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ON A QUARTER-SYMMETRIC METRIC CONNECTION

IN AN ε-LORENTZIAN PARA-SASAKIAN MANIFOLD

A. HASEEB, A. PRAKASH and M. D. SIDDIQI

Abstract. In this paper, we consider a quarter-symmetric metric connection in an

ε-Lorentzian para-Sasakian manifold. We investigate the curvature tensor and the
Ricci tensor of an ε-Lorentzian para-Sasakian manifold with a quarter-symmetric

metric connection. Also we have shown that ε-Lorentzian para-Sasakian manifolds

with a quarter-symmetric metric connection are η-Einstein manifolds if they are
conformally flat, quasi conformally flat and ξ-conformally flat.

1. Introduction

In [3], A. Bejancu and K. L. Duggal introduced the concept of ε-Sasakian mani-
folds. Later, it was shown by X. Xufeng and C. Xiaoli [16] that these manifolds are
real hypersurface of indefinite Kaehlerian manifolds. In 2007, R. Kumar, R. Rani
and R. K. Nagaich studied some interesting properties of ε-Sasakian manifolds [7].
In 2010, Tripathi et al. studied ε-almost paracontact manifolds and in particular,
ε-para Sasakian manifolds [14]. On the other hand, the concept of ε-Kenmotsu
manifolds was introduced by U. C. De and A. Sarkar [5] who showed that the exis-
tence of new structure on an indefinite metrics influences the curvatures. K. Mat-
sumoto introduced the notion of Lorentzian para-Sasakian manifolds [8] and this

was further studied by I. Mihai et al. [9], C. Özgür [10], A. A. Shaikh et al.
[12] and many others. Recently, LP-Sasakian manifolds with a quarter symmetric
metric connection have been studied by M. Ahmad et al. [1], R. N. Singh and
Shravan K. Pandey [13], Venkatesha et al. [15] and many others. U. C. De and
A. K. Mondal discussed quarter symmetric metric connection in a 3-dimensional
quasi-Sasakian manifold [4]. M. Ali and Z. Ahsan studied conformal curvature
tensor for the space time of general relativity [2].

A linear connection ∇̄ in a Riemannian manifold M is said to be a quarter-
symmetric connection [6] if the torsion tensor T of the connection ∇̄

T (X,Y ) = ∇̄XY − ∇̄YX − [X,Y ]

satisfies
T (X,Y ) = η(Y )φX − η(X)φY,
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where η is a 1-form and φ is a (1, 1) tensor field. If moreover, a quarter-symmetric
connection ∇̄ satisfies the condition

(∇̄Xg)(Y,Z) = 0

for all X,Y, Z ∈ χ(M), where χ(M) is the Lie algebra of vector fields of the
manifold M , then ∇̄ is said to be a quarter-symmetric metric connection, oth-
erwise it is said to be a quarter-symmetric non-metric connection. If we put
φX = X and φY = Y , then the quarter-symmetric metric connection reduces to
a semi-symmetric metric connection [17]. Thus the notion of quarter-symmetric
connection generalizes the idea of the semi-symmetric connection.

Motivated by the above studies, in this paper, we study some new results on a
quarter-symmetric metric connection in an ε-Lorentzian para-Sasakian manifold.
The paper is organized as follows: In Section 2, we give a brief account of an
ε-LP-Sasakian manifold and define quarter-symmetric metric connection. In Sec-
tion 3, we find the curvature tensor, the Ricci tensor and the scalar curvature in
an ε-LP-Sasakian manifold with a quarter-symmetric metric connection. In Sec-
tion 4, we show that the conformally flat ε-LP-Sasakian manifold with a quarter-
symmetric metric connection is an η-Einstein manifold of a quasi constant curva-
ture. Section 5 is devoted to the study of quasi conformally flat and ξ-conformally
flat ε-LP-Sasakian manifold with a quarter-symmetric metric connection and in
both cases we have shown that such manifolds are η-Einstein manifolds.

2. Preliminaries

A differentiable manifold of dimension n is called an ε-Lorentzian para-Sasakian
(briefly, ε-LP-Sasakian), if it admits a (1, 1)-tensor field φ, a contravariant vector
field ξ, a 1-form η and a Lorentzian metric g which satisfy

φ2X = X + η(X)ξ, η(ξ) = −1,(2.1)

g(ξ, ξ) = −ε, η(X) = εg(X, ξ), φξ = 0, η(φX) = 0,(2.2)

(2.3) g(φX, φY ) = g(X,Y )− εη(X)η(Y )

for all vector fields X, Y ∈ χ(M), where ε is 1 or −1 according as ξ is a space like
or time like vector field.

If an ε-contact metric manifold satisfies

(2.4) (∇Xφ)(Y ) = g(X,Y )ξ + εη(Y )X + 2εη(X)η(Y )ξ,

where ∇ denotes the Levi-Civita connection with respect to g, then M is called
an ε-LP-Sasakian manifold.

An ε-almost contact metric manifold is an ε-LP-Sasakian manifold if and only if

(2.5) ∇Xξ = εφX.

Moreover, the curvature tensor R, the Ricci tensor S and the Ricci operator Q in
an ε-LP-Sasakian manifold M with respect to the Levi-Civita connection satisfy
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the following equations [11]:

(∇Xη)Y = g(φX, Y ),(2.6)

R(X,Y )ξ = η(Y )X − η(X)Y,(2.7)

R(ξ,X)Y = εg(X,Y )ξ − η(Y )X,(2.8)

R(ξ,X)ξ = −R(X, ξ)ξ = X + η(X)ξ,(2.9)

η(R(X,Y )Z) = ε[g(Y, Z)η(X)− g(X,Z)η(Y )],(2.10)

S(X, ξ) = (n− 1)η(X), Qξ = ε(n− 1)ξ,(2.11)

where X,Y, Z ∈ χ(M) and g(QX,Y ) = S(X,Y ).
We note that if ε = 1 and the structure vector field ξ is space like, then an

ε-LP-Sasakian manifold is an usual LP-Sasakian manifold.

Definition 2.1. An ε-LP-Sasakian manifold called a manifold of quasi-constant
curvature if the curvature tensor R′ of type (0, 4) satisfies the condition

(2.12)

R
′
(X,Y, Z,W ) = a[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )]

+ b[g(X,W )T (Y )T (Z)− g(X,Z)T (Y )T (W )

+ g(Y,Z)T (X)T (W )− g(Y,W )T (X)T (Z)],

where R′(X,Y, Z,W ) = g(R(X,Y )Z,W ), R is the curvature tensor of type (1, 3);
a, b are scalar functions and ρ is a unit vector field defined by

(2.13) g(X, ρ) = T (X)

for any vector fields X,Y, Z,W ∈ χ(M).

Definition 2.2. An ε-LP-Sasakian manifold is said to be an η-Einstein mani-
fold if its Ricci tensor S of type (0, 2) satisfies

(2.14) S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a and b are scalar functions of ε.

Contracting (2.14), we have

(2.15) r = na− b.

On the other hand, putting X = Y = ξ in (2.14) and using (2.11), we also have

(2.16) − (n− 1) = −aε+ b.

Hence it follows from (2.15) and (2.16) that

a =
r − (n− 1)

n− ε
, b = −n(n− 1)− εr

n− ε
.

So the Ricci tensor S of an η-Einstein ε-LP-Sasakian manifold is given by

(2.17) S(X,Y ) =
r − (n− 1)

n− ε
g(X,Y )− n(n− 1)− εr

n− ε
η(X)η(Y ).
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Let M be an n-dimensional ε-LP-Sasakian manifold and ∇ be the Levi-Civita
connection on M . The relation between the quarter-symmetric metric connection
∇̄ and the Levi-Civita connection ∇ on M is given by

(2.18) ∇̄XY = ∇XY + η(Y )φX − g(φX, Y )ξ.

3. Curvature tensor on an ε-LP-Sasakian manifold
with a quarter-symmetric metric connection

Let M be an n-dimensional ε-LP-Sasakian manifold. The curvature tensor R̄ of
M with respect to a quarter-symmetric metric connection ∇̄ is defined by

(3.1) R̄(X,Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z.

From (2.6), (2.18) and (3.1), we have
(3.2)
R̄(X,Y )Z = (∇X∇Y Z −∇Y∇XZ

−∇[X,Y ]Z) + η(Z)[(∇Xφ)Y − (∇Y φ)X]

+ g[(∇Y φ)X − (∇Xφ)Y,Z]ξ + [g(φX,Z)∇Y ξ − g(φY,Z)∇Xξ].

Using (2.4) and (2.5) in (3.2), we get

(3.3)

R̄(X,Y )Z = R(X,Y )Z + ε[η(Y )X − η(X)Y ]η(Z)

+ ε[g(Y,Z)η(X)− g(X,Z)η(Y )]ξ

+ ε[g(φX,Z)φY − g(φY,Z)φX],

where X,Y, Z ∈ χ(M) and

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

is the Riemannian curvature tensor of the connection ∇.
Now contracting X in (3.3), we get

(3.4) S̄(Y,Z) = S(Y,Z) + ε(n− 1)η(Y )η(Z)− εg(φY,Z)ψ,

where S̄ and S are the Ricci tensors of the connections ∇̄ and ∇, respectively, on
M and ψ = traceφ. This gives

(3.5) Q̄Y = QY + (n− 1)η(Y )ξ − εφY ψ.
Contracting again Y and Z in (3.4), it follows that

(3.6) r̄ = r − ε(n− 1)− εψ2,

where r̄ and r are the scalar curvatures of the connections ∇̄ and ∇, respectively,
on M .

Lemma 3.1. LetM be ann-dimensional ε-LP-Sasakian manifold with a quarter-
symmetric metric connection, then

R̄(X,Y )ξ = (1− ε)[η(Y )X − η(X)Y ],(3.7)

R̄(ξ,X)Y = −R̄(X, ξ)Y = −(1− ε)[X + η(X)ξ]η(Y ),(3.8)

R̄(ξ,X)ξ = (1− ε)[X + η(X)ξ],(3.9)



ON A QUARTER-SYMMETRIC METRIC CONNECTION 147

S̄(X, ξ) = (1− ε)(n− 1)η(X),(3.10)

Q̄ξ = −(1− ε)(n− 1)ξ(3.11)

for any vector fields X,Y ∈ χ(M).

Proof. By replacing Z = ξ and using (2.1), (2.2) and (2.7) in (3.3), we get (3.7).
(3.8) and (3.9) easily follow from (2.1), (2.2), (2.7) and (3.3). By taking Y = ξ
and using (2.1) and (2.2) in (3.4), (3.10) follows. By considering Y = ξ and using
(2.1), (2.2) and (2.11) in (3.5), we get (3.11). �

Lemma 3.2. LetM be ann-dimensional ε-LP-Sasakian manifold with a quarter-
symmetric metric connection, then

(∇̄Xφ)(Y ) = −(1− ε)[X + η(X)ξ]η(Y ),(3.12)

∇̄Xξ = −(1− ε)φX(3.13)

for any vector fields X,Y ∈ χ(M).

Proof. By the covariant differentiation of φY with respect to X, we have

∇̄XφY = (∇̄Xφ)Y + φ(∇̄XY )

which by using (2.1), (2.2) and (2.18) takes the form

(∇̄Xφ)Y = (∇Xφ)Y − g(φX, φY )ξ − η(Y )X − η(X)η(Y )ξ.

Using (2.3) and (2.4) in the last equation, we get

(∇̄Xφ)(Y ) = −(1− ε)[X + η(X)ξ]η(Y ).

To prove (3.13), we replace Y = ξ in (2.18) and get

∇̄Xξ = ∇Xξ + η(ξ)X − g(φX, ξ)ξ

which by using (2.1), (2.2) and (2.5), reduces to

∇̄Xξ = −(1− ε)φX.
�

Now, let R and R̄ be the curvature tensors of the connections ∇ and ∇̄, respec-
tively, on M given by

R(X,Y, Z,W ) = g(R(X,Y )Z,W ) and R̄(X,Y, Z,W ) = g(R̄(X,Y )Z,W ).

Therefore from (3.3), we have

(3.14)

R̄(X,Y, Z, U) = R(X,Y, Z, U) + ε[g(X,U)η(Y )− g(Y,U)η(X)]η(Z)

+ [g(Y,Z)η(X)− g(X,Z)η(Y )]η(U)

+ ε[g(φX,Z)g(φY,U)− g(φY,Z)g(φX,U)].

Interchanging X and Y in (3.14), we have

(3.15)

R̄(Y,X,Z, U) = R(Y,X,Z, U) + ε[g(Y,U)η(X)− g(X,U)η(Y )]η(Z)

+ [g(X,Z)η(Y )− g(Y, Z)η(X)]η(U)

+ ε[g(φY,Z)g(φX,U)− g(φX,Z)g(φY,U)].
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By adding (3.14) and (3.15) and using the fact that R(X,Y, Z, U)+R(Y,X,Z, U)=0,
we get

(3.16) R̄(X,Y, Z, U) + R̄(Y,X,Z, U) = 0.

Again interchanging U and Z in (3.14), we have

(3.17)

R̄(X,Y, U, Z) = R(X,Y, U, Z) + ε[g(X,Z)η(Y )− g(Y,Z)η(X)]η(U)

+ [g(Y, U)η(X)− g(X,U)η(Y )]η(Z)

+ ε[g(φX,U)g(φY,Z)− g(φY,U)g(φX,Z)].

Now adding (3.14) and (3.17) and using the fact thatR(X,Y,Z,U)+R(X,Y,U,Z) = 0,
we get

R̄(X,Y, Z, U) + R̄(X,Y, U, Z) = (1− ε)[g(Y,U)η(X)− g(X,U)η(Y )]η(Z)

+ (1− ε)[g(Y, Z)η(X)− g(X,Z)η(Y )]η(U).(3.18)

Again interchanging pair of slots in (3.14), we have

(3.19)

R̄(Z,U,X, Y ) = R(Z,U,X, Y ) + ε[g(Z, Y )η(U)− g(U, Y )η(Z)]η(X)

+ [g(U,X)η(Z)− g(X,Z)η(U)]η(Y )

+ ε[g(φZ,X)g(φU, Y )− g(φU,X)g(φZ, Y )].

Now, subtracting (3.19) from (3.14) and using the fact that R(X,Y, Z, U) −
R(Z,U,X, Y ) = 0, we get

(3.20)
R̄(X,Y, Z, U)− R̄(Z,U,X, Y )

= (1− ε)[g(Y,Z)η(X)η(U)− g(X,U)η(Y )η(Z)].

Thus in view of (3.16), (3.18) and (3.20), we can state the following theorem.

Theorem 3.1. In an ε-LP-Sasakian manifold with a quarter-symmetric metric
connection, we have:
(i) R̄(X,Y, Z, U) + R̄(Y,X,Z, U) = 0,

(ii) R̄(X,Y, Z, U) + R̄(X,Y, U, Z) = (1− ε)[g(Y,U)η(X)− g(X,U)η(Y )]η(Z)
+ (1− ε)[g(Y,Z)η(X)− g(X,Z)η(Y )]η(U),

(iii) R̄(X,Y, Z, U)−R̄(Z,U,X, Y ) = (1−ε)[g(Y,Z)η(X)η(U)−g(X,U)η(Y )η(Z)]
for any vector fields X,Y, Z, U ∈ χ(M).

Now, let R̄(X,Y )Z = 0, therefore from (3.3), we have

(3.21)
R(X,Y )Z = ε[η(X)Y − η(Y )X]η(Z)− ε[g(Y,Z)η(X)− g(X,Z)η(Y )]ξ

+ ε[g(φY,Z)φX − g(φX,Z)φY ].

Taking inner product of the above equation (3.21) with ξ, we have

(3.22) g(R(X,Y )Z, ξ) = −[g(Y,Z)η(X)− g(X,Z)η(Y )]

which can be written as

(3.23) g(R(X,Y )Z,U) = −ε[g(Y,Z)g(X,U)− g(X,Z)g(Y,U)].

Thus we can state the following theorem.
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Theorem 3.2. If the curvature tensor of a quarter-symmetric metric connec-
tion in an ε-LP-Sasakian manifold M vanishes, then the manifold is of constant
curvature (−ε) and consequently it is locally isometric to the Hyperbolic space
Hn(−ε).

4. Conformally flat ε-LP-Sasakian manifold
with a quarter-symmetric metric connection

Definition 4.1. The conformal curvature tensor C̄ of type (1, 3) of an n-dimen-
sional ε-LP-Sasakian manifold with a quarter-symmetric metric connection ∇̄, is
given by [18]

(4.1)

C̄(X,Y )Z = R̄(X,Y )Z − 1

(n− 2)
[S̄(Y,Z)X − S̄(X,Z)Y + g(Y,Z)Q̄X

− g(X,Z)Q̄Y ] +
r̄

(n− 1)(n− 2)
[g(Y,Z)X − g(X,Z)Y ],

where Q̄ is the Ricci operator with respect to a quarter-symmetric metric connec-
tion related by g(Q̄X, Y ) = S̄(X,Y ) and r̄ is the scalar curvature with respect to
a quarter-symmetric metric connection.

Let us assume that the manifold M with respect to a quarter-symmetric metric
connection is conformally flat, that is C̄ = 0. Then from (4.1), it follows that

(4.2)

R̄(X,Y )Z =
1

(n− 2)
[S̄(Y, Z)X − S̄(X,Z)Y + g(Y,Z)Q̄X − g(X,Z)Q̄Y ]

− r̄

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ].

Taking inner product of (4.2) with ξ and using (2.2) and (3.10), we have
(4.3)

g(R̄(X,Y )Z, ξ) =
ε

(n− 2)
[S̄(Y, Z)η(X)− S̄(X,Z)η(Y )

− (1− ε)(n− 1)g(Y,Z)η(X) + (1− ε)(n− 1)g(X,Z)η(Y )]

− εr̄

(n− 1)(n− 2)
[g(Y, Z)η(X)− g(X,Z)η(Y )].

Putting X = ξ and using (2.1), (2.2) and (3.8) in (4.3), we get

(4.4)
S̄(Y, Z) = [(1− ε)(n− 1) +

r̄

n− 1
]g(Y,Z)

+ [−2(1− ε)(n− 1) +
εr̄

n− 1
]η(Y )η(Z).

Therefore, (4.4) is of the form

S̄(Y, Z) = ag(Y, Z) + bη(Y )η(Z),

where a = (1− ε)(n− 1) + r̄
n−1 and b = −2(1− ε)(n− 1) + εr̄

n−1 .
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Next, using (4.4) in (4.2), we have

(4.5)

g(R̄(X,Y )Z,W ) =
1

(n− 2)

[(
2(1− ε)(n− 1) +

2r̄

n− 1

)
· (g(Y,Z)g(X,W )− g(X,Z)g(Y,W ))

+
( εr̄

n− 1
− 2(1− ε)(n− 1)

)
(η(Y )η(Z)g(X,W )

− η(Y )η(W )g(X,Z) + η(X)η(W )g(Y,Z)− η(X)η(Z)g(Y,W ))
]

− r̄

(n− 1)(n− 2)
[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )],

which by simplifying takes the form

(4.6)

g(R̄(X,Y )Z,W ) =
2(1− ε)(n− 1)2 + r̄

(n− 1)(n− 2)

· (g(Y,Z)g(X,W )− g(X,Z)g(Y,W ))

+
εr̄ − 2(1− ε)(n− 1)2

(n− 1)(n− 2)
(η(Y )η(Z)g(X,W )− η(Y )η(W )g(X,Z)

+ η(X)η(W )g(Y,Z)− η(X)η(Z)g(Y,W )).

Thus by virtue of (4.4) and (4.6), we can state the following theorem.

Theorem 4.2. An n-dimensional conformally flat ε-LP-Sasakian manifold
with a quarter-symmetric metric connection is an η-Einstein manifold of quasi
constant curvature.

5. Quasi conformally flat and ξ- conformally flat ε-LP-Sasakian
manifold with a quarter-symmetric metric connection

Definition 5.1. An ε-LP-Sasakian manifold is said to be:
(i) quasi conformally flat with a quarter-symmetric metric connection if

(5.1) g(C̄(X,Y )Z, φW ) = 0, X, Y, Z,W ∈ χ(M),

(ii) ξ-conformally flat with a quarter-symmetric metric connection if

(5.2) C̄(X,Y )ξ = 0, X, Y ∈ χ(M).

First we consider quasi conformally flat ε-LP-Sasakian manifold with a quarter-
symmetric metric connection. Therefore from (4.1) and (5.1), we have

(5.3)

g(R̄(X,Y )Z, φW )− 1

(n− 2)
[S̄(Y,Z)g(X,φW )− S̄(X,Z)g(Y, φW )

+ g(Y, Z)g(Q̄X, φW )− g(X,Z)g(Q̄Y, φW )]

+
r̄

(n− 1)(n− 2)
[g(Y,Z)g(X,φW )− g(X,Z)g(Y, φW )] = 0,
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which by considering Y = Z = ξ and using (2.2), (3.9)–(3.11) reduce to

(5.4) S̄(X,φW ) =
[
(1− ε) +

r̄

(n− 1)

]
g(X,φW ).

Now replacing W = φW and using (2.1), (2.2) and (3.10) in (5.4), we get

(5.5) S̄(X,W ) =
[
(1−ε)+

r̄

(n− 1)

]
g(X,W )+

[
−n(1−ε)+

εr̄

(n− 1)

]
η(X)η(W ).

Thus we can state the following theorem.

Theorem 5.2. An n-dimensional quasi conformally flat ε-LP-Sasakian mani-
fold with a quarter-symmetric metric connection ∇̄ is an η-Einstein manifold.

Next, by virtue of (4.1) and (5.2), we can write
(5.6)

g[R̄(X,Y )ξ − 1

(n− 2)
(S̄(Y, ξ)X − S̄(X, ξ)Y + g(Y, ξ)Q̄X − g(X, ξ)Q̄Y )

+
r̄

(n− 1)(n− 2)
(g(Y, ξ)X − g(X, ξ)Y ),W ] = 0.

Now using (2.2), (3.7) and (3.10) in (5.6), we have

(5.7)

[ r̄ + (1− ε)(n− 1)2 − (1− ε)(n− 1)(n− 2)

(n− 1)

]
· (η(Y )g(X,W )− η(X)g(Y,W )) + η(Y )S̄(X,W )− η(X)S̄(Y,W ) = 0,

which by taking Y = ξ and using (2.1), takes the form

(5.8)

S̄(X,W ) = −
[ r̄ + (1− ε)(n− 1)2 − (1− ε)(n− 1)(n− 2)

(n− 1)

]
g(X,W )

−
[εr̄ − 2(1− ε)(n− 1)2 + (1− ε)(n− 1)(n− 2)

(n− 1)

]
η(X)η(W ).

Thus we can state the following theorem.

Theorem 5.3. An n-dimensional ξ-conformally flat ε-LP-Sasakian manifold
with a quarter-symmetric metric connection ∇̄ is an η-Einstein manifold.
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