ON A QUARTER-SYMMETRIC METRIC CONNECTION IN AN ε-LORENTZIAN PARA-SASAKIAN MANIFOLD

A. HASEEB, A. PRAKASH AND M. D. SIDDIQI

Abstract. In this paper, we consider a quarter-symmetric metric connection in an ε-Lorentzian para-Sasakian manifold. We investigate the curvature tensor and the Ricci tensor of an ε-Lorentzian para-Sasakian manifold with a quarter-symmetric metric connection. Also we have shown that ε-Lorentzian para-Sasakian manifolds with a quarter-symmetric metric connection are η-Einstein manifolds if they are conformally flat, quasi conformally flat and ξ-conformally flat.

1. Introduction

In [3], A. Bejancu and K. L. Duggal introduced the concept of ε-Sasakian manifolds. Later, it was shown by X. Xufeng and C. Xiaoli [16] that these manifolds are real hypersurface of indefinite Kaehlerian manifolds. In 2007, R. Kumar, R. Rani and R. K. Nagaich studied some interesting properties of ε-Sasakian manifolds [7]. In 2010, Tripathi et al. studied ε-almost paracontact manifolds and in particular, ε-para Sasakian manifolds [14]. On the other hand, the concept of ε-Kenmotsu manifolds was introduced by U. C. De and A. Sarkar [5] who showed that the existence of new structure on an indefinite metrics influences the curvatures. K. Matsumoto introduced the notion of Lorentzian para-Sasakian manifolds [8] and this was further studied by I. Mihai et al. [9], C. Özgür [10], A. A. Shaikh et al. [12] and many others. Recently, LP-Sasakian manifolds with a quarter symmetric metric connection have been studied by M. Ahmad et al. [1], R. N. Singh and Shravan K. Pandey [13], Venkatesha et al. [15] and many others. U. C. De and A. K. Mondal discussed quarter symmetric metric connection in a 3-dimensional quasi-Sasakian manifold [4]. M. Ali and Z. Ahsan studied conformal curvature tensor for the space time of general relativity [2].

A linear connection ∇ in a Riemannian manifold M is said to be a quarter-symmetric connection [6] if the torsion tensor T of the connection ∇

$$T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]$$

satisfies

$$T(X, Y) = \eta(Y)\phi X - \eta(X)\phi Y,$$

Received December 30, 2015; revised April 13, 2016.

2010 Mathematics Subject Classification. Primary 53C50, 53C25.

Key words and phrases. ε-Lorentzian para-Sasakian manifold; quarter-symmetric metric connection; η-Einstein manifold; conformally flat ε-Lorentzian para-Sasakian manifold.
where η is a 1-form and ϕ is a $(1,1)$ tensor field. If moreover, a quarter-symmetric connection ∇ satisfies the condition

$$(\nabla_X g)(Y,Z) = 0$$

for all $X,Y,Z \in \chi(M)$, where $\chi(M)$ is the Lie algebra of vector fields of the manifold M, then ∇ is said to be a quarter-symmetric metric connection, otherwise it is said to be a quarter-symmetric non-metric connection. If we put $\phi X = X$ and $\phi Y = Y$, then the quarter-symmetric metric connection reduces to a semi-symmetric metric connection \cite{17}. Thus the notion of quarter-symmetric connection generalizes the idea of the semi-symmetric connection.

Motivated by the above studies, in this paper, we study some new results on a quarter-symmetric metric connection in an ε-Lorentzian para-Sasakian manifold.

The paper is organized as follows: In Section 2, we give a brief account of an ε-LP-Sasakian manifold and define quarter-symmetric metric connection. In Section 3, we find the curvature tensor, the Ricci tensor and the scalar curvature in an ε-LP-Sasakian manifold with a quarter-symmetric metric connection. In Section 4, we show that the conformally flat ε-LP-Sasakian manifold with a quarter-symmetric metric connection is an η-Einstein manifold of a quasi constant curvature. Section 5 is devoted to the study of quasi conformally flat and ξ-conformally flat ε-LP-Sasakian manifold with a quarter-symmetric metric connection and in both cases we have shown that such manifolds are η-Einstein manifolds.

2. Preliminaries

A differentiable manifold of dimension n is called an ε-Lorentzian para-Sasakian (briefly, ε-LP-Sasakian), if it admits a $(1,1)$-tensor field ϕ, a contravariant vector field ξ, a 1-form η and a Lorentzian metric g which satisfy

$$\phi^2 X = X + \eta(X)\xi, \quad \eta(\xi) = -1,$$

(2.1)

$$g(\xi,\xi) = -\varepsilon, \quad \eta(X) = \varepsilon g(X,\xi), \quad \phi\xi = 0, \quad \eta(\phi X) = 0,$$

(2.2)

$$g(\phi X,\phi Y) = g(X,Y) - \varepsilon \eta(X)\eta(Y)$$

(2.3)

for all vector fields $X, Y \in \chi(M)$, where ε is 1 or -1 according as ξ is a space like or time like vector field.

If an ε-contact metric manifold satisfies

$$\nabla_X (\phi) (Y) = g(X,Y)\xi + \varepsilon \eta(Y)X + 2\varepsilon \eta(X)\eta(Y)\xi,$$

(2.4)

where ∇ denotes the Levi-Civita connection with respect to g, then M is called an ε-LP-Sasakian manifold.

An ε-almost contact metric manifold is an ε-LP-Sasakian manifold if and only if

$$\nabla_X \xi = \varepsilon \phi X.$$

(2.5)

Moreover, the curvature tensor R, the Ricci tensor S and the Ricci operator Q in an ε-LP-Sasakian manifold M with respect to the Levi-Civita connection satisfy
the following equations [11]:

(2.6) \((\nabla_X \eta)Y = g(\phi X, Y)\),

(2.7) \(R(X, Y)\xi = \eta(Y)X - \eta(X)Y\),

(2.8) \(R(\xi, X)Y = \varepsilon g(X, Y)\xi - \eta(Y)X\),

(2.9) \(R(\xi, X)\xi = -R(X, \xi)\xi = X + \eta(X)\xi\),

(2.10) \(\eta(R(X, Y)Z) = \varepsilon g(Y, Z)\eta(X) - g(X, Z)\eta(Y)\),

(2.11) \(S(X, \xi) = (n - 1)\eta(X), \quad Q\xi = \varepsilon(n - 1)\xi\),

where \(X, Y, Z \in \chi(M)\) and \(g(QX, Y) = S(X, Y)\).

We note that if \(\varepsilon = 1\) and the structure vector field \(\xi\) is space like, then an \(\varepsilon\)-LP-Sasakian manifold is an usual LP-Sasakian manifold.

Definition 2.1. An \(\varepsilon\)-LP-Sasakian manifold called a manifold of quasi-constant curvature if the curvature tensor \(R'\) of type \((0, 4)\) satisfies the condition

\[
R'(X, Y, Z, W) = a[g(Y, Z)g(X, W) - g(X, Z)g(Y, W)] \\
+ b[g(X, W)T(Y)T(Z) - g(X, Z)T(Y)T(W) \\
+ g(Y, Z)T(X)T(W) - g(Y, W)T(X)T(Z)],
\]

where \(R'(X, Y, Z, W) = g(R(X, Y)Z, W)\), \(R\) is the curvature tensor of type \((1, 3)\); \(a, b\) are scalar functions and \(\rho\) is a unit vector field defined by

\[
g(X, \rho) = T(X)
\]

for any vector fields \(X, Y, Z, W \in \chi(M)\).

Definition 2.2. An \(\varepsilon\)-LP-Sasakian manifold is said to be an \(\eta\)-Einstein manifold if its Ricci tensor \(S\) of type \((0, 2)\) satisfies

\[
S(X, Y) = ag(X, Y) + b\eta(X)\eta(Y),
\]

where \(a\) and \(b\) are scalar functions of \(\varepsilon\).

Contracting (2.14), we have

\[
r = na - b.
\]

On the other hand, putting \(X = Y = \xi\) in (2.14) and using (2.11), we also have

\[
-(n - 1) = -a\varepsilon + b.
\]

Hence it follows from (2.15) and (2.16) that

\[
a = \frac{r - (n - 1)}{n - \varepsilon}, \quad b = -\frac{n(n - 1) - \varepsilon r}{n - \varepsilon}.
\]

So the Ricci tensor \(S\) of an \(\eta\)-Einstein \(\varepsilon\)-LP-Sasakian manifold is given by

\[
S(X, Y) = \frac{r - (n - 1)}{n - \varepsilon}g(X, Y) - \frac{n(n - 1) - \varepsilon r}{n - \varepsilon}\eta(X)\eta(Y).
\]
Let M be an n-dimensional ε-LP-Sasakian manifold and ∇ be the Levi-Civita connection on M. The relation between the quarter-symmetric metric connection $\bar{\nabla}$ and the Levi-Civita connection ∇ on M is given by
\begin{equation}
(2.18) \; \bar{\nabla}_X Y = \nabla_X Y + \eta(Y)\phi X - g(\phi X, Y)\xi.
\end{equation}

3. Curvature tensor on an ε-LP-Sasakian manifold with a quarter-symmetric metric connection

Let M be an n-dimensional ε-LP-Sasakian manifold. The curvature tensor \bar{R} of M with respect to a quarter-symmetric metric connection $\bar{\nabla}$ is defined by
\begin{equation}
(3.1) \; \bar{R}(X,Y)Z = \bar{\nabla}_X \bar{\nabla}_Y Z - \bar{\nabla}_Y \bar{\nabla}_X Z - \bar{\nabla}_{[X,Y]} Z.
\end{equation}

From (2.6), (2.18) and (3.1), we have
\begin{equation}
(3.2) \; \bar{R}(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.
\end{equation}

Using (2.4) and (2.5) in (3.2), we get
\begin{equation}
(3.3) \; \bar{R}(X,Y)Z = R(X,Y)Z + \varepsilon(n - 1)\eta(Y)X - \varepsilon g(\phi Y, Z)\psi,
\end{equation}
where $X,Y,Z \in \chi(M)$ and $R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$ is the Riemannian curvature tensor of the connection ∇.

Now contracting X in (3.3), we get
\begin{equation}
(3.4) \; \bar{S}(Y,Z) = S(Y,Z) + \varepsilon(n - 1)\eta(Y)\eta(Z) - \varepsilon g(\phi Y, Z)\psi,
\end{equation}
where \bar{S} and S are the Ricci tensors of the connections $\bar{\nabla}$ and ∇, respectively, on M and $\psi = \text{trace} \phi$. This gives
\begin{equation}
(3.5) \; \bar{Q}Y = QY + (n - 1)\eta(Y)\xi - \varepsilon\phi Y\psi.
\end{equation}

Contracting again Y and Z in (3.4), it follows that
\begin{equation}
(3.6) \; \bar{r} = r - \varepsilon(n - 1) - \varepsilon\psi^2,
\end{equation}
where \bar{r} and r are the scalar curvatures of the connections $\bar{\nabla}$ and ∇, respectively, on M.

Lemma 3.1. Let M be an n-dimensional ε-LP-Sasakian manifold with a quarter-symmetric metric connection, then
\begin{align}
(3.7) \; \bar{R}(X,Y)\xi &= (1 - \varepsilon)[\eta(Y)X - \eta(X)Y], \\
(3.8) \; \bar{R}(\xi,X)Y &= -\bar{R}(X,\xi)Y = -(1 - \varepsilon)[X + \eta(X)\xi][\eta(Y)], \\
(3.9) \; \bar{R}(\xi,X)\xi &= (1 - \varepsilon)[X + \eta(X)\xi],
\end{align}
ON A QUARTER-SYMMETRIC METRIC CONNECTION

\[\bar{S}(X, \xi) = (1 - \varepsilon)(n - 1)\eta(X), \]
\[\bar{Q}\xi = -(1 - \varepsilon)(n - 1)\xi \]

for any vector fields \(X, Y \in \chi(M) \).

Proof. By replacing \(Z = \xi \) and using (2.1), (2.2) and (2.7) in (3.3), we get (3.7). (3.8) and (3.9) easily follow from (2.1), (2.2), (2.7) and (3.3). By taking \(Y = \xi \) and using (2.1) and (2.2) in (3.4), (3.10) follows. By considering \(Y = \xi \) and using (2.1), (2.2) and (2.11) in (3.5), we get (3.11). \(\Box \)

Lemma 3.2. Let \(M \) be an \(n \)-dimensional \(\varepsilon \)-LP-Sasakian manifold with a quarter-symmetric metric connection, then

\[\bar{\nabla}_X \phi(Y) = -(1 - \varepsilon)[X + \eta(X)\xi]\eta(Y), \]
\[\bar{\nabla}_X \xi = -(1 - \varepsilon)\phi X \]

for any vector fields \(X, Y \in \chi(M) \).

Proof. By the covariant differentiation of \(\phi Y \) with respect to \(X \), we have

\[\nabla_X \phi Y = (\nabla_X \phi)Y + \phi(\nabla_X Y) \]

which by using (2.1), (2.2) and (2.18) takes the form

\[(\nabla_X \phi)Y = (\nabla_X \phi)Y - g(\phi X, \phi Y)\xi - \eta(Y)X - \eta(X)\eta(Y)\xi. \]

Using (2.3) and (2.4) in the last equation, we get

\[(\nabla_X \phi)(Y) = -(1 - \varepsilon)[X + \eta(X)\xi]\eta(Y). \]

To prove (3.13), we replace \(Y = \xi \) in (2.18) and get

\[\nabla_X \xi = \nabla_X \xi + \eta(\xi)X - g(\phi X, \xi)\xi \]

which by using (2.1), (2.2) and (2.5), reduces to

\[\nabla_X \xi = -(1 - \varepsilon)\phi X. \]

\(\Box \)

Now, let \(R \) and \(\bar{R} \) be the curvature tensors of the connections \(\nabla \) and \(\bar{\nabla} \), respectively, on \(M \) given by

\[R(X, Y, Z, W) = g(R(X, Y)Z, W) \quad \text{and} \quad \bar{R}(X, Y, Z, W) = g(\bar{R}(X, Y)Z, W). \]

Therefore from (3.3), we have

\[\bar{R}(X, Y, Z, U) = R(X, Y, Z, U) + \varepsilon[g(X, U)\eta(Y) - g(Y, U)\eta(X)]\eta(Z) \]
\[+ [g(Y, Z)\eta(X) - g(X, Z)\eta(Y)]\eta(U) \]
\[+ \varepsilon[g(\phi X, Z)g(\phi Y, U) - g(\phi Y, Z)g(\phi X, U)]. \]

Interchanging \(X \) and \(Y \) in (3.14), we have

\[\bar{R}(Y, X, Z, U) = R(Y, X, Z, U) + \varepsilon[g(Y, U)\eta(X) - g(X, U)\eta(Y)]\eta(Z) \]
\[+ [g(X, Z)\eta(Y) - g(Y, Z)\eta(X)]\eta(U) \]
\[+ \varepsilon[g(\phi Y, Z)g(\phi X, U) - g(\phi X, Z)g(\phi Y, U)]. \]
By adding (3.14) and (3.15) and using the fact that
\[R(X,Y,Z,U) + R(Y,X,Z,U) = 0, \]
we get
\[(3.16) \]
\[\bar{R}(X,Y,Z,U) + \bar{R}(Y,X,Z,U) = 0. \]
Again interchanging \(U \) and \(Z \) in (3.14), we have
\[(3.17) \]
\[\bar{R}(X,Y,U,Z) = R(X,Y,U,Z) + \varepsilon[g(X,Z)\eta(Y) - g(Y,Z)\eta(X)]\eta(U) \]
\[+ [g(Y,U)\eta(X) - g(X,U)\eta(Y)]\eta(Z) \]
\[+ \varepsilon[g(\phi X,U)g(\phi Y,Z) - g(\phi Y,U)g(\phi X,Z)]. \]
Now adding (3.14) and (3.17) and using the fact that
\[R(X,Y,Z,U) + R(Y,X,U,Z) = 0, \]
we get
\[(3.18) \]
\[\bar{R}(X,Y,Z,U) + \bar{R}(X,Y,U,Z) = (1 - \varepsilon)[g(Y,U)\eta(X) - g(X,U)\eta(Y)]\eta(Z) \]
\[+ (1 - \varepsilon)[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)]\eta(U). \]
Again interchanging pair of slots in (3.14), we have
\[(3.19) \]
\[\bar{R}(Z,U,X,Y) = R(Z,U,X,Y) + \varepsilon[g(Z,Y)\eta(U) - g(U,Y)\eta(Z)]\eta(X) \]
\[+ [g(U,X)\eta(Z) - g(X,Z)\eta(U)]\eta(Y) \]
\[+ \varepsilon[g(\phi Z,X)g(\phi Y,U) - g(\phi U,X)g(\phi Z,Y)]. \]
Now, subtracting (3.19) from (3.14) and using the fact that
\[R(X,Y,Z,U) - R(Z,U,X,Y) = 0, \]
we get
\[(3.20) \]
\[\bar{R}(X,Y,Z,U) - \bar{R}(Z,U,X,Y) \]
\[= (1 - \varepsilon)[g(Y,Z)\eta(X)\eta(U) - g(X,U)\eta(Y)\eta(Z)]. \]
Thus in view of (3.16), (3.18) and (3.20), we can state the following theorem.

Theorem 3.1. In an \(\varepsilon \)-LP-Sasakian manifold with a quarter-symmetric metric connection, we have:

(i) \(\bar{R}(X,Y,Z,U) + \bar{R}(Y,X,Z,U) = 0, \)

(ii) \(\bar{R}(X,Y,Z,U) + \bar{R}(Y,X,U,Z) = (1 - \varepsilon)[g(Y,U)\eta(X) - g(X,U)\eta(Y)]\eta(Z) \]
\[+ (1 - \varepsilon)[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)]\eta(U), \]

(iii) \(\bar{R}(X,Y,Z,U) - \bar{R}(Z,U,X,Y) = (1 - \varepsilon)[g(Y,Z)\eta(X)\eta(U) - g(X,U)\eta(Y)\eta(Z)] \]
for any vector fields \(X,Y,Z,U \in \chi(M). \)

Now, let \(\bar{R}(X,Y)Z = 0 \), therefore from (3.3), we have
\[R(X,Y)Z = \varepsilon[\eta(X)Y - \eta(Y)X]\eta(Z) - \varepsilon[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)]\xi \]
\[+ \varepsilon[g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y]. \]
Taking inner product of the above equation (3.21) with \(\xi \), we have
\[(3.22) \]
\[g(R(X,Y)Z,\xi) = -[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)] \]
which can be written as
\[(3.23) \]
\[g(R(X,Y)Z,U) = -\varepsilon[g(Y,Z)g(X,U) - g(X,Z)g(Y,U)]. \]
Thus we can state the following theorem.
Theorem 3.2. If the curvature tensor of a quarter-symmetric metric connection in an ε-LP-Sasakian manifold M vanishes, then the manifold is of constant curvature $(-\varepsilon)$ and consequently it is locally isometric to the Hyperbolic space $H^n(-\varepsilon)$.

4. Conformally flat ε-LP-Sasakian manifold with a quarter-symmetric metric connection

Definition 4.1. The conformal curvature tensor \tilde{C} of type $(1,3)$ of an n-dimensional ε-LP-Sasakian manifold with a quarter-symmetric metric connection $\tilde{\nabla}$, is given by

\[
\tilde{C}(X,Y)Z = \tilde{R}(X,Y)Z - \frac{1}{(n-2)}[\tilde{S}(Y,Z)X - \tilde{S}(X,Z)Y + g(Y,Z)\tilde{Q}X
\]

\[
- g(X,Z)\tilde{Q}Y] + \frac{\tilde{r}}{(n-1)(n-2)}[g(Y,Z)X - g(X,Z)Y],
\]

where \tilde{Q} is the Ricci operator with respect to a quarter-symmetric metric connection related by $g(\tilde{Q}X,Y) = \tilde{S}(X,Y)$ and \tilde{r} is the scalar curvature with respect to a quarter-symmetric metric connection.

Let us assume that the manifold M with respect to a quarter-symmetric metric connection is conformally flat, that is $\tilde{C} = 0$. Then from (4.1), it follows that

\[
\tilde{R}(X,Y)Z = \frac{1}{(n-2)}[\tilde{S}(Y,Z)X - \tilde{S}(X,Z)Y + g(Y,Z)\tilde{Q}X - g(X,Z)\tilde{Q}Y]
\]

\[
- g(X,Z)\tilde{Q}Y] + \frac{\tilde{r}}{(n-1)(n-2)}[g(Y,Z)X - g(X,Z)Y].
\]

Taking inner product of (4.2) with ξ and using (2.2) and (3.10), we have

\[
g(\tilde{R}(X,Y)Z,\xi) = \frac{\varepsilon}{(n-2)}[\tilde{S}(Y,Z)\eta(X) - \tilde{S}(X,Z)\eta(Y)
\]

\[
- (1 - \varepsilon)(n-1)g(Y,Z)\eta(X) + (1 - \varepsilon)(n-1)g(X,Z)\eta(Y)]
\]

\[
- \frac{\varepsilon\tilde{r}}{(n-1)(n-2)}[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)].
\]

Putting $X = \xi$ and using (2.1), (2.2) and (3.8) in (4.3), we get

\[
\tilde{S}(Y,Z) = [(1 - \varepsilon)(n-1) + \frac{\tilde{r}}{n-1}]g(Y,Z)
\]

\[
+ [-2(1 - \varepsilon)(n-1) + \frac{\varepsilon\tilde{r}}{n-1}]\eta(Y)\eta(Z).
\]

Therefore, (4.4) is of the form

\[
\tilde{S}(Y,Z) = ag(Y,Z) + b\eta(Y)\eta(Z),
\]

where $a = (1 - \varepsilon)(n-1) + \frac{\tilde{r}}{n-1}$ and $b = -2(1 - \varepsilon)(n-1) + \frac{\varepsilon\tilde{r}}{n-1}$.

Next, using (4.4) in (4.2), we have

\[
\begin{align*}
(4.5) \quad g(\overline{R}(X,Y)Z&W) & = \frac{1}{(n-2)} \left[(2(1-\varepsilon)(n-1) + \frac{2\bar{r}}{n-1} \right) \\
& \cdot (g(Y,Z)g(X,W) - g(X,Z)g(Y,W)) \\
& + \left(\frac{\varepsilon\bar{r}}{n-1} - 2(1-\varepsilon)(n-1) \right) \left(\eta(Y)\eta(Z)g(X,W) \\
& - \eta(Y)\eta(W)g(X,Z) + \eta(X)\eta(W)g(Y,Z) - \eta(X)\eta(Z)g(Y,W) \right) \\
& - \frac{\bar{r}}{(n-1)(n-2)} \left[g(Y,Z)g(X,W) - g(X,Z)g(Y,W) \right].
\end{align*}
\]

which by simplifying takes the form

\[
(4.6) \quad g(\overline{R}(X,Y)Z&W) = \frac{2(1-\varepsilon)(n-1)^2 + \bar{r}}{(n-1)(n-2)} \\
\cdot (g(Y,Z)g(X,W) - g(X,Z)g(Y,W)) \\
+ \frac{\varepsilon\bar{r} - 2(1-\varepsilon)(n-1)^2}{(n-1)(n-2)} \left(\eta(Y)\eta(Z)g(X,W) - \eta(Y)\eta(W)g(X,Z) \\
+ \eta(X)\eta(W)g(Y,Z) - \eta(X)\eta(Z)g(Y,W) \right).
\]

Thus by virtue of (4.4) and (4.6), we can state the following theorem.

Theorem 4.2. An \(n\)-dimensional conformally flat \(\varepsilon\)-LP-Sasakian manifold with a quarter-symmetric metric connection is an \(\eta\)-Einstein manifold of quasi constant curvature.

5. **Quasi conformally flat and \(\xi\)- conformally flat \(\varepsilon\)-LP-Sasakian manifold with a quarter-symmetric metric connection**

Definition 5.1. An \(\varepsilon\)-LP-Sasakian manifold is said to be:

(i) quasi conformally flat with a quarter-symmetric metric connection if

\[
(5.1) \quad g(\overline{C}(X,Y)Z&W) = 0, \quad X,Y,Z,W \in \chi(M),
\]

(ii) \(\xi\)-conformally flat with a quarter-symmetric metric connection if

\[
(5.2) \quad \overline{C}(X,Y)\xi = 0, \quad X,Y \in \chi(M).
\]

First we consider quasi conformally flat \(\varepsilon\)-LP-Sasakian manifold with a quarter-symmetric metric connection. Therefore from (4.1) and (5.1), we have

\[
\begin{align*}
(5.3) \quad g(\overline{R}(X,Y)Z&W) & = \frac{1}{(n-2)} [\overline{S}(Y,Z)g(X,\phi W) - \overline{S}(X,Z)g(Y,\phi W) \\
& + g(Y,Z)g(\overline{Q}X,\phi W) - g(X,Z)g(\overline{Q}Y,\phi W)] \\
& + \frac{\bar{r}}{(n-1)(n-2)} [g(Y,Z)g(X,\phi W) - g(X,Z)g(Y,\phi W)] = 0,
\end{align*}
\]

\[
\begin{align*}
& + \left(\frac{\varepsilon\bar{r}}{n-1} - 2(1-\varepsilon)(n-1) \right) \left(\eta(Y)\eta(Z)g(X,W) \\
& - \eta(Y)\eta(W)g(X,Z) + \eta(X)\eta(W)g(Y,Z) - \eta(X)\eta(Z)g(Y,W) \right) \\
& - \frac{\bar{r}}{(n-1)(n-2)} \left[g(Y,Z)g(X,W) - g(X,Z)g(Y,W) \right].
\end{align*}
\]
which by considering \(Y = Z = \xi \) and using (2.2), (3.9)–(3.11) reduce to

\[
\bar{S}(X, \phi W) = \left[(1 - \epsilon) + \frac{\bar{r}}{n - 1} \right] g(X, \phi W).
\]

Now replacing \(W = \phi W \) and using (2.1), (2.2) and (3.10) in (5.4), we get

\[
\bar{S}(X, W) = \left[(1 - \epsilon) + \frac{\bar{r}}{n - 1} \right] g(X, W) + \left[-n(1 - \epsilon) + \frac{\epsilon \bar{r}}{n - 1} \right] \eta(X)\eta(W).
\]

Thus we can state the following theorem.

Theorem 5.2. An \(n \)-dimensional quasi conformally flat \(\epsilon \)-LP-Sasakian manifold with a quarter-symmetric metric connection \(\bar{\nabla} \) is an \(\eta \)-Einstein manifold.

Next, by virtue of (4.1) and (5.2), we can write

\[
g[\bar{R}(X, Y)\xi - \frac{1}{n - 2} (\bar{S}(Y, \xi)X - \bar{S}(X, \xi)Y + g(Y, \xi)QX - g(X, \xi)QY) + \frac{\bar{r}}{(n - 1)(n - 2)} (g(Y, \xi)X - g(X, \xi)Y), W] = 0.
\]

Now using (2.2), (3.7) and (3.10) in (5.6), we have

\[
\left[\frac{\bar{r} + (1 - \epsilon)(n - 1)^2 - (1 - \epsilon)(n - 1)(n - 2)}{n - 1} \right] (\eta(Y)g(X, W) - \eta(X)g(Y, W)) + \eta(Y)\bar{S}(X, W) - \eta(X)\bar{S}(Y, W) = 0,
\]

which by taking \(Y = \xi \) and using (2.1), takes the form

\[
\bar{S}(X, W) = -\left[\frac{\bar{r} + (1 - \epsilon)(n - 1)^2 - (1 - \epsilon)(n - 1)(n - 2)}{n - 1} \right] g(X, W)
- \left[\frac{\epsilon \bar{r} - 2(1 - \epsilon)(n - 1)^2 + (1 - \epsilon)(n - 1)(n - 2)}{n - 1} \right] \eta(X)\eta(W).
\]

Thus we can state the following theorem.

Theorem 5.3. An \(n \)-dimensional \(\xi \)-conformally flat \(\epsilon \)-LP-Sasakian manifold with a quarter-symmetric metric connection \(\bar{\nabla} \) is an \(\eta \)-Einstein manifold.

Acknowledgment. The authors are thankful to the referee for his valuable suggestions for the improvement of the paper.

References

A. Haseeb, Department of Mathematics, Faculty of Science, Jazan University, Jazan, Kingdom of Saudi Arabia, \textit{e-mail}: malikhaseeb80@gmail.com

A. Prakash, Department of Mathematics, National Institute of Technology, Kurukshetra-136191, India, \textit{e-mail}: amitmath@nitkkr.ac.in

M. D. Siddiqi, Department of Mathematics, Faculty of Science, Jazan University, Jazan, Kingdom of Saudi Arabia, \textit{e-mail}: anallintegral@gmail.com