EX + FX,$$

where EX is the tangential component and FX is the normal component of ϕX . Also, for any $V \in \Gamma(T^{\perp}M)$, ϕV can be written in the following way

$$(2.20) \qquad \qquad \phi V = BV + CV$$

where BV and CV are also the tangential and normal components of ϕV , respectively. From (2.19) and (2.20), we can derive that the tensor fields E, F, B and C are also symmetric because ϕ is symmetric. The covariant derivatives of the tensor fields of E and F are defined as

(2.21)
$$(\nabla_X E)Y = \nabla_X EY - E(\nabla_X Y)$$

and

(2.22)
$$(\overline{\nabla}_X F)Y = \nabla_X^{\perp} FY - F(\nabla_X Y)$$

for all $X, Y \in \Gamma(TM)$. The canonical structures E and F on a submanifold M are said to be parallel if $\nabla E = 0$ and $\overline{\nabla} F = 0$, respectively.

A submanifold M tangent to ξ is called a contact CR-submanifold if it admits an invariant distribution D whose orthogonal complementary distribution D^{\perp} is anti-invariant, i.e., $TM = D \oplus D^{\perp} \oplus < \xi >$ with $\phi(D_p) \subseteq D_p$ and $\phi(D_p^{\perp}) \subset T_p^{\perp} M$ for every $p \in M$. It may be mentioned that the contact CR-submanifold is a special case of semi-slant submanifolds.

The notion of warped product manifolds was introduced by Bishop and O'Neill [4].

Definition 2.2. [4] Let (N_1, g_1) and (N_2, g_2) be two Riemannian manifolds with Riemannian metric g_1 and g_2 , respectively, and f be a positive definite smooth function on N_1 . The warped product of N_1 and N_2 is the Riemannian manifold $N_1 \times_f N_2 = (N_1 \times N_2, g)$, where

(2.23)
$$g = g_1 + f^2 g_2.$$

A warped product manifold $N_1 \times_f N_2$ is said to be trivial if the warping function f is constant.

More explicitly, if the vector fields X and Y are tangent to $N_1 \times_f N_2$ at (p, q), then

$$g(X,Y) = g_1(\pi_1 * X, \pi_1 * Y) + f^2(p)g_2(\pi_2 * X, \pi_2 * Y),$$

where π_i (i = 1, 2) are the canonical projections of $N_1 \times N_2$ onto N_1 and N_2 , respectively, and * stands for the derivative map. It may be noted that the notion of a warped product is a particular case of a doubly warped product.

Let $M = N_1 \times_f N_2$ be a warped product manifold, which means that N_1 and N_2 are totally geodesic and totally umbilical submanifolds of M, respectively. For warped product manifolds, we have [14] the following proposition.

Proposition 2.1. Let $M = N_1 \times_f N_2$ be a warped product manifold. Then

(I) $\nabla_X Y \in TN_1$ is the lift of $\nabla_X Y$ on N_1

(II) $\nabla_U X = \nabla_X U = (X \ln f) U$

(III) $\nabla_U V = \nabla'_U V - g(U, V) \nabla \ln f$

for any $X, Y \in \Gamma(TN_1)$ and $U, V \in \Gamma(TN_2)$, where ∇ and ∇' denote the Levi-Civita connections on N_1 and N_2 , respectively.

The notion of doubly warped products was introduced by Unal [18].

Definition 2.3. [18] Doubly warped products can be considered as a generalization of a warped product (M,g) which is a warped product manifold of the form $M =_f B \times_b F$ with the metric $g = f^2 g_B + b^2 g_F$, where $b: B \to (0, \infty)$ and $f: F \to (0, \infty)$ are smooth maps and g_B , g_F are the metrics on the Riemannian manifolds B and F, respectively.

If either b = 1 or f = 1, but not both, then we obtain a (single) warped product. If both b = 1 and f = 1, then we have a product manifold. If neither b nor f is constant, then we have a non trivial doubly warped product.

For any $X \in \Gamma(TB)$ and $Z \in \Gamma(TF)$, on a doubly warped product manifold, the Levi-Civita connection is

(2.24)
$$\nabla_X Z = Z(\ln f)X + X(\ln b)Z.$$

Let $M =_{f_2} N_{\perp} \times_{f_1} N_T$ be doubly warped product contact CR-submanifolds of $(LCS)_n$ -manifolds \overline{M} . Then such submanifolds are always tangent to the structure vector field ξ .

3. Doubly warped product contact CR-Submanifolds of $(LCS)_n$ -Manifolds

In a similar way of [9], in this section, we study doubly warped product contact CR-submanifolds of $(LCS)_n$ -manifolds and we prove the following theorem.

Theorem 3.1. There exist no proper doubly warped product contact CR-submanifolds of $(LCS)_n$ -manifolds.

Proof. Let $M =_{f_2} N_{\perp} \times_{f_1} N_T$ be doubly warped product contact CR-submanifolds of $(LCS)_n$ -manifolds \overline{M} . There arise two possible cases.

Case (i): If ξ is tangent to N_T , then for $Z \in \Gamma(TN_{\perp})$, we have

(3.1)
$$\nabla_Z \xi = Z(\ln f_1)\xi + \xi(\ln f_2)Z.$$
Now from (2.4), we have

Now from (2.4), we have

(3.2)

$$\nabla_Z \xi = \alpha \{ Z + \eta(Z) \xi \} = \alpha Z$$

Also from (2.16), we get

(3.3)
$$\overline{\nabla}_Z \xi = \nabla_Z \xi + h(Z,\xi).$$

From (3.2) and (3.3), we get

$$\nabla_Z \xi + h(Z,\xi) = \alpha Z,$$

which implies

(3.4) $\nabla_Z \xi = \alpha Z$ and $h(Z,\xi) = 0.$

In view of (3.4), it follows from (3.1) that

(3.5)
$$\alpha Z = Z(\ln f_1)\xi + \xi(\ln f_2)Z$$

Since the two distributions are orthogonal, it follows from (3.5) that

(3.6)
$$Z(\ln f_1) = 0 \quad \text{and} \quad \xi(\ln f_2) = \alpha$$

for all $Z \in \Gamma(TN_{\perp})$.

The first part of (3.6) shows that f_1 is constant on TN_{\perp} . So, doubly warped product contact CR-submanifolds of the form $M =_{f_2} N_{\perp} \times_{f_1} N_T$ of $(LCS)_n$ -manifolds with ξ tangent to N_T does not exist.

Case(ii): If ξ is tangent to N_{\perp} and $X \in \Gamma(TN_T)$, then we get

(3.7)
$$\nabla_X \xi = \xi (\ln f_1) X + X (\ln f_2) \xi.$$

From (2.4) and (2.16), we get

(3.8)
$$\alpha\{X+\eta(X)\xi\} = \overline{\nabla}_X\xi = \nabla_X\xi + h(X,\xi),$$

i.e.,

(3.9) $\nabla_X \xi = \alpha X$ and $h(X,\xi) = 0.$

From (3.7) and (3.9), we get

(3.10)
$$\alpha X = \xi (\ln f_1) X + X (\ln f_2) \xi.$$

So by orthogonality of two distributions, (3.10) yields

(3.11)
$$\xi(\ln f_1) = \alpha \quad \text{and} \quad X(\ln f_2) = 0$$

for all $X \in \Gamma(TN_T)$.

From the second part of (3.11) it follows that f_2 is constant on TN_T . So, in this case also doubly warped product contact CR-submanifolds do not exist. Hence the proof is complete.

4. WARPED PRODUCT CONTACT CR-SUBMANIFOLDS OF $(LCS)_n$ -Manifolds

As there are not doubly warped product contact CR-submanifolds of $(LCS)_n$ --manifolds, we will study warped product contact CR-submanifolds of $(LCS)_n$ --manifolds in this section.

In 2001, Chen [5] introduced and studied the notion of warped product CR-submanifolds of Kaehler manifolds. Later Hasegawa and Mihai [7] studied contact CR-warped product submanifolds of Sasakian manifolds. Again Khan et. al [9] studied contact CR-warped product submanifolds of Kenmotsu manifolds.

106

Let $M = N_{\perp} \times_f N_T$ be contact warped product CR-submanifolds of $(LCS)_n$ -manifold \overline{M} . Such submanifolds are always tangent to the structure vector field ξ . We distinguish two cases:

(i) ξ tangent to N_T

(ii) ξ tangent to N_{\perp} .

First we consider the case (i), where ξ is tangent to N_T , and we prove the following theorem.

Theorem 4.1. Let \overline{M} be a $(LCS)_n$ -manifold. Then there do not exist warped product contact CR-submanifolds $M = N_{\perp} \times_f N_T$ such that N_T is an invariant submanifold tangent to ξ and N_{\perp} is an anti-invariant submanifold of \overline{M} .

Proof. We now assume that $M = N_{\perp} \times_f N_T$ be contact warped product CR-submanifolds of a $(LCS)_n$ -manifold \overline{M} such that N_T is an invariant submanifold tangent to ξ and N_{\perp} is an anti-invariant submanifold of \overline{M} . So by Proposition 2.1, we get

(4.1)
$$\nabla_X Z = \nabla_Z X = (Z \ln f) X$$

for any vector fields Z and X tangent to N_{\perp} and N_T , respectively.

Thus from (4.1), we get

(4.2)
$$\nabla_Z \xi = Z(\ln f)\xi$$

Also from (2.4) and (2.16), we get

$$\alpha Z = \overline{\nabla}_Z \xi = \nabla_Z \xi + h(Z,\xi).$$

which implies

(4.3)
$$\nabla_Z \xi = \alpha Z$$
 and $h(Z, \xi) = 0.$

From (4.2) and (4.3), we have $Z(\ln f) = 0$ for all $Z \in \Gamma(TN_{\perp})$, i.e., f is constant for all $Z \in \Gamma(TN_{\perp})$. This means that M is a usual Riemannian submanifold. This proves the theorem.

Remark 4.2. In [8, Theorem 3], is valid for proper semi-slant submanifolds of $(LCS)_n$ -manifolds. Thus Theorem 4.1 is completely different and not just a particular case of [8, Theorem 3].

Now we consider the case (ii), when ξ is tangent to N_{\perp} . Assume that \overline{M} is a $(LCS)_n$ -manifold and consider the warped product contact CR-submanifold $M = N_{\perp} \times_f N_T$ such that N_{\perp} is an anti-invariant submanifold of dimension p tangent to ξ and N_T is an invariant submanifold of \overline{M} . Then for any $X \in \Gamma(TN_T)$, we have

$$g(\nabla_X \xi, X) = g(\overline{\nabla}_X \xi, X) = g(\alpha \{ X + \eta(X)\xi \}, X),$$

i.e.,

$$\xi \ln f \|X\|^2 = \alpha \|X\|^2$$

or $\xi \ln f = \alpha$, i.e., $g(\nabla \ln f, \xi) = \alpha$, i.e., (4.4) $\nabla \ln f = -\alpha \xi$, where $\nabla \ln f$ denotes the gradient of $\ln f$ and defined by $g(\nabla \ln f, U) = U \ln f$ for all $U \in \Gamma(TM)$.

The relation (4.4) can also be written as

(4.5)
$$\sum_{i=1}^{p} \frac{\partial \ln f}{\partial x_i} = -\alpha \xi, \qquad i = 1, 2, \dots, p,$$

which is the first order partial differential equation and has a unique solution, i.e., warped product exists. This leads to the following theorem.

Theorem 4.3. Let \overline{M} be a $(LCS)_n$ -manifold. Then there exist warped product contact CR-submanifolds $M = N_{\perp} \times_f N_T$ such that N_{\perp} is an anti-invariant submanifold of dimension p tangent to ξ , N_T is invariant submanifold of \overline{M} and the warping function f satisfying ((4.5)).

Example 4.4. Let $\overline{M} = \mathbb{R}^7$ be the semi-Euclidean space endowed with the semi-Euclidean metric $g = \left[-dt^2 + dx_1^2 + dx_2^2 + dx_3^2 + dx_4^2 + dx_5^2 + dx_6^2 \right] e^{2t}$ with coordinate $(t, x_1, x_2, x_3, x_4, x_5, x_6)$. Define

$$\eta = e^{t} dt, \qquad \xi = e^{t} \frac{\partial}{\partial t}, \qquad \phi\left(\frac{\partial}{\partial t}\right) = 0,$$

$$\phi\left(\frac{\partial}{\partial x_{1}}\right) = -\frac{\partial}{\partial x_{4}}, \qquad \phi\left(\frac{\partial}{\partial x_{2}}\right) = -\frac{\partial}{\partial x_{5}}, \qquad \phi\left(\frac{\partial}{\partial x_{3}}\right) = -\frac{\partial}{\partial x_{6}},$$

$$\phi\left(\frac{\partial}{\partial x_{4}}\right) = \frac{\partial}{\partial x_{1}}, \qquad \phi\left(\frac{\partial}{\partial x_{5}}\right) = \frac{\partial}{\partial x_{2}}, \qquad \phi\left(\frac{\partial}{\partial x_{6}}\right) = -\frac{\partial}{\partial x_{3}}.$$

Then it can be easily seen that the structure (ϕ, ξ, η, g) is a $(LCS)_7$ -manifold on $\overline{M} = \mathbb{R}^7$.

Now we define a submanifold M of \overline{M} by $M = \{(x_1, 0, x_3, x_4, 0, x_6, t) \in \mathbb{R}^7\}$ endowed with the global vector fields

$$e_{1} = \xi = \frac{\partial}{\partial t}, \qquad e_{2} = \frac{\partial}{\partial x_{4}}, \qquad e_{3} = \frac{\partial}{\partial x_{2}} + x_{6}\frac{\partial}{\partial t}$$
$$e_{4} = \frac{\partial}{\partial x_{6}}, \qquad e_{5} = \frac{\partial}{\partial x_{1}} + x_{4}\frac{\partial}{\partial t}.$$

Then the distributions $D_T = \operatorname{span}\{e_1, e_2, e_5\}$ and $D^{\perp} = \operatorname{span}\{e_3, e_4\}$ are invariant and anti-invariant distributions on \overline{M} , respectively. Let us denote their integral submanifolds by N_T and N_{\perp} , respectively, then the submanifold $M = N_{\perp} \times_f N_T$ is a contact CR-warped product submanifold with warping function $f(t) = e^t$.

Conclusion. Thus there exist warped product CR-submanifolds $M = N_{\perp} \times_f N_T$ of $(LCS)_n$ -manifolds \overline{M} such that N_{\perp} is an anti-invariant submanifold tangent to ξ and N_T is an invariant submanifold of \overline{M} . Example 4.4 supports also the above result. So, there arises a natural question.

Do there exist warped product CR-submanifolds $M = N_T \times_f N_\perp$ of $(LCS)_n$ manifolds \overline{M} such that N_\perp is an anti-invariant submanifold tangent to ξ and N_T is an invariant submanifold of \overline{M} ? This problem is still open.

108

Acknowledgment. The authors wish to express their sincere thanks and gratitude to the referee for his/her valuable suggestions towards the improvement of the paper.

References

- Atceken M., Contact CR-submanifolds of Kenmotsu manifolds, Serdica Math. J., 37 (2011), 67–78.
- Atceken M., Contact CR-warped product submanifolds in cosymplectic space forms, Collect. Math., 62 (2011), 17–26.
- Bejancu A., Geometry of CR-submanifolds, D. Reidel Publ. Co., Dordrecht, Holland, 1986.
 Bishop R. L. and O'Neill B., Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1–49.
- Chen B. Y., Geometry of warped product CR-submanifolds in Kaehler manifold, Monatsh. Math., 133 (2001), 177–195.
- Chen B. Y., Geometry of warped product CR-submanifolds in Kaehler manifolds II, Monatsh. Math., 134 (2001), 103–119.
- Hasegawa I. and Mihai I., Contact CR-warped product submanifolds in Sasakian manifolds, Geom. Dedicata, 102 (2003), 143–150.
- 8. Hui S. K. and Atceken M., Contact warped product semi-slant submanifolds of $(LCS)_n$ -manifolds, Acta Univ. Sapientiae Math., 3 (2011), 212–224.
- Khan V. A, Khan M. A. and Uddin S., Contact CR-warped product Submanifolds of Kenmotsu Manifold, Thai J. Math., 6 (2008), 307–314.
- Matsumoto K., On Lorentzian almost paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci., 12 (1989), 151–156.
- Mihai I. and Rosca R., On Lorentzian para-Sasakian manifolds, Classical Analysis, World Scientific Publ., Singapore, (1992).
- 12. Munteanu M. I., A note on doubly warped contact CR-submanifolds in trans-Sasakian manifolds, Acta Math. Hungar., 116 (2007), 121–126.
- Murathan C., Arslan K., Ezentas R. and Mihai I., Contact CR-warped product submanifolds in Kenmotsu space forms, J. Korean Math. Soc., 42 (2005), 1101–1110.
- O'Neill B., Semi Riemannian geometry with applications to relativity, Academic Press, New York., 1983.
- Shaikh A. A., On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J., 43 (2003), 305–314.
- Shaikh A. A. and Baishya K. K., On concircular structure spacetimes, J. Math. Stat., 1 (2005), 129–132.
- Shaikh A. A. and Baishya K. K., On concircular structure spacetimes II, American J. Appl. Sci., 3(4) (2006), 1790–1794.
- 18. Unal B., Doubly warped products, Diff. Geom. and its Appl., 15 (2001), 253-263.
- Yano K., Concircular geometry I, Concircular transformations, Proc. Imp. Acad. Tokyo, 16 (1940), 195–200.

S. K. Hui, Department of Mathematics, Bankura University, Bankura-722155 West Bengal, India, *e-mail:* shyamal_hui@yahoo.co.in

M. Atçeken, Department of Mathematics, Gaziosmanpasa University, Faculty of Arts and Sciences, Tokat-60250, Turkey, *e-mail*: mehmet.atceken382@gmail.com

S. Nandy, Department of Mathematics, Deshabandhu Mahavidyalaya, Chittaranjan, Burdwan-713331, West Bengal, India, *e-mail*: dbmsagarika@gmail.com