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ON φ-RICCI SYMMETRIC (k, µ)-CONTACT

METRIC MANIFOLDS

S. GHOSH and U. C. DE

Abstract. The object of the present paper is to study globally and locally φ-Ricci
symmetric (k, µ)-contact metric manifolds. Finally, an illustrative example is given

to verify some results.

1. Introduction

The notion of locally φ-symmetric Sasakian manifolds was introduced by T. Taka-
hashi [8]. He studied several interesting properties of such a manifold in the context
of Sasakian geometry. U. C. De et al. [9] introduced the notion of φ-recurrent
Sasakian manifolds which generalizes the notion of φ-symmetric Sasakian mani-
folds. Also in another paper, U. C. De and Aboul Kalam Gazi [11] introduced the
notion of φ-recurrent N(k)-contact metric manifolds. In [10], U. C. De and Avijit
Sarkar introduced the notion of φ-Ricci symmetric Sasakian manifolds. From the
definitions it follows that every φ-symmetric Sasakian manifold is φ-Ricci sym-
metric, but the converse is not true, in general. Also a (k, µ)-contact metric
manifold is Sasakian if k = 1. Considering the above facts in this paper we gener-
alize, the notion of φ-symmetric Sasakian manifolds and study φ-Ricci symmetric
(k, µ)-contact metric manifolds.

The paper is organized as follows:
In Section 2, we recall (k, µ)-contact metric manifolds. Globally φ-Ricci sym-

metric (k, µ)-contact metric manifolds studied in Section 3. We prove that a
(k, µ)-contact metric manifold M2n+1 is globally φ-Ricci symmetric if and only if
it is an Einstein manifold. Also we prove that a globally φ-Ricci symmetric (k, µ)-
contact metric manifold is three-dimensional and flat. Section 4 is devoted to
study, locally φ-Ricci symmetric 3-dimensional (k, µ)-contact metric manifold and
we prove that such a manifold is locally φ-Ricci symmetric if and only if the scalar
curvature is constant. Finally, in Section 5, we set an example of (k, µ)-contact
metric manifolds which verifies the result of Section 4.
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2. Preliminaries

By a contact manifold we mean a (2n + 1)-dimensional differentiable manifold
M2n+1 which carries a global 1-form η exists a unique vector field ξ called the
characteristic vector field such that η(ξ) = 1 and dη(ξ,X) = 0. A Riemannian
metric g on M2n+1 is said to be an associated metric if there exists a (1, 1) tensor
field φ such that

(2.1) dη(X,Y ) = g(X,φY ), η(X) = g(X, ξ), φ2 = −I + η ⊗ ξ.

From these equations we have

(2.2) φξ = 0, η ◦ φ = 0, g(φX, φY ) = g(X,Y )− η(X)η(Y ).

The manifold M equipped with the contact structure (φ, ξ, η, g) is called a contact
metric manifold [2], [3].

Given a contact metric manifold M2n+1(φ, ξ, η, g), we define a (1, 1) tensor field
h by h = £ξφ, where £ denotes the Lie differentiation. Then h is symmetric and
satisfies hφ = −φh. Thus, if λ is an eigenvalue of h with eigenvector X, −λ is
also an eigen value with eigen vector φX. Also we have Tr · h = Tr · φh = 0
and hξ = 0. Moreover, if ∇ denotes the Riemannian connection of g, then the
following relation holds.

(2.3) ∇Xξ = −φX − φhX.

A contact metric manifold is said to be Einstein if S(X,Y ) = λg(X,Y ), where
λ is a constant and η-Einstein if S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), where a and b
are smooth functions. A normal contact metric manifold is a Sasakian manifold.
An almost contact metric manifold is Sasakian if and only if

(2.4) (∇Xφ)Y = g(X,Y )ξ − η(Y )X,

X, Y ∈ TM , where ∇ is the Levi-Civita connection of the Riemannian metric g.
A contact metric manifold M2n+1(φ, ξ, η, g) for which ξ is a Killing vector field
is said to be a K-contact metric manifold. A Sasakian manifold is K-contact but
not conversely. However, a 3-dimensional K-contact manifold is Sasakian [7]. It is
well known that the tangent sphere bundle of a flat Riemannian manifold admits
a contact metric structure satisfying R(X,Y )ξ = 0 [4]. On the other hand, on a
Sasakian manifold, the following relation holds.

(2.5) R(X,Y )ξ = η(Y )X − η(X)Y.

It is well known that there exist contact metric manifolds for which the curvature
tensor R and the direction of the characteristic vector field ξ satisfy R(X,Y )ξ = 0
for any vector fields X and Y . For example, tangent sphere bundle of a flat
Riemannian manifold admits such a structure.

As a generalization of R(X,Y )ξ = 0 and the Sasakian case, D. E. Blair,
T. Koufogiorgos and B. J. Papantoniou [5] considered the (k, µ)-nullity distri-
bution on a contact metric manifold and gave several reasons for studying it. The
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(k, µ)-nullity distribution N(k, µ) [1], [5] of a contact metric manifold is defined
by

N(k, µ) : p→ Np(k, µ)

Np(k, µ) = [W ∈ TpM | R(X,Y )W = (kI + µh)(g(Y,W )X − g(X,W )Y )]

for all X,Y ∈ TM , where (k, µ) ∈ R2. A contact metric manifold M2n+1 with
ξ ∈ N(k, µ) is called a (k, µ)-contact metric manifold. Thus we have

(2.6) R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ].

Applying a D-homothetic deformation to a contact metric manifold with
R(X,Y )ξ = 0, we obtain a contact metric manifold satisfying (2.6). In [5], it
is proved that the standard contact metric structure on the tangent sphere bun-
dle T1(M) satisfies the condition that ξ belongs to the (k, µ)-nullity distribution
if and only if the base manifold is the space of constant curvature. There exist
examples in all dimensions and the condition that ξ belongs to the (k, µ)-nullity
distribution is invariant under D-homothetic deformations; in dimension greater
than 5, the condition determines the curvature completely; dimension 3 includes
the 3-dimensional unimodular Lie groups with the left invariant metric.

On (k, µ)-contact metric manifold, k ≤ 1. If k = 1, the structure is Sasakian
(h = 0 and µ is indeterminant) and if k < 1, the (k, µ)-nullity condition com-
pletely determines the curvature of M2n+1 [5]. In fact, for a (k, µ)-contact metric
manifold, the condition of being Sasakian manifold, a K-contact manifold, k = 1
and h = 0 are all equivalent. Again a (k, µ)-contact metric manifold reduces to an
N(k)-contact metric manifold if and only if µ = 0.

In a (k, µ)-contact metric manifold, the following relations hold [5], [6]:

h2 = (k − 1)φ2, k ≤ 1,(2.7)

(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX),(2.8)

R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X] + µ[g(hX, Y )ξ − η(Y )hX],(2.9)

S(X, ξ) = 2nkη(X),(2.10)

S(X,Y ) = [2(n− 1)− nµ]g(X,Y ) + [2(n− 1) + µ]g(hX, Y )

+ [2(1− n) + n(2k + µ)]η(X)η(Y ), n ≥ 1,(2.11)

r = 2n(2n− 2 + k − nµ),(2.12)

S(φX, φY ) = S(X,Y )− 2nkη(X)η(Y )− 2(2n− 2 + µ)g(hX, Y ),(2.13)

where S is the Ricci tensor of type (0, 2) and r is the scalar curvature of the
manifold. From (2.3), it follows that

(∇Xη)Y = g(X + hX, φY ).(2.14)

(∇Xh)Y = [(1− k)g(X,φY ) + g(X,hφY )]ξ

+ η(Y )[h(φX + φhX)]− µη(X)φhY.(2.15)
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Also in a (k, µ)-contact manifold, the following holds

(2.16)
η(R(X,Y )Z) = k[g(Y,Z)η(X)− g(X,Z)η(Y )]

+ µ[g(hY,Z)η(X)− g(hX,Z)η(Y )].

Especially for the case µ = 2(1 − n), from (2.11), it follows that the manifold is
η-Einstein.

Now we prove the following lemma.

Lemma 2.1. An Einstein (k, µ)-contact manifold is three dimensional and flat.

Proof. For an Einstein manifold we have S(X,Y ) = λg(X,Y ), where λ is a
constant. Comparing this value of S(X,Y ) with those given in (2.11), we have

(2.17)
λg(X,Y ) = [2(n− 1)− nµ]g(X,Y ) + [2(n− 1) + µ]g(hX, Y )

+ [2(1− n) + n(2k + µ)]η(X)η(Y ).

Putting X = Y = ξ in (2.17) and applying g(X, ξ) = η(X), η(ξ) = 1 and hξ = 0,
we obtain λ = 2nk. Therefore, the relation (2.17) becomes

(2.18)
2nkX = [2(n− 1)− nµ]X + [2(n− 1) + µ]hX

+ [2(1− n) + n(2k + µ)]η(X)ξ,

i.e.,

(2.19) [2(n− 1)− n(2k + µ)][X − η(X)ξ] + [2(n− 1) + µ]hX = 0.

Equating co-efficients of X and hX from both sides of (2.19), we obtain

(2.20) 2(n− 1) + µ = 0 and 2(n− 1)− n(2k + µ) = 0.

Using (2.20) in (2.18) we get

(2.21) 2nk = 2(n2 − 1).

Therefore, k = n2−1
n ≤ 1, so n = 1 is the only case. This gives µ = 0 which

with n = 1 gives k = 0. Applying these in (2.6), we get R(X,Y )ξ = 0.
Now in [4], D. E. Blair proved that a (2n + 1)-dimensional contact metric

manifold satisfying R(X,Y )ξ = 0 is locally isometric to En+1(0)×Sn(4) for n > 1
and flat if n = 1.

Therefore, we conclude that the manifold of our consideration is three dimen-
sional and flat. This proves the Lemma. �

3. Globally φ-Ricci symmetric (k, µ)-contact metric manifolds

Definition 3.1. A (k, µ)-contact metric manifold M2n+1(φ, ξ, η, g) is said to
be globally φ-Ricci symmetric if the Ricci operator Q satisfies

(3.1) φ2(∇XQ)(Y ) = 0

for all vector fields X,Y ∈ χ(M) and S(X,Y ) = g(QX,Y ). In particular, if X,
Y are orthogonal to ξ, then the manifold is said to be locally φ-Ricci symmetric.



ON φ-RICCI SYMMETRIC (k, µ)-CONTACT METRIC MANIFOLDS 209

Let us suppose that a (2n + 1)-dimensional (k, µ)-contact manifold M2n+1 is
globally φ-Ricci symmetric. Then by definition

φ2(∇XQ)(Y ) = 0.

Using (2.1),

−(∇XQ)Y + η(∇XQ)(Y )ξ = 0.(3.2)

From (3.2), it follows that

−g((∇XQ)(Y ), Z) + η((∇XQ)(Y ))η(Z) = 0,(3.3)

i.e.,

−g(∇XQ(Y )−Q(∇XY ), Z) + η((∇XQ)(Y ))η(Z) = 0.(3.4)

i.e.,

−g(∇XQ(Y ), Z) + g(Q∇XY, Z) + η((∇XQ)(Y ))η(Z) = 0.(3.5)

Putting Y = ξ in (3.5) and using (2.10), we obtain

(3.6) −2nkg(∇Xξ, Z) + g(Q(∇Xξ), Z) + η((∇XQ)ξ)η(Z) = 0.

Using (2.3) in (3.6), we have

(3.7)
2nkg(φX,Z) + 2nkg(φhX,Z)− S(φhX,Z)− S(φX,Z)

+η((∇XQ)ξ)η(Z) = 0.

Replacing Z by φZ in (3.7) and applying (2.2), we get

(3.8)
2nkg(φX, φZ) + 2nkg(φhX, φZ)− S(φhX, φZ)

−S(φX, φZ) = 0.

Replacing X by hX in (3.8) and using (2.1), (2.2) and (2.7), we have

(3.9)
2nkg(φhX, φZ)− S(φhX, φZ)

= (k − 1)S(φX, φZ)− 2nk(k − 1)g(φX, φZ).

Using (3.9) in (3.8), we obtain

(3.10) (k − 2)[S(φX, φZ)− 2nkg(φX, φZ)] = 0.

Since in (k, µ)-contact manifold k ≤ 1, we get from (3.10)

(3.11) S(φX, φZ) = 2nkg(φX, φZ).

Replacing X and Z by φX and φZ, respectively, in (3.11) and using (2.1) and
(2.10), we obtain

(3.12) S(X,Z) = 2nkg(X,Z).

Hence the manifold is an Einstein manifold. Thus we state the following propo-
sition.

Proposition 3.1. A (2n + 1)-dimensional globally φ-Ricci symmetric (k, µ)-
contact metric manifold is an Einstein manifold.



210 S. GHOSH and U. C. DE

Conversely, suppose that the manifold is an Einstein manifold. Then

(3.13) S(X,Y ) = λg(X,Y ),

where S(X,Y ) = g(QX,Y ) and λ is a constant. Therefore, we have

φ2(∇XQ)(Y ) = 0.

This helps us to conclude the following proposition.

Proposition 3.2. If a (2n + 1)-dimensional (k, µ)-contact metric manifold is
Einstein, then the manifold is globally φ-Ricci symmetric.

Combining Proposition 3.1 and 3.2, we can state the following theorem.

Theorem 3.1. A (2n+1)-dimensional (k, µ)-contact metric manifold is globally
φ-Ricci symmetric if and only if it is an Einstein manifold.

Again in view of Lemma 2.1 we have next theorem.

Theorem 3.2. If a (2n+1)-dimensional (k, µ)-contact metric manifold is glob-
ally φ-Ricci symmetric, then it is of dimension 3 and flat.

Since a globally φ-Ricci symmetric (2n + 1)-dimensional (k, µ)-contact metric
manifold is three dimensional and flat, we therefore consider 3-dimensional locally
φ-Ricci symmetric (k, µ)-contact metric manifolds in the next section.

4. Three dimensional locally φ-Ricci symmetric
(k, µ)-contact metric manifolds

In a 3-dimensional Riemannian manifold, we have

(4.1)
R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y, Z)X

− S(X,Z)Y +
r

2
[g(X,Z)Y − g(Y,Z)X].

Putting Z = ξ in (4.1) and using (2.10) for n = 1, we get

(4.2)
R(X,Y )ξ = η(Y )QX − η(X)QY

+ (2k − r

2
)[η(Y )X − η(X)Y ].

Using (2.6) in (4.2), we have

(4.3)

(
k − r

2

)
[η(Y )X − η(X)Y ]− µ[η(Y )hX − η(X)hY ]

+η(Y )QX − η(X)QY = 0.

Putting Y = ξ in (4.3) and using η(ξ) = 1, hξ = 0 and Qξ = 2k, we obtain

(4.4) QX =
(r

2
− k
)
X +

(
3k − r

2

)
η(X)ξ + µhX.

Differentiating (4.4) covariantly with respect to W , we obtain

(4.5)
(∇WQ)(X) =

1

2
dr(W )X − 1

2
dr(W )η(X)ξ +

(
3k − r

2

)
(∇W η)(X)ξ

+
(

3k − r

2

)
η(X)∇W ξ + µ(∇Wh)(X).
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Using (2.15) in (4.5), we have

(4.6)

(∇WQ)(X) =
1

2
dr(W )X − 1

2
dr(W )η(X)ξ +

(
3k − r

2

)
(∇W η)(X)ξ

+
(

3k − r

2

)
η(X)∇W ξ + µ[(1− k)g(W,φX)ξ

+ g(W,hφX)ξ + η(X)h(φW + φhW )− µη(W )φhX].

Using (2.3), (2.7) and the relation φh = −hφ in (4.6), we get

(4.7)

(∇WQ)(X) =
1

2
dr(W )X − 1

2
dr(W )η(X)ξ +

(
3k − r

2

)
(∇W η)(X)ξ

−
(

3k − r

2

)
η(X)φW −

(
3k − r

2
+ µ

)
η(X)φhW

+ µ(1− k)g(W,φX)ξ + µg(W,hφX)ξ

− µ(1− k)η(X)φW − µ2η(W )φhX.

Now applying φ2 on both sides of (4.7) and using (2.1) and (2.2), we obtain
(4.8)

φ2(∇WQ)(X) = −1

2
dr(W )X +

1

2
dr(W )η(X)ξ +

[
3k − r

2
+ µ(1− k)

]
η(X)φW

+
(

3k − r

2
+ µ

)
η(X)φhW + µ2η(W )φhX.

If we consider a locally φ-Ricci symmetric (k, µ)-contact manifold, we have
η(X) = η(W ) = 0 and using these into (4.8), we get

(4.9) φ2(∇WQ)(X) = −1

2
dr(W ).

In view of equation (4.9), we conclude that in the following theorem.

Theorem 4.1. A 3-dimensional (k, µ)-contact manifold is locally φ-Ricci sym-
metric if and only if the scalar curvature r is constant.

5. Example

In this section we, construct an example of a locally φ-Ricci symmetric 3-dimensio-
nal (k, µ)-contact metric manifold.

We consider 3-dimensional manifold M = {(x, y, z) ∈ R3}, where (x, y, z) are
the standard coordinates in R3. Let e1, e2, e3 are three vector fields in R3 which
satisfy

[e1, e2] = (1 + λ)e3, [e2, e3] = 2e1 and [e3, e1] = (1− λ)e2,

where λ is a real number.
Let g be the Riemannian metric defined by

g(e1, e3) = g(e2, e3) = g(e1, e2) = 0, g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by

η(U) = g(U, e1)
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for any U ∈ χ(M). Let φ be the (1, 1)-tensor field defined by

φe1 = 0, φe2 = e3, φe3 = −e2.

Using the linearity of φ and g, we have

η(e1) = 1,

φ2(U) = −U + η(U)e1

and

g(φU, φW ) = g(U,W )− η(U)η(W )

for any U,W ∈ χ(M). Moreover,

he1 = 0, he2 = λe2 and he3 = −λe3.

The Riemannian connection ∇ of the metric tensor g is given by Koszul’s formula
which is given by

2g(∇XY,Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

Using Koszul’s formula, we get the following:

∇e1e1 = 0, ∇e1e2 = 0, ∇e1e3 = 0,

∇e2e1 = −(1 + λ)e3, ∇e2e2 = 0, ∇e2e3 = (1 + λ)e1,

∇e3e1 = (1− λ)e2, ∇e3e2 = −(1− λ)e1, ∇e3e3 = 0.

In view of the above relations, we have

∇Xξ = −φX − φhX for e1 = ξ

Therefore, the manifold is a contact metric manifold with the contact structure
(φ, ξ, η, g).

Now, we find the curvature tensors as follows:

R(e1, e2)e2 = (1− λ2)e1, R(e3, e2)e2 = −(1− λ2)e3,

R(e1, e3)e3 = (1− λ2)e1, R(e2, e3)e3 = −(1− λ2)e2,

R(e2, e3)e1 = 0, R(e1, e2)e1 = −(1− λ2)e2,

R(e3, e1)e1 = (1− λ2)e3.

In view of the expressions of the curvature tensors, we conclude that the man-
ifold is a (1− λ2, 0)-contact metric manifold.

Using the expressions of the curvature tensor, we find the values of the Ricci
tensors as follows:

S(e1, e1) = 2(1− λ2), S(e2, e2) = 0, S(e3, e3) = 0.

Hence, r = S(e1, e1) + S(e2, e2) + S(e3, e3) = 2(1− λ2).
Again we calculate the following:

S(e1, e2) = S(e1, e0) = 0, S(e2, e1) = S(e2, e3) = 0, S(e3, e1) = S(e3, e2) = 0.



ON φ-RICCI SYMMETRIC (k, µ)-CONTACT METRIC MANIFOLDS 213

Hence, we get he following:

Qe1 = 2(1− λ2)e1, Qe2 = 0 and Qe3 = 0.

Let X and Y are any two vector fields given by

X = a1e1 + a2e2 + a3e3 and Y = b1e1 + b2e2 + b3e3.

Then we get

(5.1) φ2(∇YQ)X = 2(1− λ2)[(1 + λ)a1b2e3 − (1− λ)a1b2e3].

It is clear from (5.1) that for λ = 1, the manifold is φ-Ricci symmetric and also
we see that for λ = 1, the scalar curvature r = 2, which is constant. Hence this
example verifies Theorem 4.1.
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