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SERIES SOLUTIONS FOR AN UNSTEADY FLOW

AND HEAT TRANSFER OF A ROTATING DUSTY FLUID

WITH RADIATION EFFECT

S. MANJUNATHA, B. J. GIREESHA and C. S. BAGEWADI

Abstract. A theoretical analysis of free convective MHD flow of an unsteady ro-

tating dusty fluid under the influence of hall current and radiation effect is carried
out. The fluid flow is considered in the porous media under the influence of periodic

pressure gradient and the fluid is assumed to be viscous, incompressible and electri-

cally conducting with uniform distribution of dust particles. The governing partial
differential equations are solved analytically using perturbation technique and the

expressions for skin-friction is also derived. Further the effect of various pertinent

parameter like magnetic parameter, rotation parameter and Hall current parameter
on velocity of both fluid and dust phases are depicted graphically and the effect of

radiation parameter, Grashof number and Prandtl number on temperature profile
is also discussed in detail.

1. Introduction

The study of a two-phase flow of fluid-particle is important in power plant pip-
ing, petroleum transport, combustion, waste water treatment, corrosive particles
in engine oil flow, smoke emission from vehicles and formation of raindrops. Its
relevance is also seen in the field of mining, agriculture and food technologies.
Particularly, the flow and heat transfer of a electrically conducting dusty fluid
through a channel in the presence of a transverse magnetic field through porous
medium occur in magnetohydrodynamic generators, pumps, accelerators, cooling
systems, centrifugal separation of matter from fluid, petroleum industry, purifica-
tion of crude oil, electrostatic precipitation, polymer technology and fluid droplets
sprays.

Motivated by the applications of a two-phase flow, Saffman [1] initiated to study
on the stability of a laminar flow of a dusty gas. The study of dusty viscous fluid
under the influence of different physical conditions has been carried out by several
authors; Nag et.al [2] studied an unsteady Couette flow of a dusty gas between
two infinite parallel plates, when one plate of the channel is kept stationary and
the other plate moves uniformly in its own plane. On a free convection flow of
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a dusty conducting fluid studied by Heamly [3]. Analytical solution for a free
convective flow of a particle suspension past an infinite vertical surface carried out
by Chamkha and Ramdan [4]. Ghosh et.al [5] discussed the hydromagnetic free
convective flow with induced magnetic field. Later, MHD effects on a convective
flow of a dusty viscous fluid with volume fraction investigated by Singh [6]. Attia
[7] analyzed the unsteady hydromagnetic channel flow of dusty fluid with tem-
perature dependent viscosity and thermal conductivity. An unsteady flow of a an
electrically conducting dusty gas in channel due to an oscillating pressure gradient
investigated by Chamkha [8]. Recently, Gireesha et.al ([9]-[10]) investigated the
effects of dust particles in a flow and heat transfer of viscous fluid.

The theory of rotating fluids is highly important due to its occurrence in various
natural phenomena. Rotating fluid flows have practical applications in many areas
such as rotating machinery, lubrication, oceanography, computer storage devices,
viscometry and crystal growth processes and also many engineering areas. The
hydromagnetic flow due to rotating disk was first investigated by Von Karman [11].
However, when the medium is rarefied or if a strong magnetic field is present, the
effect of Hall current cannot be neglected [12]. The study of MHD viscous flows
with Hall current has important applications in problems of power generator and
Hall accelerators as well as flight magnetohydrodynamics.

With the above understanding, a number of researchers have investigated the
hydromagnetic flow of a viscous incompressible electrically conducting fluid in a
rotating medium with Hall effect under the different conditions and configurations.
Kanch and Jana [13] studied Hall effects on an unsteady hydromagnetic flow past
a rotating disk when the fluid at infinity rotates about non-coincident axes, and
they found that an increase in the hall current slow down the fluid flow. Hayat
et.al [14] studied the effect of Hall current and heat transfer on a rotating flow
of second grade fluid past a porous plate with the variable suction. The transient
circular pipe MHD flow of a dusty fluid considering the hall effect investigated by
Attia [15]. Later combined effects of Hall currents and rotation on MHD mixed
convection in a rotating vertical channel studied by Guchhait et.al [16]. Gireesha
et.al [17] studied the effect of Hall current on a flow of a viscous incompressible
electrically conducting rotating dusty fluid with uniform distribution of dust par-
ticles bounded by a semi-infinite plate and they have obtained the solution using
Laplace transform technique. They found that velocity profile decreases for an
increase in hall effect. Very recently, Gireesha and Mahanthesh [18] reported the
analytical solution for heat and mass transfer of a time-dependent MHD flow of
an electrically conducting viscoelastic fluid in a nonuniform vertical channel with
the convective boundary condition and Hall current. On the other hand, sev-
eral authors from [19] to [26] have various aspects of a dusty fluid flow and heat
transfer.

Motivated by the above mentioned investigations and applications, this work is
aimed at providing the analytical solution to the combined effects of hall current
and radiation on an unsteady free convective hydromagnetic rotating dusty fluid
flow in a vertical channel. To the best of authors knowledge, this is yet to be
addressed in a open literature. The flow in the channel under the influence of
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periodic pressure gradient is considered. A closed form solution is obtained by
employing perturbation technique for fluid velocity, dust velocity, temperature,
and as well as skinfriction co-efficient of both fluid and dust phase.

2. Mathematical Formulation and Solution

Consider an unsteady MHD flow of a viscous incompressible electrically conducting
dusty fluid with uniform distribution of dust particles in a vertical channel on
taking hall currents into account. In vertical plate flow problems, the buoyancy
forces significantly affect the flow and the thermal fields due to the temperature
difference between the plate and the ambient fluid, i.e, the density variation due
to buoyancy effects is taken into account in the momentum equation. A vertical
channel saturated with porous medium placed in the plane z = 0 is of infinite
extent, so all the physical quantities depend only on z and t. The x axis is taken
in the direction along the channel which is set in motion, and the z axis is taken
perpendicular to it. The inclusion of the Hall currents gives rise to the Lorentz
force in y direction, which induces a cross flow in that direction. The y axis is
assumed to be normal to the xz plane. Further, the fluid as well as the channel

rotate with uniform angular velocity
−→
Ω about the z-axis as shown in the Figure 1.

The unsteady hydromagnetic dusty fluid flow in a rotating co-ordinate system
is governed by the following continuity and momentum equations for fluid and
particle phases [1]:

∇ · ~U = 0,(2.1)

∂~U

∂t
+ (~U · ∇)~U + 2~Ω× ~U = − 1

ρ
∇p+

1

ρ
( ~J × ~B) + ν∇2~U

+
KN

ρ
(~Up − ~U)− ν

k
~U + gβ(T − T2),(2.2)

∇ · ~Up = 0,(2.3)

mp

[∂ ~Up
∂t

+ ( ~Up · ∇) ~Up + 2~Ω× ~Up

]
= K(~U − ~Up),

(2.4)

∂T

∂t
+ (~U · ∇)T =

kT
ρCp
∇2T,(2.5)

the following nomenclatures:
~U = (u, v, w) and ~Up = (up, vp, wp) are the velocity components of fluid and dust
phase, respectively, T – fluid temperature, p – pressure field including the centrifu-

gal term, ~J – electric current density, ~B – total magnetic field, N – number density
of dust particles, mp – mass of the dust particle, K – Stokes-co-efficient of resis-
tance, ρ – density, k – permeability of the porous medium, ν – kinematic viscosity
of the fluid, β – thermal volumetric coefficient, g – acceleration due to gravity, kT
the thermal conductivity, cp the specific heat, and t – time.
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Figure 1. The physical configuration of the problem.

Neglecting ion-slip and thermoelectric effects, the generalized Ohm’s law [27]
is given as

~J +
ωeτe
B0

( ~J × ~B) = σ
[
~E + ~u× ~B

]
,(2.6)

where ~B, ~E, ~u, ~J , σ, ωe, and τe are the magnetic field vector, electric field vec-
tor, fluid velocity vector, current density vector, conductivity of fluid, cyclotron
frequency of electrons, electron collision time, respectively.

For the present problem, we assume that the magnetic Reynolds number for
the flow is small so that the induced magnetic field can be neglected. The dust
particles are assumed to be electrically non-conducting, spherical and uniformly
distributed in the fluid. A periodic pressure gradient varying with time is applied
in x-direction. A uniform magnetic field B0 is applied in positive z-direction,

i.e., ~B = (0, 0, B0), and angular velocity is considered along z-direction, i.e., ~Ω =
(0, 0,Ω) as shown in the above Figure 1. According to Boussinesq approximation,
all physical quantities for this fully developed flow depend only on z and t. For
the present problem, assume that w(z, t) = 0 = wp(z, t) and N = N0(constant).

Under these assumptions the equations of motion (2.1) to (2.5) for the fluid and
dust phase velocity in its component form is given by

∂u

∂t
− 2Ωv = − 1

ρ

∂p

∂x
+ ν

∂2u

∂z2
+

σB0

ρ(1 +m2)
(mv − u)

+
l

τp
(up − u)− ν

k
u+ gβ(T − T2),

(2.7)
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∂v

∂t
+ 2Ωu = ν

∂2v

∂z2
− σB0

ρ(1 +m2)
(v +mu) +

l

τp
(vp − v)− ν

k
v,(2.8)

∂up
∂t
− 2Ωvp =

1

τp
(u− up),(2.9)

∂vp
∂t

+ 2Ωup =
1

τp
(v − vp).(2.10)

Energy equation with thermal radiation effect is given by

ρCp
∂T

∂t
= KT

∂2T

∂z2
− 16k∗α∗T2

3(T − T2),(2.11)

where m = ωeτe (hall parameter), l =
mpN0

ρ (mass concentration), τp =
mp

K

(relaxation time), α∗ is the Stefan-Boltzman constant and k∗ is the spectral mean
absorption coefficient of the medium.

The boundary conditions for velocity of the fluid and dust particles and tem-
perature distributions are

(2.12)
u = v = up = vp = 0, T = T2 + (T1 − T2) cosωt at z = −h,
u = v = up = vp = 0, T = T2 at z = +h.

To make the above system dimensionless, introduce the following non-dimen-
sional variables and parameters as

(2.13)
(η, ξ) =

(z, x)

h
, (u∗, v∗) =

h

ν
(u, v), (up

∗, vp
∗) =

h

ν
(up, vp),

τ =
νt

h2
, θ =

T − T2

T1 − T2
.

By using (2.13) and neglecting ∗, the equations (2.7) to (2.11) become

∂u

∂τ
− 2Ev = − ∂P

∂ξ
+
∂2u

∂η2
+ lL(up − u) +

M2

(1 +m2)
(mv − u)(2.14)

− 1

k+
u+Grθ,

∂v

∂τ
+ 2Eu =

∂2v

∂η2
+ lL(vp − v)− M2

(1 +m2)
(v +mu)− 1

k+
v,(2.15)

∂up
∂τ
− 2Evp = L(u− up),(2.16)

∂vp
∂τ

+ 2Eup = L(v − vp),(2.17)

Pr
∂θ

∂τ
=
∂2θ

∂η2
−Rθ,(2.18)

where E = Ωh2

ν is the rotation parameter, M = B0h
√

σ
νρ is the magnetic param-

eter, Gr = gβ(T1−T2)h3

ν2 is the Grashof number, Pr =
ρCpν
k is the Prandtl number,
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R =
16k∗σ∗T 3

2 h
2

k is the radiation parameter, L = h2

τpν
is the reciprocal of relaxation

parameter, k+ = k
h2 is permiability parameter and P = h2p

ρν2 is the non-dimensional

fluid pressure.
The boundary conditions (2.12) become

(2.19)
u = v = up = vp = 0, θ = cosnτ at η =− 1,

u = v = up = vp = 0, θ = 0 at η = + 1,

where n = ωh2

ν is frequency parameter. Now by introducing F = u + i v and
G = up + i vp, equations (2.14) to (2.18) are reduced to

∂F

∂τ
= − ∂P

∂x i
+
∂2F

∂η2
−
[(
lL+

1

k+
+

M2

(1 +m2)

)
+i

(
2E +

mM2

1 +m2

)]
F

+Grθ + lLG,(2.20)

∂G

∂τ
= − i 2EG+ L(F −G),(2.21)

Pr
∂θ

∂τ
=
∂2θ

∂η2
−Rθ.(2.22)

The boundary conditions (2.19) are reduced to

(2.23)
F = G = 0, θ = cosnτ at η = −1,

F = G = 0, θ =0 at η = +1.

Non-dimensional equations (2.20)–(2.22) represent the set of partial differential
equations which cannot be solved in the closed form due to the non-linearity.
However, these equations can be solved analytically after being reduced to set of
ordinary differential equations. To this end, the fluid velocity (F ), dust phase
velocity (G) and the temperature (θ) can be expressed as follows[16]:

(2.24)

−∂P
∂ξ

=
1

2

(
einτ + e− inτ

)
,

F (η, τ) = f1(η) einτ +f2(η) e− inτ ,

G(η, τ) = g1(η) einτ +g2(η) e− inτ ,

θ(η, τ) = θ1(η) einτ +θ2(η) e− inτ

where f1(η), f2(η), g1(η), g2(η), θ1(η) and θ2(η) are unknown functions.
In view of the above relations (2.24), the equations (2.20) to (2.22) take the

following forms

f ′′1 (η)− r2
1f1(η) = −1

2
−Grθ1(η)− lLg1(η),(2.25)

f ′′2 (η)− r2
2f2(η) = −1

2
−Grθ2(η)− lLg2(η),(2.26)

g1(η) = f1(η)

(
L

L+ i(2E + n)

)
,(2.27)
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g2(η) = f2(η)

(
L

L+ i(2E − n)

)
,(2.28)

θ′′1 (η)− r2
3θ1(η) = 0,(2.29)

θ′′2 (η)− r2
4θ2(η) = 0(2.30)

with the boundary conditions

(2.31)
f1 = f2 = g1 = g2 = 0, θ1 = θ2 =

1

2
at η = −1,

f1 = f2 = g1 = g2 = 0, θ1 = θ2 = 0 at η = +1.

The solutions of the equations (2.25) to (2.30) with subjected to the boundary
condition (2.31) are

F (η, τ) =
1

2

[
1

r2
1

(
1− cosh r1η

cosh r1

)
+

Gr
(r2

3 − r2
1)

(
sinh r1(1− η)

sinh 2r1
− sinh r3(1− η)

sinh 2r3

)]
einτ

+
1

2

[
1

r2
2

(
1− cosh r2η

cosh r2

)
(2.32)

+
Gr

(r2
4 − r2

2)

(
sinh r2(1− η)

sinh 2r2
− sinh r4(1− η)

sinh 2r4

)]
e− inτ ,

G(η, τ) =
L

2(L+ i(2E + n))

[
1

r2
1

(
1− cosh r1η

cosh r1

)
+

Gr
(r2

3 − r2
1)

(
sinh r1(1− η)

sinh 2r1
− sinh r3(1− η)

sinh 2r3

)]
einτ

+
L

2(L+ i(2E − n))

[
1

r2
2

(
1− cosh r2η

cosh r2

)
(2.33)

+
Gr

(r2
4 − r2

2)

(
sinh r2(1− η)

sinh 2r2
− sinh r4(1− η)

sinh 2r4

)]
e− inτ ,

θ(η, τ) =
1

2

[
einτ

(
sinh r3(1− η)

sinh 2r3

)
+ e− inτ

(
sinh r4(1− η)

sinh 2r4

)]
(2.34)

where,

r2
1 =

[(
lL+

1

k+
+

M2

(1 +m2)
− lL3

L2 + (2E + n)2

)
+ i

(
2E + n+

mM2

1 +m2
+

lL2(2E + n)

L2 + (2E + n)2

)]
,

r2
2 =

[(
lL+

1

k+
+

M2

(1 +m2)
− lL3

L2 + (2E − n)2

)
− i

(
2E − n+

mM2

1 +m2
+

lL2(2E − n)

L2 + (2E − n)2

)]
,
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r2
3 = (R+ inPr),

r2
4 = (R− inPr).

By separating into a real and imaginary parts, one can easily obtain the primary
and secondary velocity components of both fluid and particle phases from (2.32)
and (2.33), respectively.
Skin friction:

Let τf and τp be the skin friction for the fluid phase and dust phase, respectively.
Then we have

τf =

(
∂F

∂η

)
η=1

=
1

2

[
Gr

r2
3 − r2

1

(
r3

sinh 2r3
− r1

sinh 2r1

)
− tanh r1

r1

]
einτ

+
1

2

[
Gr

r2
4 − r2

2

(
r4

sinh 2r4
− r2

sinh 2r2

)
− tanh r2

r2

]
e− inτ .

(2.35)

τp =

(
∂G

∂η

)
η=1

=
L

2(L+i(2E + n))

[
Gr

r2
3 − r2

1

(
r3

sinh 2r3
− r1

sinh 2r1

)
− tanh r1

r1

]
einτ

+
L

2(L+ i(2E − n))

[
Gr

r2
4 − r2

2

(
r4

sinh 2r4
− r2

sinh 2r2

)
− tanh r2

r2

]
e− inτ .

(2.36)

By separating into a real and imaginary parts, one can easily obtain the skin
friction for primary and secondary velocity components of both fluid and particle
phases from (2.35) and (2.36), respectively. The correctness of the present solution
is verified by taking l = 0 (mass concentration of dust particles) and k+ = 0
(permeability). Then our solution is reduced to well reported solution by Guchhait
et.al [16].

3. Results and Discussion

The governing partial differential equations of velocity and temperature profiles
(2.7) to (2.11) subject to boundary conditions (2.12) describe the MHD free convec-
tive dusty fluid flow in a rotating vertical channel with hall current and radiation
effect. The flow is considered in the porous media under the influence of periodic
pressure gradient. The solutions of the governing equations are obtained by em-
ploying the perturbation technique. In order to have a physical insight into the
problem, we have written a MATLAB program to compute and generate the graphs
for the primary velocity of the fluid phase, dust phase and temperature profiles
verses η for different values of physical parameters (like M2,m,E,R, k+, P r,Gr, n
and nτ). Further, the skin-friction of primary velocities of both fluid and dust
phases against different values of physical parameter (like M2, Gr,E and n) are
depicted in the Figures14–17.

Figure 2 has been plotted to depict the variation of velocity profiles against η for
different values of hall parameter (m) by fixing other physical parameters. From
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this graph we observe that the primary velocity profile for both fluid and dust
phases notably decreases with an increase in hall parameter (m). Figure 3 depicts
that the primary velocity profile for both fluid and dust phases decreases with
an increase in magnetic parameter (M2) since the application of the transverse
magnetic field plays the important role of a resistive type force (Lorentze force)
similar to drag force (that acts in the opposite direction of the fluid motion) which
tends to resist the flow thereby reducing its velocity.

The primary velocity profile of both fluid and dust phases decreases with an
increase in the rotation parameter (E) which is observed from the Figure 4 with
nτ = π/3. Figure 5 has been plotted to depict the variation of velocity profiles
against η for different values of porous parameter (k+) by fixing other physical
parameters (m = 0.4 & L = 3). This figure gives clear picture of the primary
velocity profile of both fluid and dust phases and it is observed that both fluid
and dust phase velocity decreases with increase in the porous parameter (k+).
Nevertheless, this effect is quite opposite for increase in Grashof number (Gr)
that is noticed in the Figure 6. This is because an increase in Grashof number
(Gr) means more heating and less density.

Figure 7 depicts that the primary velocity of fluid phase and dust phase de-
creases with an increase in the radiation parameter (R). Figure 8 indicates that
an increase in phase angle decreases the fluid phase and dust phase primary veloc-
ity with L = 0.6. The effect of frequency parameter on velocity of both fluid and
dust phases is shown in Figure 9. It is observed that the primary velocity of both
fluid phase and dust phase increases with an increase in frequency parameter n
with L = 1.

The variation of temperature profiles are illustrated in the Figures 10 to 13. Fig-
ure 10 reveals an interesting phenomenon. It shows that temperature θ decreases
with an increase of radiation parameter (R). This result qualitatively agrees with
expectations, since the effect of radiation is to decrease the rate of energy transport
to the fluid, thereby decreasing the temperature of the fluid. Figure 11 has been
plotted to depict the variation of temperature profiles against η for different values
of Prandtl number (Pr) by fixing other physical parameters (nτ = π/3). Figure 10
displays that the fluid temperature θ decreases with an increase of prandtl number
(Pr). This is because fluids with large (Pr) have low thermal diffusivity which
causes low heat penetration.

Figure 12 depicts that temperature profile notably decreases with an increase in
the phase angle (nτ). The fluid temperature θ increases near the plate at η = −1
and it decreases away from the plate at η = −1 with an increase in frequency
parameter (n) as observed from Figure 13 with nτ = π/3.

The Figures 14, 15, 16, and 17 depict that an increase in magnetic parame-
ter (M2), rotation parameter (E) and frequency parameter (n) result in an in-
crease in the skin-friction of primary velocity of both phases. While an increase in
the Grashof number (Gr) decreases the skin-friction of primary velocities of both
phases which is illustrated in Figure 16.
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Figure 2. Variation of velocity profile for

the different values of m.

Figure 3. Variation of velocity profile for

the different values of M2.

Figure 4. Variation of velocity profile for

the different values of k+.

Figure 5. Variation of velocity profile for

the different values of E.

Figure 6. Variation of velocity profile for

the different values of Gr.

Figure 7. Variation of velocity profile for

the different values of R.
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Figure 8. Variation of velocity profile for

the different values of nτ .

Figure 9. Variation of velocity profile for

the different values of n.

Figure 10. Variation of temperature profile
for the different values of R.

Figure 11. Variation of temperature profile
for the different values of Pr.

Figure 12. Variation of temperature profile
for the different values of nτ .

Figure 13. Variation of temperature profile
for the different values of n.
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Figure 14. Skin friction of fluid phase and dust phase for different values of M2 (L = 1, k = 10,

l = 0.5, Gr = 5, R = 5, nτ = π/4, E = 10, Pr = 0.72, n = 1.0).

Figure 15. Skin friction of fluid phase and dust phase for different values of -E (L = 1, k = 10,

l = 0.5, Gr = 5, R = 5, nτ = π/4, M2 = 5, Pr = 0.72, n = 1.0).

Figure 16. Skin friction of fluid phase and dust phase for different values of -Gr (L = 1, k = 10,

l = 0.5, M2 = 5, R = 5, nτ = π/4, E = 10, Pr = 0.72, n = 1.0).
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Figure 17. Skin friction of fluid phase and dust phase for different values of n (L = 1, k = 10,

l = 0.5, Gr = 5, R = 5, nτ = π/4, E = 10, Pr = 0.72, M2 = 5).

4. Conclusions

In this paper, a mathematical analysis has been carried out on the MHD free
convective dusty fluid flow in a rotating porous vertical channel with hall current
and the effect of radiation under a periodic pressure gradient. The governing
partial differential equations are solved analytically using the perturbation method.
The effect of various physical parameters (like rotation parameter (E), magnetic
parameter (M2) and Hall current parameter (m) etc.) are examined. Some of the
important findings of our analysis obtained by the graphical representation are
listed below:
• The rotation and hall effect on the MHD convection flow have more significant

effect on the dusty fluid flow in a vertical channel through porous medium.

• The primary velocity of the dust phase is lower than the primary velocity of
the fluid phase.

• The effect of increasing values of rotation parameter is to decrease of the
primary velocity of the fluid and dust phases.

• The combined effect of increasing values of magnetic parameter and Hall
current parameter is to decrease the primary velocity of the fluid and dust
phases.

• The boundary layer thickness increases with an increase in the Hall current
parameter.

• The thermal boundary layer thickness decreases with increase in the Prandle
number.

• The effect increasing values of magnetic parameter, rotation parameter, fre-
quency parameter is to increase the skin-friction of primary velocity of both
phases.
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