ON 3-DIMENSIONAL ALMOST KENMOTSU MANIFOLDS ADMITTING CERTAIN NULLITY DISTRIBUTION

K. MANDAL AND U. C. DE

ABSTRACT. The aim of this paper is to characterize 3-dimensional almost Kenmotsu manifolds with ξ belonging to the $(k,\mu)'$ -nullity distribution and $h'\neq 0$ satisfying certain geometric conditions. Finally, we give an example to verify some results.

1. Introduction

The conformal curvature tensor C is invariant under conformal transformations and vanishes identically for 3-dimensional manifolds. Using this fact, many authors [4, 6, 7, 14] studied several types of 3-dimensional manifolds.

A Riemannian manifold is called semisymmetric (resp., Ricci semisymmetric) if $R(X,Y) \cdot R = 0$ (resp. $R(X,Y) \cdot S = 0$) [19], where R(X,Y) is considered as a field of linear operators acting on R (resp., S).

The notion of k-nullity distribution $(k \in \mathbb{R})$ was introduced by Gray [11] and Tanno [21] in the study of Riemannian manifolds (M, g), which is defined for any $p \in M$ and $k \in \mathbb{R}$, as follows:

$$(1.1) N_p(k) = \{ Z \in T_pM : R(X,Y)Z = k[g(Y,Z)X - g(X,Z)Y] \}$$

for any $X, Y \in T_pM$, where T_pM denotes the tangent vector space of M at any point $p \in M$ and R denotes the Riemannian curvature tensor of type (1,3).

Recently, Blair, Koufogiorgos and Papantoniou [3] introduced the (k,μ) -nullity distribution which is a generalized notion of the k-nullity distribution on a contact metric manifold $(M^{2n+1}, \phi, \xi, \eta, g)$ and defined for any $p \in M^{2n+1}$ and $k, \mu \in \mathbb{R}$, as follows:

(1.2)
$$N_p(k,\mu) = \{ Z \in T_p M^{2n+1} : R(X,Y)Z \\ = k[g(Y,Z)X - g(X,Z)Y] + \mu[g(Y,Z)hX - g(X,Z)hY] \}$$

for any $X, Y \in T_pM$ and $h = \frac{1}{2} \mathcal{L}_{\xi} \phi$, where \mathcal{L} denotes the Lie differentiation.

Next, Dileo and Pastore [9] introduced another generalized notion of the k-nullity distribution which is named the $(k, \mu)'$ -nullity distribution on an almost Kenmotsu

Received December 15, 2015; revised February 20, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 53C25, 53D15.

Key words and phrases. Almost Kenmotsu manifold; Ricci semisymmetric; Codazzi type Ricci tensor; Cyclic parallel Ricci tensor; η -parallel Ricci tensor; Locally ϕ -Ricci symmety; Einstein manifold.

manifold $(M^{2n+1}, \phi, \xi, \eta, g)$ and is defined for any $p \in M^{2n+1}$ and $k, \mu \in \mathbb{R}$, as follows:

(1.3)
$$N_p(k,\mu)' = \{ Z \in T_p M^{2n+1} : R(X,Y)Z \\ = k[g(Y,Z)X - g(X,Z)Y] + \mu[g(Y,Z)h'X - g(X,Z)h'Y] \},$$

for any $X, Y \in T_pM$ and $h' = h \circ \phi$.

On the other hand, in 1972, Kenmotsu [15] introduced a special class of almost contact metric manifolds known as Kenmotsu manifolds nowadays. Recently, Dileo and Pastore ([8], [9], [10]) and Wang et al. ([22], [23], [24], [25], [26]) studied almost Kenmotsu manifolds with some nullity distributions and obtained some classification theorems. In [9], Dileo and Pastore gave some classifications on 3-dimensional almost Kenmotsu manifolds assuming ξ belongs to the $(k, \mu)'$ -nullity distribution. Later, Wang and Liu [26] obtained some theorems on 3-dimensional almost Kenmotsu manifolds.

Motivated by these circumstances, in this paper, we study some meaningful geometric conditions in 3-dimensional almost Kenmotsu manifolds such that ξ belongs to the $(k, \mu)'$ -nullity distribution and $h' \neq 0$.

The present paper is organized as follows: In Section 2, we give some basic results on almost Kenmotsu manifolds with ξ belonging to the $(k,\mu)'$ -nullity distribution. Section 3 is devoted to study 3-dimensional Ricci semisymmetric almost Kenmotsu manifolds with ξ belonging to the $(k,\mu)'$ -nullity distribution. Section 4 deals with Codazzi type Ricci tensor with ξ beloning to the $(k,\mu)'$ -nullity distribution. Cyclic parallel Ricci tensor with ξ beloning to the $(k,\mu)'$ -nullity distribution is studied in Section 5. In the next two sections, we consider η -parallel Ricci tensor and locally ϕ -Ricci symmetric almost Kenmotsu manifolds of dimension 3 assuming ξ belongs to the $(k,\mu)'$ -nullity distribution. Finally, we give an example to verify some results.

2. Almost Kenmotsu manifolds

Let M be a (2n+1)-dimensional differentiable manifold endowed with an almost contact metric structure (ϕ, ξ, η, g) , where ϕ, ξ, η are tensor fields on M of types (1,1), (1,0), (0,1), respectively, and a Riemannian metric g such that

(2.1)
$$\phi^2 = -I + \eta \otimes \xi, \qquad \eta(\xi) = 1, g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

where I denotes the identity endomorphism ([1], [2]). Then also $\phi \xi = 0$ and $\eta \circ \phi = 0$; both can be derived from (2.1).

The fundamental 2-form Φ on an almost contact metric manifold is defined by $\Phi(X,Y)=g(X,\phi Y)$ for any vector fields X,Y of T_pM^{2n+1} . An almost Kenmotsu manifold is defined as an almost contact metric manifold such that $d\eta=0$ and $d\Phi=2\eta\wedge\Phi$. An almost contact metric manifold is said to be normal if (1,2)-type torsion tensor N_ϕ vanishes, where $N_\phi=[\phi,\phi]+2d\eta\otimes\xi$ and $[\phi,\phi]$ is the Nijenhuis torsion of ϕ [1]. Obviously, a normal almost Kenmotsu manifold is a Kenmotsu manifold. Also Kenmotsu manifolds can be characterized by $(\nabla_X\phi)Y=g(\phi X,Y)\xi-\eta(Y)\phi X$ for any vector fields X,Y. It is well known [15] that a Kenmotsu manifold M^{2n+1} is locally a warped product $I\times_f N^{2n}$, where N^{2n} is a

Kähler manifold, I is an open interval with coordinate t and the warping function f, defined by $f=ce^t$ for some positive constant c. Let $\mathcal D$ be the distribution orthogonal to ξ and defined by $\mathcal D=\mathrm{Ker}(\eta)=\mathrm{Im}(\phi)$. In an almost Kenmotsu manifold $\mathcal D$ is an integrable distribution as η is closed. Further, on an almost Kenmotsu manifold M^{2n+1} , we let the two tensor fields $h=\frac{1}{2}\pounds_{\xi}\phi$ and $l=R(\cdot,\xi)\xi$, which are symmetric and satisfy the following relations $[\mathbf 9,\mathbf 23]$:

(2.2)
$$h\xi = 0$$
, $l\xi = 0$, $tr(h) = 0$, $tr(h') = 0$, $h\phi + \phi h = 0$,

(2.3)
$$\nabla_X \xi = -\phi^2 X + h' X \qquad (\Rightarrow \nabla_{\xi} \xi = 0),$$

$$(2.4) \phi l\phi - l = 2(h^2 - \phi^2),$$

(2.5)
$$R(X,Y)\xi = \eta(X)(Y - \phi hY) - \eta(Y)(X - \phi hX) + (\nabla_Y \phi h)X - (\nabla_X \phi h)Y$$
 for any vector fields X,Y .

Now we provide some basic results on almost Kenmotsu manifolds with ξ belonging to the $(k, \mu)'$ -nullity distribution. The (1, 1)-type symmetric tensor field h' satisfies $h'\phi + \phi h' = 0$ and $h'\xi = 0$. Also it is clear that

(2.6)
$$h = 0 \Leftrightarrow h' = 0, \quad h'^2 = (k+1)\phi^2 \quad (\Leftrightarrow h^2 = (k+1)\phi^2).$$

For an almost Kenmotsu manifold, we have from (1.3)

(2.7)
$$R(X,Y)\xi = k[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)h'X - \eta(X)h'Y],$$

(2.8)
$$R(\xi, X)Y = k[g(X, Y)\xi - \eta(Y)X] + \mu[g(h'X, Y)\xi - \eta(Y)h'X],$$

where $k, \mu \in \mathbb{R}$. Contracting Y in (2.8), we have

$$(2.9) S(X,\xi) = 2k\eta(X).$$

Let $X \in \mathcal{D}$ be the eigen vector of h' corresponding to the eigen value λ . It follows from (2.6) that $\lambda^2 = -(k+1)$, a constant. Therefore, $k \le -1$ and $\lambda = \pm \sqrt{-k-1}$. We denote by $[\lambda]'$ and $[-\lambda]'$ the corresponding eigenspaces associated with h' corresponding to the non-zero eigen value λ and $-\lambda$, respectively. We have the following lemmas.

Lemma 2.1. ([9, Proposition 4.1]) Let $(M^{2n+1}, \phi, \xi, \eta, g)$ be an almost Kenmotsu manifold such that ξ belongs to the $(k, \mu)'$ -nullity distribution and $h' \neq 0$. Then k < -1, $\mu = -2$ and $\operatorname{Spec}(h') = \{0, \lambda, -\lambda\}$ with 0 as simple eigen value and $\lambda = \sqrt{-k-1}$. The distributions $[\xi] \oplus [\lambda]'$ and $[\xi] \oplus [-\lambda]'$ are integrable with totally geodesic leaves. The distributions $[\lambda]'$ and $[-\lambda]'$ are integrable with totally umbilical leaves.

Lemma 2.2. ([9, Lemma 4.1]) Let $(M^{2n+1}, \phi, \xi, \eta, g)$ be an almost Kenmotsu manifold with $h' \neq 0$ and ξ belonging to the (k, -2)'-nullity distribution. Then for any $X, Y \in T_pM$,

$$(2.10) \qquad (\nabla_X h') Y = -q(h'X + h'^2 X, Y) \xi - \eta(Y)(h'X + h'^2 X).$$

Takahashi [20] introduced the notion of ϕ -symmetry in the study of Sasakian manifolds. Then De and Sarkar [5] introduced a generalized notion of ϕ -symmetry called ϕ -Ricci symmetry in the study of Sasakian manifolds.

Definition 2.1. An almost Kenmotsu manifold is said to be ϕ -Ricci symmetric if it satisfies

$$\phi^2((\nabla_W Q)Y) = 0$$

for any vector fields $W,Y \in T_pM$, where Q is the Ricci operator defined by S(X,Y) = g(QX,Y). In addition, if the vector fields W,Y are orthogonal to ξ , then the manifold is called locally ϕ -Ricci symmetric manifold.

3. RICCI SEMISYMMETRIC ALMOST KENMOTSU MANIFOLDS

In a 3-dimensional Riemannian manifold, we have [27]

(3.1)
$$R(X,Y)Z = S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY - \frac{r}{2}\{g(Y,Z)X - g(X,Z)Y\},$$

where Q is the Ricci operator defined by g(QX,Y) = S(X,Y) for all $X,Y \in T_pM$ and r is the scalar curvature of the manifold.

Putting $Y = Z = \xi$ in (3.1) and using Lemma 2.1 and (2.9), we obtain

(3.2)
$$QX = \left(\frac{r}{2} - k\right)X - \left(\frac{r}{2} - 3k\right)\eta(X)\xi - 2h'X,$$

which is equivalent to

(3.3)
$$S(X,Y) = \left(\frac{r}{2} - k\right)g(X,Y) - \left(\frac{r}{2} - 3k\right)\eta(X)\eta(Y) - 2g(h'X,Y)$$

for any $X, Y \in T_pM$.

With the help of (3.2) and (3.3), it follows from (3.1) that (3.4)

$$R(X,Y)Z = \left(\frac{r}{2} - 2k\right) [g(Y,Z)X - g(X,Z)Y] - \left(\frac{r}{2} - 3k\right) [g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y] - 2g(Y,Z)h'X + 2g(X,Z)h'Y - 2g(h'Y,Z)X + 2g(h'X,Z)Y$$

for any $X, Y, Z \in T_pM$.

Now we suppose that the manifold M^3 is Ricci semisymmetric, that is,

$$(3.5) \qquad (R(X,Y) \cdot S)(U,V) = 0$$

for all vector fields X, Y, U, V, which implies

(3.6)
$$S(R(X,Y)U,V) + S(U,R(X,Y)V) = 0.$$

Substituting $X = U = \xi$ in (3.6), we get

(3.7)
$$S(R(\xi, Y)\xi, V) + S(\xi, R(\xi, Y)V) = 0.$$

Using (2.9), it follows from (3.7) that

(3.8)
$$S(R(\xi, Y)\xi, V) + 2k\eta(R(\xi, Y)V) = 0.$$

Making use of (2.8) and (3.8), we have

(3.9)
$$2k^2\eta(Y)\eta(V) - kS(Y,V) + 2S(h'Y,V) + 2k^2q(Y,V) - 2k^2\eta(Y)\eta(V) - 4kq(h'Y,V) = 0,$$

which implies

(3.10)
$$kS(Y,V) - 2S(h'Y,V) - 2k^2g(Y,V) + 4kg(h'Y,V) = 0.$$

Replacing Y by h'Y in (3.10) and using the fact $h'^2 = (k+1)\phi^2$, it yields to

$$(3.11) kS(h'Y,V) + 2(k+1)S(Y,V) - 2k^2q(h'Y,V) - 4k(k+1)q(Y,V) = 0.$$

Adding k times of (3.10) and two times of (3.11), we have

$$(3.12) (k+2)^2 [S(Y,V) - 2kg(Y,V)] = 0.$$

Now we consider the following two cases:

Case 1. $k \neq -2$. It follows from (3.12) that

$$S(Y, V) = 2kg(Y, V),$$

which implies that the manifold is an Einstein manifold.

Case 2. k = -2. Then by [9, Corollary 4.1], the manifold is an CR-manifold. From the above discussions, we have the following theorem.

Theorem 3.1. Let $(M^3, \phi, \xi, \eta, g)$ be an almost Kenmotsu manifold such that ξ belongs to the $(k, \mu)'$ -nullity distribution with $h' \neq 0$. If M^3 is Ricci semisymmetric, then, either the manifold is

- 1. an Einstein manifold, or
- $2. \ a\ CR$ -manifold.

Also Ricci symmetric manifold ($\nabla S = 0$) implies Ricci semisymmetric ($R \cdot S = 0$), therefore we can state the following:

Corollary 3.1. Let $(M^3, \phi, \xi, \eta, g)$ be an almost Kenmotsu manifold such that ξ belongs to the $(k, \mu)'$ -nullity distribution with $h' \neq 0$. If M^3 is Ricci symmetric, then either the manifold is

- 1. an Einstein manifold or
- $2. \ \ a \ CR\text{-}manifold.$

A Riemannian manifold is said to be Ricci-recurrent $[{f 18}]$ if the Ricci tensor S is non-zero and satisfies the condition

$$(\nabla_X S)(Y, Z) = A(X)S(Y, Z),$$

where $X, Y, Z \in T_pM$ and A is a non-zero 1-form.

In [13], Jun et al proved that a Ricci-recurrent Riemannian manifold is Ricci semisymmetric.

Hence we can state the following corollary.

Corollary 3.2. Let $(M^3, \phi, \xi, \eta, g)$ be an almost Kenmotsu manifold such that ξ belongs to the $(k, \mu)'$ -nullity distribution with $h' \neq 0$. If M^3 is Ricci-recurrent, then either the manifold is

- 1. an Einstein manifold or
- 2. a CR-manifold.

4. Codazzi type Ricci tensor

In this section, we assume that the manifold under consideration satisfies Codazzi type [12] of Ricci tensor, then the Ricci tensor S satisfies

$$(4.1) \qquad (\nabla_X S)(Y, Z) = (\nabla_Y S)(X, Z).$$

Taking the covariant derivative of (3.3) along arbitrary vector field Y and using (2.3), we have

(4.2)
$$(\nabla_Y S)(X, Z) = \frac{\operatorname{dr}(Y)}{2} [g(X, Z) - \eta(X)\eta(Z)] - (\frac{r}{2} - 3k) [g(X, Y)\eta(Z) + g(h'Y, X)\eta(Z) + g(Y, Z)\eta(X) + g(h'Y, Z)\eta(X) - 2\eta(X)\eta(Y)\eta(Z)] - 2g((\nabla_Y h')X, Z).$$

Interchanging X and Y in (4.2), we get

(4.3)
$$(\nabla_X S)(Y, Z) = \frac{\operatorname{dr}(X)}{2} [g(Y, Z) - \eta(Y)\eta(Z)] - \left(\frac{r}{2} - 3k\right) [g(X, Y)\eta(Z) + g(h'X, Y)\eta(Z) + g(X, Z)\eta(Y) + g(h'X, Z)\eta(Y) - 2\eta(Y)\eta(X)\eta(Z)] - 2g((\nabla_X h')Y, Z).$$

Making use of (4.2) and (4.3) in (4.1) yields to

$$\frac{\operatorname{dr}(X)}{2}[g(Y,Z) - \eta(Y)\eta(Z)] - \frac{\operatorname{dr}(Y)}{2}[g(X,Z) - \eta(X)\eta(Z)]$$

$$(4.4) \qquad -2g((\nabla_X h')Y, Z) + 2g((\nabla_Y h')X, Z) - \left(\frac{r}{2} - 3k\right)[g(X,Z)\eta(Y) + g(h'X,Z)\eta(Y) - g(Y,Z)\eta(X) - g(h'Y,Z)\eta(X)] = 0.$$

It is known [16] that Cartan hypersurfaces are manifolds with non-parallel Ricci tensor satisfying (4.1). From (4.1), it follows that r = constant. Then (4.4) implies

(4.5)
$$\left(\frac{r}{2} - 3k\right) \left[g(X, Z)\eta(Y) + g(h'X, Z)\eta(Y) - g(Y, Z)\eta(X) - g(h'Y, Z)\eta(X)\right] + 2g((\nabla_X h')Y, Z) - 2g[(\nabla_Y h')X, Z] = 0.$$

Making use of (2.10) and (2.3), we have

(4.6)
$$(\nabla_Y h') X - (\nabla_X h') Y = \eta(Y) h' X - \eta(X) h' Y - (k+1) \eta(Y) X + (k+1) \eta(X) Y$$
.
In view of (4.5) and (4.6), it follows that

$$\left(\frac{r}{2} - 3k\right) \left[g(X, Z)\eta(Y) + g(h'X, Z)\eta(Y) - g(Y, Z)\eta(X) - g(h'Y, Z)\eta(X)\right] + 2\left[(k+1)\left[g(X, Z)\eta(Y) - g(Y, Z)\eta(X)\right] - g(h'X, Z)\eta(Y) + g(h'Y, Z)\eta(X)\right] = 0.$$

Substituting $X = \xi$ in (4.7) gives

(4.8)
$$(r - 6k) [g(Y,Z) + g(h'Y,Z) - \eta(Y)\eta(Z)]$$
$$+4[(k+1)g(Y,Z) - (k+1)\eta(Y)\eta(Z) - g(h'Y,Z)] = 0.$$

Putting Y = h'Y in (4.8) and applying $h'^2 = (k+1)\phi^2$ yield to

(4.9)
$$(r - 6k)[g(h'Y, Z) - (k+1)g(Y, Z) + (k+1)\eta(Y)\eta(Z)]$$

$$+4(k+1)[g(Y, Z) - \eta(Y)\eta(Z) + g(h'Y, Z)] = 0.$$

Subtracting (4.9) from (4.8), we have

$$(4.10) (r-6k)(k+2)[g(Y,Z)-\eta(Y)\eta(Z)]-4(k+2)g(h'Y,Z)=0.$$

From (4.10), it follows that either k = -2 or

(4.11)
$$g(h'Y,Z) = \frac{r - 6k}{4} [g(Y,Z) - \eta(Y)\eta(Z)].$$

Making use of (3.3) and (4.11), we obtain

$$S(Y,Z) = 2kg(Y,Z),$$

that is, the manifold is an Einstein manifold.

Hence by the similar argument as in Section 3, we can state the following.

Theorem 4.1. Let $(M^3, \phi, \xi, \eta, g)$ be an almost Kenmotsu manifold such that ξ belongs to the $(k, \mu)'$ -nullity distribution with $h' \neq 0$. If M^3 admits Codazzi type Ricci tensor, then either the manifold is

- 1. an Einstein manifold or
- $2. \ a\ CR$ -manifold.

5. Cyclic Parallel Ricci tensor

This section is devoted to study cyclic parallel Ricci tensor in almost Kenmotsu manifolds with ξ belonging to the $(k,\mu)'$ -nullity distribution and $h' \neq 0$ of dimension 3. Suppose the manifold under consideration satisfies cyclic parallel Ricci tensor [12], then the Ricci tensor S satisfies

(5.1)
$$(\nabla_X S)(Y, Z) + (\nabla_Y S)(Z, X) + (\nabla_Z S)(X, Y) = 0.$$

Taking the covariant derivative of (3.3) along arbitrary vector field Z and using (2.3), we have

(5.2)
$$(\nabla_Z S)(X,Y) = \frac{\operatorname{dr}(Z)}{2} [g(X,Y) - \eta(X)\eta(Y)] - \left(\frac{r}{2} - 3k\right) [g(X,Z)\eta(Y) + g(Y,Z)\eta(X) + g(h'X,Z)\eta(Y) + g(h'Y,Z)\eta(X) - 2\eta(X)\eta(Y)\eta(Z)[-2g((\nabla_Z h')X,Y).$$

Similarly,

(5.3)
$$(\nabla_X S)(Y, Z) = \frac{\operatorname{dr}(X)}{2} [g(Y, Z) - \eta(Y)\eta(Z)] - \left(\frac{r}{2} - 3k\right) [g(X, Y)\eta(Z) + g(X, Z)\eta(Y) + g(h'X, Y)\eta(Z) + g(h'X, Z)\eta(Y) - 2\eta(X)\eta(Y)\eta(Z)] - 2g((\nabla_X h')Y, Z),$$

and

(5.4)
$$(\nabla_{Y}S)(Z,X) = \frac{dr(Y)}{2} [g(Z,X) - \eta(Z)\eta(X)] - \left(\frac{r}{2} - 3k\right) [g(Y,Z)\eta(X) + g(Y,X)\eta(Z) + g(h'Y,Z)\eta(X) + g(h'Y,X)\eta(Z) - 2\eta(X)\eta(Y)\eta(Z)] - 2g((\nabla_{Y}h')Z,X).$$

It is known [16] that Cartan hypersurfaces are manifolds with non-parallel Ricci tensor satisfying (5.1). From (5.1), it follows that r = constant. Making use of (5.2)–(5.4) in (5.1), we have

$$(r - 6k) [g(X,Y)\eta(Z) + g(Y,Z)\eta(X) + g(X,Z)\eta(Y) + g(h'X,Y)\eta(Z) + g(h'Y,Z)\eta(X) + g(h'X,Z)\eta(Y) - 3\eta(X)\eta(Y)\eta(Z)] + 2g((\nabla_Z h')X,Y) + 2g((\nabla_X h')Y,Z) + 2g((\nabla_Y h')Z,X) = 0.$$

Using (2.10) and (2.3), we obtain

$$g((\nabla_Z h')X, Y) + g((\nabla_X h')Y, Z) + g((\nabla_Y h')Z, X)$$

$$(5.6) = 2[(k+1)[g(X,Y)\eta(Z) + g(Y,Z)\eta(X) + g(X,Z)\eta(Y)] -3\eta(X)\eta(Y)\eta(Z) - g(h'X,Y)\eta(Z) - g(h'Y,Z)\eta(X) - g(h'X,Z)\eta(Y)].$$

In account of (5.5) and (5.6), we get (5.7)

$$\begin{split} (r-6k)\left[g(X,Y)\eta(Z) + g(Y,Z)\eta(X) + g(X,Z)\eta(Y) \right. \\ \left. + g(h'X,Y)\eta(Z) + g(h'Y,Z)\eta(X) + g(h'X,Z)\eta(Y) - 3\eta(X)\eta(Y)\eta(Z)\right] \\ \left. + 4[(k+1)[g(X,Y)\eta(Z) + g(Y,Z)\eta(X) + g(X,Z)\eta(Y) - 3\eta(X)\eta(Y)\eta(Z)] \right. \\ \left. - g(h'X,Y)\eta(Z) - g(h'Y,Z)\eta(X) - g(h'X,Z)\eta(Y)\right] = 0. \end{split}$$

Setting $Z = \xi$ in (5.7) yields to

(5.8)
$$(r - 6k)[g(X,Y) + g(h'X,Y) - \eta(X)\eta(Y)]$$

$$+4[(k+1)g(X,Y) - (k+1)\eta(X)\eta(Y) - g(h'X,Y)] = 0.$$

Replacing X by h'X in (5.8) and applying $h'^2 = (k+1)\phi^2$, it implies

(5.9)
$$(r - 6k)[g(h'X, Y) - (k+1)g(X, Y) + (k+1)\eta(X)\eta(Y)]$$

$$+ 4(k+1)\{g(X, Y) - \eta(X)\eta(Y) + g(h'X, Y)\} = 0.$$

Subtracting (5.9) from (5.8), we have

$$(5.10) (r-6k)(k+2)[g(X,Y)-\eta(X)\eta(Y)]-4(k+2)g(h'X,Y)=0.$$

From (5.10), we see that either k = -2 or

(5.11)
$$g(h'X,Y) = \frac{r - 6k}{4} [g(X,Y) - \eta(X)\eta(Y)].$$

With the help of (3.3) and (5.11), we get

$$S(X,Y) = 2kg(X,Y),$$

that is, the manifold is an Einstein manifold.

Therefore, by the similar argument as in Section 3, we have the following theorem.

Theorem 5.1. Let $(M^3, \phi, \xi, \eta, g)$ be an almost Kenmotsu manifold such that ξ belongs to the $(k, \mu)'$ -nullity distribution with $h' \neq 0$. If M^3 admits cyclic parallel Ricci tensor, then, either the manifold is

- 1. an Einstein manifold, or
- $2. \ a\ CR$ -manifold.

6. η -parallel Ricci tensor

Definition 6.1. The Ricci tensor S of an almost Kenmotsu manifold M is called η -parallel if it satisfies

(6.1)
$$(\nabla_X S)(\phi Y, \phi Z) = 0$$

for all vector fields X, Y and Z.

The notion of η -parallel Ricci tensor for Sasakian manifolds was given by Kon [17]. From (3.3), we have

(6.2)
$$S(\phi X, \phi Y) = \left(\frac{r}{2} - k\right) g(\phi X, \phi Y) - 2g(h'\phi X, \phi Y).$$

Taking covariant derivative of (6.2) along any vector field Z we get

(6.3)
$$(\nabla_Z S)(\phi X, \phi Y) = \frac{\operatorname{dr}(Z)}{2} g(\phi X, \phi Y) - 2g((\nabla_Z h')\phi X, \phi Y).$$

Using (2.10), we obtain

(6.4)
$$g((\nabla_Z h')\phi X, \phi Y) = 0.$$

Taking account of (6.4), from (6.3), we get

(6.5)
$$(\nabla_Z S)(\phi X, \phi Y) = \frac{\operatorname{dr}(Z)}{2} g(\phi X, \phi Y).$$

In view of (6.1) and (6.5), we have

(6.6)
$$\frac{\operatorname{dr}(Z)}{2}g(\phi X, \phi Y) = 0,$$

that is, r = constant.

Conversely, if r = constant, then it can be easily shown that

$$(\nabla_X S)(\phi Y, \phi Z) = 0$$

for all vector fields X, Y and Z.

Hence we can state the following theorem.

Theorem 6.1. The Ricci tensor of an almost Kenmotsu manifold M of dimension 3 with ξ belonging to the $(k, \mu)'$ -nullity distribution and $h' \neq 0$ is η -parallel if and only if the scalar curvature r is constant.

7. Locally ϕ -Ricci symmetric almost Kenmotsu manifolds

In this section, we study locally ϕ -Ricci symmetric almost Kenmotsu manifolds of dimension 3 with ξ belonging to the $(k, \mu)'$ -nullity distribution and $h' \neq 0$.

Taking covariant derivative of (3.2) along any vector field X, we have

(7.1)
$$(\nabla_X Q)Y = \frac{\operatorname{dr}(X)}{2} [Y - \eta(Y)\xi] - \left(\frac{r}{2} - 3k\right) [(\nabla_X \eta)Y\xi + \eta(Y)\nabla_X \xi] - 2(\nabla_X h')Y.$$

Applying ϕ^2 on both sides of (7.1) and using (2.3) yield to

(7.2)
$$\phi^{2}((\nabla_{X}Q)Y) = \frac{\operatorname{dr}(X)}{2} [-Y + \eta(Y)\xi] - \left(\frac{r}{2} - 3k\right) \eta(Y)\phi^{2}(\nabla_{X}\xi) - 2\phi^{2}((\nabla_{X}h')Y).$$

Making use of (2.10), the above equation implies

(7.3)
$$\phi^{2}((\nabla_{X}Q)Y) = \frac{\operatorname{dr}(X)}{2} [-Y + \eta(Y)\xi] - (\frac{r}{2} - 3k) \eta(Y)\phi^{2}(\nabla_{X}\xi) + 2\eta(Y)\phi^{2}(h'X + h'^{2}X).$$

In view of (2.11) and (7.3), we have

$$\frac{\operatorname{dr}(X)}{2}Y = 0,$$

that is, r = constant.

Conversely, if r is constant, then the manifold is locally ϕ -Ricci symmetric. Thus we have the following theorem.

Theorem 7.1. An almost Kenmotsu manifold M of dimension 3 with ξ belonging to the $(k, \mu)'$ -nullity distribution and $h' \neq 0$ is locally ϕ -Ricci symmetric if and only if the scalar curvature r is a constant, provided the scalar curvature r is invariant under ξ .

Hence from Theorem 6.1 and Theorem 7.1, we have the following corollary.

Corollary 7.1. In an almost Kenmotsu manifold M of dimension 3 with ξ belonging to the $(k, \mu)'$ -nullity distribution and $h' \neq 0$, the following statements are equivalent:

- 1. Ricci tensor is η -parallel;
- 2. manifold is locally ϕ -Ricci symmetric;
- 3. scalar curvature r is a constant, provided the scalar curvature r is invariant under ξ .

8. Example of a 3-dimensional almost Kenmotsu manifold

We consider 3-dimensional manifold $M=\{(x,y,z)\in\mathbb{R}^3\}$, where (x,y,z) are the standard coordinates in \mathbb{R}^3 . Let ξ,e_2,e_3 are three vector fields in \mathbb{R}^3 which satisfy $[\mathbf{9}]$

$$[e_2, e_3] = 0,$$
 $[\xi, e_2] = -e_2 - e_3,$ $[\xi, e_3] = -e_2 - e_3.$

Let g be the Riemannian metric defined by

$$g(\xi, \xi) = g(e_2, e_2) = g(e_3, e_3) = 1,$$

 $g(\xi, e_2) = g(\xi, e_3) = g(e_2, e_3) = 0.$

Let η be the 1-form defined by $\eta(Z) = g(Z,\xi)$ for any $Z \in T(M)$. Let ϕ be the (1,1) tensor field defined by

$$\phi(\xi) = 0,$$
 $\phi(e_2) = e_3,$ $\phi(e_3) = -e_2.$

Using the linearity of ϕ and g, we have $\eta(\xi) = 1$, $\phi^2 X = -X + \eta(X)\xi$, and $g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$ for any $X, Y \in \chi(M)$. Thus the structure (ϕ, ξ, η, g) is an almost contact structure. Also we have

$$h'\xi = 0,$$
 $h'(e_2) = e_3,$ $h'(e_3) = e_2.$

The Riemannian connection ∇ of the metric g is given by the Koszul's formula

$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) - g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]).$$

Using the Koszul's formula, we obtain

$$\begin{array}{lll} \nabla_{\xi}\xi=0, & \nabla_{\xi}e_{2}=0, & \nabla_{\xi}e_{3}=0, \\ \nabla_{e_{2}}\xi=e_{2}+e_{3}, & \nabla_{e_{2}}e_{2}=-\xi, & \nabla_{e_{2}}e_{3}=-\xi, \\ \nabla_{e_{3}}\xi=e_{2}+e_{3}, & \nabla_{e_{3}}e_{2}=-\xi, & \nabla_{e_{3}}e_{3}=-\xi. \end{array}$$

In view of the above relations, we get

$$\nabla_X \xi = -\phi^2 X + h' X$$

for any $X \in \chi(M)$. Therefore, the structure (ϕ, ξ, η, g) is an almost contact metric structure such that $d\eta = 0$ and $d\Phi = 2\eta \wedge \Phi$, so that M is an almost Kenmotsu manifold.

By the above results, we can easily obtain the components of the curvature tensor R as follows:

$$R(\xi, e_2)\xi = 2(e_2 + e_3),$$
 $R(\xi, e_2)e_2 = -2\xi,$ $R(\xi, e_2)e_3 = -2\xi,$ $R(e_2, e_3)\xi = R(e_2, e_3)e_2 = R(e_2, e_3)e_3 = 0,$ $R(\xi, e_3)\xi = 2(e_2 + e_3),$ $R(\xi, e_3)e_2 = -2\xi,$ $R(\xi, e_3)e_3 = -2\xi.$

With the help of the expressions of the curvature tensor, we conclude that the characteristic vector field ξ belongs to the $(k,\mu)'$ -nullity distribution with k=-2 and $\mu=-2$.

Using the expressions of the curvature tensor, we find the values of the Ricci tensor S as follows:

$$S(\xi,\xi) = -4,$$
 $S(e_2,e_2) = -2,$ $S(e_3,e_3) = -2.$

Therefore, the scalar curvature $r = S(\xi, \xi) + S(e_2, e_2) + S(e_3, e_3) = -8$, a constant. Hence, Theorem 6.1 and Theorem 7.1 are verified.

Acknowledgment. The authors are thankful to the referee for his/her valuable suggestions towards the improvement of the paper.

References

- Blair D. E., Contact manifold in Riemannian geometry. Lecture Notes on Mathematics, Springer, Berlin, 509, 1976.
- Blair D. E., Riemannian geometry on contact and symplectic manifolds, Progr. Math., 203, Birkhäuser, 2010.

- Blair D. E., Koufogiorgos, T. and Papantoniou, B.J., Contact metric manifolds satisfying a nullity condition, Israel. J. Math. 91 (1995), 189–214.
- De U. C. and Pathak, G., On 3-dimensional Kenmotsu manifolds, Indian J. Pure Appl. Math. 35 (2004), 159–165.
- 5. De U. C. and Sarkar A., On ϕ -Ricci symmetric Sasakian manifolds, Proceedings of the Jangjeon Mathematical Society 11 (2008), 47–52.
- De U. C. and Sarkar A., On three dimensional Trans-Sasakian manifolds, Extracta Math. 23 (2008), 265–277.
- De U. C. and Sarkar A., On three dimensional quasi-Sasakian manifolds, SUT J. Math., 45 (2009), 59–71.
- Dileo G. and Pastore A. M., Almost Kenmotsu manifolds and local symmetry, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 343–354.
- Dileo G. and Pastore A. M., Almost Kenmotsu manifolds and nullity distributions, J. Geom. 93 (2009), 46–61.
- 10. Dileo G. and Pastore A. M., Almost Kenmotsu manifolds with a condition of η -parallelism, Differential Geom. Appl. 27 (2009), 671–679.
- Gray A., Spaces of constancy of curvature operators, Proc. Amer. Math. Soc. 17 (1966), 897-902.
- 12. Gray A., Two classes of Riemannian manifolds, Geom. Dedicata 7 (1978), 259-280.
- Jun J.-B., De, U. C. and Pathak G., On Kenmotsu manifolds, J. Korean Math. Soc. 42 (2005), 435–445.
- Jun J.-B., Kim I.-B. and Kim U.-K., On 3-dimensional almost contact metric manifolds, Kyungpook Math. J. 34 (1994), 293–301.
- Kenmotsu K., A class of almost contact Riemannian manifolds, Tohoku Math. Journal. 24 (1972), 93–103.
- 16. Ki U-H. and Nakagawa H., A characterization of the cartan hypersurfaces in a sphere, Tohoku Math. J. 39 (1987), 27–40.
- 17. Kon M., Invariant submanifolds in Sasakian manifolds, Math. Ann. 219 (1976), 277–290.
- Patterson E. M., Some theorems on Ricci-recurrent spaces, J. London Math. Soc. 27 (1952),287–295.
- 19. Szabó Z. I., Structure theorems on Riemannian spaces satisfying $R(X,Y) \cdot R$, the local version, J. Diff. Geom. 17 (1982), 531–582.
- Takahashi T., Sasakian φ-symmetic spaces, Tohoku Mathematical Journal 29 (1977), 91–113.
- Tanno S., Some differential equations on Riemannian manifolds, J. Math. Soc. Japan 30 (1978), 509–531.
- 22. Wang Y. and Liu X., Second order parallel tensors on almost Kenmotsu manifolds satisfying the nullity distributions, Filomat 28 (2014), 839–847.
- Wang Y. and Liu X., Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions, Ann. Polon. Math. 112 (2014), 37–46.
- Wang Y. and Liu X., On φ-recurrent almost Kenmotsu manifolds, Kuwait J. Sci. 42 (2015), 65–77.
- 25. Wang Y. and Liu X., On a type of almost Kenmotsu manifolds with harmonic curvature tensors, Bull. Belg. Math. Soc. Simon Stevin 22 (2015), 15–24.
- **26.** Wang Y. and Liu X., On the classification of almost Kenmotsu manifolds of dimension 3, Hindawi Publishing Corporation, http://dx.doi.org/10.1155/2013/927159.
- 27. Willmore T. J., An Introduction to Differential Geometry, Oxford Univ. Press, 1959.
- K. Mandal and U. C. De, Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kol-700019, West Bengal, India, e-mail: krishanu.mandal013@gmail.com; uc_de@yahoo.com