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CONTACT CR-WARPED PRODUCT SUBMANIFOLDS

OF (LCS)n-MANIFOLDS

S. K. HUI, M. ATÇEKEN and S. NANDY

Abstract. The present paper deals with a study of doubly warped product contact

CR-submanifolds of (LCS)n-manifolds and warped product contact CR-submani-
folds of (LCS)n-manifolds. It is shown that there exists no doubly warped product

contact CR-submanifolds of (LCS)n-manifolds. However, we obtain some results

for the existence or non-existence of warped product contact CR-submanifolds of
(LCS)n-manifolds and the existence is also ensured by an interesting example.

1. Introduction

In 2003, Shaikh [15] introduced the notion of Lorentzian concircular structure
manifolds (briefly, (LCS)n-manifolds) with an example, which generalizes the no-
tion of LP-Sasakian manifolds introduced by Matsumoto [10] and also by Mihai
and Rosca [11]. Then Shaikh and Baishya ([16], [17]) investigated the applications
of (LCS)n-manifolds to the general theory of relativity and cosmology.

The contact CR-submanifolds are a rich and very interesting subject. The
study of the differential geometry of contact CR-submanifolds as a generaliza-
tion of invariant and anti-invariant submanifolds of almost contact metric man-
ifolds was initiated by Bejancu [3]. Thereafter, several authors studied contact
CR-submanifolds of different classes of almost contact metric manifolds such as
Atceken ([1], [2]), Chen ([5], [6]), Hasegawa and Mihai [7], Khan et. al. [9],
Munteanu [12], Murathan et. al. [13] and many others.

The notion of warped product manifolds were introduced by Bishop and O’Neill
[4] and later it has been studied by many mathematicians and physicists. These
manifolds are generalization of Riemannian product manifolds. The existence or
non-existence of warped product manifolds plays an important role in differential
geometry as well as physics.

Motivated by the studies, the present paper deals with the study of contact
CR-warped product submanifolds of (LCS)n-manifolds. The paper is organized
as follows. Section 2 is concerned with preliminaries. The notion of doubly
warped products is introduced by Unal [18]. The doubly warped product con-
tact CR-submanifolds were studied by Munteanu [12], Khan et. al [9] and many

Received October 7, 2015; revised March 1, 2016.
2010 Mathematics Subject Classification. Primary 53C15, 53C25.
Key words and phrases. Warped product; CR-submanifold; (LCS)n-manifold.



102 S. K. HUI, M. ATÇEKEN and S. NANDY

others. Section 3 is devoted to the study of doubly warped product contact
CR-submanifolds of (LCS)n-manifolds. It is shown that there exists no doubly
warped product contact CR-submanifolds of (LCS)n-manifolds. In [8], first two
authors studied warped product semi-slant submanifolds of (LCS)n-manifolds and
in [8], all results are the nonexistence of warped product semi-slant submanifolds of
(LCS)n-manifolds, and all results of [8] are related to proper semi-slant submani-
folds, that is, the slant distribution is neither invariant nor anti-invariant. Now in
the last section, we study warped product contact CR-submanifolds
M = N⊥ ×f NT of (LCS)n-Manifolds M such that NT is an invariant submani-

fold tangent to ξ and N⊥ is an anti-invariant submanifold of M . We distinguish
two cases:(i) ξ tangent to NT and (ii) ξ tangent to N⊥. In case (i) it is proved
that there do not exist warped product contact CR-submanifolds M = N⊥×f NT

such that NT is an invariant submanifold tangent to ξ and N⊥ is anti-invariant
submanifold of M . However, in the case (ii), it is proved that there exist warped
product contact CR-submanifolds M = N⊥ ×f NT of (LCS)n-manifolds M such
that N⊥ is an anti-invariant submanifold of dimension p tangent to ξ and NT is
an invariant submanifold of M . Thus it is an interesting result for researchers.
Moreover, it is important that finally we present an example of such type of a
contact CR-warped product submanifold of (LCS)7-manifolds.

2. Preliminaries

An n-dimensional Lorentzian manifold M is a smooth connected paracompact
Hausdorff manifold with a Lorentzian metric g, that is, M admits a smooth sym-
metric tensor field g of type (0, 2) such that for each point p ∈ M , the tensor
gp : TpM×TpM → R is a non-degenerate inner product of signature (−,+, · · · ,+),

where TpM denotes the tangent vector space of M at p and R is the real number

space. A non-zero vector v ∈ TpM is said to be timelike (resp., non-spacelike, null,
spacelike) if it satisfies gp(v, v) < 0 (resp., ≤ 0, = 0, > 0) [14].

Definition 2.1. [19] A vector field P on M is said to be concircular if the
(1, 1) tensor field defined by g(X,P ) = A(X) for any X ∈ Γ(TM), satisfies

(∇XA)(Y ) = α{g(X,Y ) + ω(X)A(Y )},

where α is a non-zero scalar, ω is a closed 1-form and ∇ denotes the operator of
covariant differentiation with respect to the Lorentzian metric g.

Let M be an n-dimensional Lorentzian manifold admitting a unit timelike con-
circular vector field ξ called the characteristic vector field of the manifold. Then
we have

(2.1) g(ξ, ξ) = −1.

Since ξ is a unit concircular vector field, it follows that there exists a non-zero
1-form η such that for

(2.2) g(X, ξ) = η(X),
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the equation of the following form holds

(2.3) (∇Xη)(Y ) = α{g(X,Y ) + η(X)η(Y )}, α 6= 0,

that is,

(2.4) ∇Xξ = α{X + η(X)ξ}, α 6= 0,

for all vector fields X, Y , where ∇ denotes the operator of covariant differentia-
tion with respect to the Lorentzian metric g and α is a non-zero scalar function
satisfying

(2.5) ∇Xα = (Xα) = dα(X) = ρη(X),

ρ being a certain scalar function given by ρ = −(ξα). If we put

(2.6) φX =
1

α
∇Xξ,

then from (2.3) and (2.6), we have

(2.7) φX = X + η(X)ξ,

from which it follows that φ is a symmetric (1, 1) tensor called the structure tensor
of the manifold. Thus the Lorentzian manifold M together with the unit timelike
concircular vector field ξ, its associated 1-form η and an (1, 1) tensor field φ is
said to be a Lorentzian concircular structure manifold (briefly, (LCS)n-manifold),
[15]. Especially, if we take α = 1, then we can obtain the LP-Sasakian structure
of Matsumoto [10]. In a (LCS)n-manifold (n > 2), the following relations hold
[15]:

(2.8) η(ξ) = −1, φξ = 0, η(φX) = 0, g(φX, φY ) = g(X,Y ) + η(X)η(Y ),

φ2X = X + η(X)ξ,(2.9)

S(X, ξ) = (n− 1)(α2 − ρ)η(X),(2.10)

R(X,Y )ξ = (α2 − ρ)[η(Y )X − η(X)Y ],(2.11)

R(ξ, Y )Z = (α2 − ρ)[g(Y,Z)ξ − η(Z)Y ],(2.12)

(∇Xφ)Y = α{g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X},(2.13)

(Xρ) = dρ(X) = βη(X),(2.14)

R(X,Y )Z = φR(X,Y )Z + (α2 − ρ){g(Y,Z)η(X)− g(X,Z)η(Y )}ξ(2.15)

for all X, Y, Z ∈ Γ(TM).
Let M be a submanifold of a (LCS)n-manifold M with induced metric g. Also

let ∇ and ∇⊥ be the induced connections on the tangent bundle TM and the
normal bundle T⊥M of M , respectively. Then the Gauss and Weingarten formulae
are given by

(2.16) ∇XY = ∇XY + h(X,Y ),

and

(2.17) ∇XV = −AVX +∇⊥
XV
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for all X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where h and AV are second fundamental
form and the shape operator (corresponding to the normal vector field V ), respec-
tively, for the immersion of M into M . The second fundamental form h and the
shape operator AV are related by

(2.18) g(h(X,Y ), V ) = g(AVX,Y )

for any X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M).
For any X ∈ Γ(TM), we can write

(2.19) φX = EX + FX,

where EX is the tangential component and FX is the normal component of φX.
Also, for any V ∈ Γ(T⊥M), φV can be written in the following way

(2.20) φV = BV + CV,

where BV and CV are also the tangential and normal components of φV , respec-
tively. From (2.19) and (2.20), we can derive that the tensor fields E, F , B and
C are also symmetric because φ is symmetric. The covariant derivatives of the
tensor fields of E and F are defined as

(2.21) (∇XE)Y = ∇XEY − E(∇XY )

and

(2.22) (∇XF )Y = ∇⊥
XFY − F (∇XY )

for all X, Y ∈ Γ(TM). The canonical structures E and F on a submanifold M
are said to be parallel if ∇E = 0 and ∇F = 0, respectively.

A submanifold M tangent to ξ is called a contact CR-submanifold if it admits
an invariant distribution D whose orthogonal complementary distribution D⊥ is
anti-invariant, i.e., TM = D⊕D⊥⊕ < ξ > with φ(Dp) ⊆ Dp and φ(D⊥

p ) ⊂ T⊥
p M

for every p ∈ M . It may be mentioned that the contact CR-submanifold is a
special case of semi-slant submanifolds.

The notion of warped product manifolds was introduced by Bishop and
O’Neill [4].

Definition 2.2. [4] Let (N1, g1) and (N2, g2) be two Riemannian manifolds
with Riemannian metric g1 and g2, respectively, and f be a positive definite smooth
function on N1. The warped product of N1 and N2 is the Riemannian manifold
N1 ×f N2 = (N1 ×N2, g), where

(2.23) g = g1 + f2g2.

A warped product manifold N1×fN2 is said to be trivial if the warping function
f is constant.

More explicitely, if the vector fields X and Y are tangent to N1×f N2 at (p, q),
then

g(X,Y ) = g1(π1 ∗X,π1 ∗ Y ) + f2(p)g2(π2 ∗X,π2 ∗ Y ),

where πi (i = 1, 2) are the canonical projections of N1 × N2 onto N1 and N2,
respectively, and * stands for the derivative map. It may be noted that the notion
of a warped product is a particular case of a doubly warped product.
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Let M = N1 ×f N2 be a warped product manifold, which means that N1 and
N2 are totally geodesic and totally umbilical submanifolds of M , respectively.

For warped product manifolds, we have [14] the following proposition.

Proposition 2.1. Let M = N1×fN2 be a warped product manifold. Then
(I) ∇XY ∈ TN1 is the lift of ∇XY on N1

(II) ∇UX = ∇XU = (X ln f)U

(III) ∇UV = ∇′
UV − g(U, V )∇ ln f

for any X, Y ∈ Γ(TN1) and U , V ∈ Γ(TN2), where ∇ and ∇′ denote the Levi-
Civita connections on N1 and N2, respectively.

The notion of doubly warped products was introduced by Unal [18].

Definition 2.3. [18] Doubly warped products can be considered as a gener-
alization of a warped product (M, g) which is a warped product manifold of the
form M =f B ×b F with the metric g = f2gB + b2gF , where b : B → (0,∞) and
f : F → (0,∞) are smooth maps and gB , gF are the metrics on the Riemannian
manifolds B and F , respectively.

If either b = 1 or f = 1, but not both, then we obtain a (single) warped product.
If both b = 1 and f = 1, then we have a product manifold. If neither b nor f is
constant, then we have a non trivial doubly warped product.

For any X ∈ Γ(TB) and Z ∈ Γ(TF ), on a doubly warped product manifold,
the Levi-Civita connection is

(2.24) ∇XZ = Z(ln f)X +X(ln b)Z.

Let M =f2 N⊥ ×f1 NT be doubly warped product contact CR-submanifolds of

(LCS)n-manifolds M . Then such submanifolds are always tangent to the structure
vector field ξ.

3. Doubly warped product contact CR-Submanifolds
of (LCS)n-Manifolds

In a similar way of [9], in this section, we study doubly warped product contact
CR-submanifolds of (LCS)n-manifolds and we prove the following theorem.

Theorem 3.1. There exist no proper doubly warped product contact CR-sub-
manifolds of (LCS)n-manifolds.

Proof. Let M =f2 N⊥×f1 NT be doubly warped product contact CR-submani-

folds of (LCS)n-manifolds M . There arise two possible cases.
Case (i): If ξ is tangent to NT , then for Z ∈ Γ(TN⊥), we have

(3.1) ∇Zξ = Z(ln f1)ξ + ξ(ln f2)Z.

Now from (2.4), we have

(3.2) ∇Zξ = α{Z + η(Z)ξ} = αZ.

Also from (2.16), we get

(3.3) ∇Zξ = ∇Zξ + h(Z, ξ).
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From (3.2) and (3.3), we get

∇Zξ + h(Z, ξ) = αZ,

which implies

(3.4) ∇Zξ = αZ and h(Z, ξ) = 0.

In view of (3.4), it follows from (3.1) that

(3.5) αZ = Z(ln f1)ξ + ξ(ln f2)Z.

Since the two distributions are orthogonal, it follows from (3.5) that

(3.6) Z(ln f1) = 0 and ξ(ln f2) = α

for all Z ∈ Γ(TN⊥).
The first part of (3.6) shows that f1 is constant on TN⊥. So, doubly warped

product contact CR-submanifolds of the form M =f2 N⊥×f1 NT of (LCS)n-man-
ifolds with ξ tangent to NT does not exist.

Case(ii): If ξ is tangent to N⊥ and X ∈ Γ(TNT ), then we get

(3.7) ∇Xξ = ξ(ln f1)X +X(ln f2)ξ.

From (2.4) and (2.16), we get

(3.8) α{X + η(X)ξ} = ∇Xξ = ∇Xξ + h(X, ξ),

i.e.,

(3.9) ∇Xξ = αX and h(X, ξ) = 0.

From (3.7) and (3.9), we get

(3.10) αX = ξ(ln f1)X +X(ln f2)ξ.

So by orthogonality of two distributions, (3.10) yields

(3.11) ξ(ln f1) = α and X(ln f2) = 0

for all X ∈ Γ(TNT ).
From the second part of (3.11) it follows that f2 is constant on TNT . So, in this

case also doubly warped product contact CR-submanifolds do not exist. Hence
the proof is complete. �

4. Warped product contact CR-Submanifolds
of (LCS)n-Manifolds

As there are not doubly warped product contact CR-submanifolds of (LCS)n-
-manifolds, we will study warped product contact CR-submanifolds of (LCS)n-
-manifolds in this section.

In 2001, Chen [5] introduced and studied the notion of warped product
CR-submanifolds of Kaehler manifolds. Later Hasegawa and Mihai [7] studied
contact CR-warped product submanifolds of Sasakian manifolds. Again Khan et.
al [9] studied contact CR-warped product submanifolds of Kenmotsu manifolds.
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Let M = N⊥ ×f NT be contact warped product CR-submanifolds of

(LCS)n-manifold M . Such submanifolds are always tangent to the structure vec-
tor field ξ. We distinguish two cases:

(i) ξ tangent to NT

(ii) ξ tangent to N⊥.
First we consider the case (i), where ξ is tangent to NT , and we prove the following
theorem.

Theorem 4.1. Let M be a (LCS)n-manifold. Then there do not exist warped
product contact CR-submanifolds M = N⊥ ×f NT such that NT is an invariant

submanifold tangent to ξ and N⊥ is an anti-invariant submanifold of M .

Proof. We now assume that M = N⊥ ×f NT be contact warped product

CR-submanifolds of a (LCS)n-manifold M such that NT is an invariant sub-
manifold tangent to ξ and N⊥ is an anti-invariant submanifold of M . So by
Proposition 2.1, we get

(4.1) ∇XZ = ∇ZX = (Z ln f)X

for any vector fields Z and X tangent to N⊥ and NT , respectively.
Thus from (4.1), we get

(4.2) ∇Zξ = Z(ln f)ξ

Also from (2.4) and (2.16), we get

αZ = ∇Zξ = ∇Zξ + h(Z, ξ).

which implies

(4.3) ∇Zξ = αZ and h(Z, ξ) = 0.

From (4.2) and (4.3), we have Z(ln f) = 0 for all Z ∈ Γ(TN⊥), i.e., f is constant
for all Z ∈ Γ(TN⊥). This means that M is a usual Riemannian submanifold. This
proves the theorem. �

Remark 4.2. In [8, Theorem 3], is valid for proper semi-slant submanifolds
of (LCS)n-manifolds. Thus Theorem 4.1 is completely different and not just a
particular case of [8, Theorem 3].

Now we consider the case (ii), when ξ is tangent to N⊥. Assume that M
is a (LCS)n-manifold and consider the warped product contact CR-submanifold
M = N⊥ ×f NT such that N⊥ is an anti-invariant submanifold of dimension p

tangent to ξ and NT is an invariant submanifold of M . Then for any X ∈ Γ(TNT ),
we have

g(∇Xξ,X) = g(∇Xξ,X) = g(α{X + η(X)ξ}, X),

i.e.,

ξ ln f‖X‖2 = α‖X‖2

or ξ ln f = α, i.e., g(∇ ln f, ξ) = α, i.e.,

(4.4) ∇ ln f = −αξ,
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where ∇ ln f denotes the gradient of ln f and defined by g(∇ ln f, U) = U ln f for
all U ∈ Γ(TM).

The relation (4.4) can also be written as

(4.5)

p∑
i=1

∂ ln f

∂xi
= −αξ, i = 1, 2, . . . , p,

which is the first order partial differential equation and has a unique solution, i.e.,
warped product exists. This leads to the following theorem.

Theorem 4.3. Let M be a (LCS)n-manifold. Then there exist warped prod-
uct contact CR-submanifolds M = N⊥ ×f NT such that N⊥ is an anti-invariant

submanifold of dimension p tangent to ξ, NT is invariant submanifold of M and
the warping function f satisfying ( (4.5)).

Example 4.4. Let M = R7 be the semi-Euclidean space endowed with the
semi-Euclidean metric g =

[
− dt2 + dx21 + dx22 + dx32 + dx24 + dx25 + dx26

]
e2t with

coordinate (t, x1, x2, x3, x4, x5, x6). Define

η = et dt, ξ = et
∂

∂t
, φ

( ∂
∂t

)
= 0,

φ
( ∂

∂x1

)
= − ∂

∂x4
, φ

( ∂

∂x2

)
= − ∂

∂x5
, φ

( ∂

∂x3

)
= − ∂

∂x6
,

φ
( ∂

∂x4

)
=

∂

∂x1
, φ

( ∂

∂x5

)
=

∂

∂x2
, φ

( ∂

∂x6

)
= − ∂

∂x3
.

Then it can be easily seen that the structure (φ, ξ, η, g) is a (LCS)7-manifold on
M = R7.

Now we define a submanifold M of M by M = {(x1, 0, x3, x4, 0, x6, t) ∈ R7}
endowed with the global vector fields

e1 = ξ =
∂

∂t
, e2 =

∂

∂x4
, e3 =

∂

∂x2
+ x6

∂

∂t
,

e4 =
∂

∂x6
, e5 =

∂

∂x1
+ x4

∂

∂t
.

Then the distributions DT = span{e1, e2, e5} and D⊥ = span{e3, e4} are invariant
and anti-invariant distributions on M , respectively. Let us denote their integral
submanifolds by NT and N⊥, respectively, then the submanifold M = N⊥ ×f NT

is a contact CR-warped product submanifold with warping function f(t) = et.

Conclusion. Thus there exist warped product CR-submanifolds M = N⊥ ×f

NT of (LCS)n-manifolds M such that N⊥ is an anti-invariant submanifold tangent
to ξ andNT is an invariant submanifold of M . Example 4.4 supports also the above
result. So, there arises a natural question.

Do there exist warped product CR-submanifolds M = NT ×f N⊥ of (LCS)n-

manifolds M such that N⊥ is an anti-invariant submanifold tangent to ξ and NT

is an invariant submanifold of M? This problem is still open.
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