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NEW RESULTS ON THE SEQUENCE SPACES EQUATIONS
USING THE OPERATOR OF THE FIRST DIFFERENCE

B. DE MALAFOSSE

ABSTRACT. Given any sequence z = (2n),>1 of positive real numbers and any set
E of complex sequences, we write E for the set of all sequences y = (yn)n>1 such
that y/z = (yn/2zn)n>1 € E; in particular, ¢, denotes the set of all sequences y
such that y/z converges. By woo, we denote the set of all sequences y such that
sup,>1(n71 > 7 ; lyk]) < co. By A we denote the operator of the first difference
defined by Apy = yn — yn—1 for all sequences y and all n > 1, with the convention
yo = 0. In this paper, we state some results on the (SSE) (Eq)a + Fz = Fp,
where ¢g C E C oo and F' C £oo. Then for 7, u > 0, we deal with the solvability
of the (SSE) (Er)a + Fr = Fu, where E, F € {cp,c¢,fe0} and on the (SSE),
(Wr)A+ce = cu. For instance, the solvability of the (SSE) (W, )a +cz = cu consists
in determining the set of all positive sequences z, for which the next statement holds.
The condition yn /u™ — [1 holds if and only if there are two sequences a and 8 with
y = a+ S, for which sup,,>;(n ™t Y7 |Ara|r %) < co and Bn/zn — l2 (R — 00)
for all sequences y and for some scalars [7 and l2.

1. INTRODUCTION

For any given set of sequences FE and any positive sequence a, we write E, =
(1/a)~! % E for the set of all sequences y for which y/a = (yn/an)n>1 € E. In [3],
Sq, 82 and st we defined by the sets E, for E = (s, co, or ¢, respectively. Then
in [4] we defined the sum E, + F, and the product E, * F},, where F and F are
any of the sets ¢, ¢g, or ¢. Then in [7], we gave a solvability of sequences spaces
inclusions Gy, C E, + F,, where E, F, G € {{«,cy,c}, and some applications to
sequence spaces inclusions with operators. In the same way recall that the spaces
Weo and wy of strongly bounded and summable sequences are the sets of all y such
that (n™'>"1_; |yk|)n>1 is bounded and tend to zero, respectively. These spaces
were studied by Maddox [1] and Malkowsky [19]. In [16, 13], some properties
were given of well known operators defined on the sets W, = (1/a)~! * ws, and
WY = (1/a)~! * wg. The sets of analytic and entire sequences denoted by A and
T are defined by sup,,(|yn|'/™) < oo and lim, 0 (|yn|*/™) = 0, respectively.
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In this paper, we deal with special sequence spaces inclusion equations (SSIE),
(resp., sequence spaces equations (SSE)), which are determined by an inclusion,
(resp. identity), for which each term is a sum or a sum of products of sets of the
form (Eq)r and (Ef))r, where f maps UT to itself, £ is any linear space of
sequences and T is a triangle. Some results on (SSE) were stated in [7, 5, 6, 8,
10, 14, 15, 17, 18].

In [14], we determined the set of all positive sequences z for which the (SSIE)
(55;3))3(“) C (sgf))B(,«/’S/) holds, where 7,1/, s’, and s are real numbers, and B(r, )
is the generalized operator of the first difference defined by (B(r,s)y)n = ryn +
SYn—1 for all n > 2 and (B(r,s)y)1 = ry;. In this the set of all positive sequences
x for which (ry, + syn—1)/xn — U implies (r'y, + $'yn-1)/xn — 1 (n — c0) for all
y and some scalar [, way was determined.

In this paper we extend in a certain sense some results given in [5, 6, 7, 8, 15,
17, 18]. In [17], it was shown that for any given sequences a and b, the solutions
of the equations y, + s2 = sg where y is any of the symbols s, or s(¢), are given by
sy =spifa/b € cp, and if a/b ¢ cg, each of these equations has no solution. We also
determined the set of all positive sequences z, for which y,, /b, — [ if and only if
there are sequences u and v, for which y = u+v and u, /a, — 0, v,/z, = ' (n —
o0) for all y and some scalars [ and I’. This statement is equivalent to the equation
sO 4 58 = 5!, In [8], we gave some properties of the sets of a-analytic and a-
entire sequences denoted by A, and T', and defined by sup,,~ {(|yn|/an)"/"} < o0
and lim,, oo {(\yn| / an)l/ ”} = 0, respectively. Then we determined the set of all
x € Ut such that for every sequence y, we have y, /b, — [ if and only if there are
sequences u and v with y = u 4 v, (Ju,|/an)"™ — 0, and v, /x, — I' (n — o) for

some scalars [ and I'. This statement means T'y + 5% = 5{”. In [6], can be found a

solvability of the (SSE) x4 + (s&c))B(,}S) = s\ where y = s, 5, or 5 and 7 is the
unknown. In [5], under some conditions, we determined the solutions of (SSE) with
operators of the form (x * Xz + Xo)a = Xn and (Xa * (x2)> + Xb * Xz)a = Xy, and
Xa+(Xz)A = X, Where x is any of the symbols s, or s°. In [17], we determined the
sets of all positive sequences x that satisfy the systems s?+(s,)a = sp, 82 O s and
sa—l—(sgf))A = sl()c), s 5 sl()c). There is a study of the (SSE) with operators defined
by (Xa)c()D. +(s§cc))c(#)DT = sl(f), where  is either s® or s. In [15], we dealt with
the (SSE) E, + s, = sp, where E € {weo, wo, £y} and £, is the set of all sequences
of p-absolute type. Then there is a solvability of the (SSE) E, + s{9 = s,()c), where
E € {wo, ¢,} and a solvability of the equation E, + s, = sp, where E € {¢,¢}. In
[9] a study dicussed the (SSE) with operators (E,)c()c(w) + (Bz)ce)c(n) = Ebs
where b € C; and E is any of the sets f, or ¢g. Recently in [10], we dealt
with the solvability of (SSE) of the form Er + F, = F,, where T is either one
of the triangles A or X, where A is the operator of the first difference and X is
the operator defined by X,y = >, _; yx for all sequences y. More precisely, we
gave a solvability of the (SSE) Ea + F, = F),, where E is any of the sets cg, £,
(p > 1), wo, or A and F = ¢, or {o. Then there is a solvability of the (SSE)
Es. + F, = F, where E is any of the sets ¢, ¢, o, {p, (p > 1), wo, ', A, and
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F = ¢, or {. Finally, there is a solvability of the (SSE) with operator defined
by Ex + F, = Fy, where E =T, or A, and F = ¢, or {, and a solvability of
the (SSE) I's + A, = Ap. In [11], for any given positive sequence a, we solved
the (SSE) defined by (E,)a + 55 = s\, where E = ¢, or £,, (p > 1), and the
(SSE) (Ea)a + 82 = s? for E = ¢, or s1, and we gave applications to particular
classes of (SSE). In this paper, we extend some of the previous results and obtain
a resolution of the (SSE) (E,)a + F, = F, for v, u > 0, where E, F are any of
the spaces ¢y, ¢, or £y, and of the (SSE) (W, )a + ¢z = cy.

This paper is organized as follows. In Section 2, we recall some definitions and
results on sequence spaces and matrix transformations. In Section 3, are given
some results on the multiplier M (E, F) of classical spaces. Then in Section 4 we
recall some results on the solvability of some sequence spaces equations of the form
E, + F, = F, where E and F are any of the sets cg, ¢, or £. In Section 5, we
recall some results on the sets ﬁ 6, T, 6'\1, and G1. In Section 6, we state some
results on the (SSE) (Eq)a + Fr = Fp, where ¢ C F C ly and F C fo. In
Section 7, we determine the solutions of the (SSE) defined by (E,)a + F, = Fy
for , uw > 0, where E, F are any of the spaces ¢y, ¢, or £o,. Finally, in Section 8,
we solve the (SSE) (W,)a + ¢z = cy.

2. PREMILINARY RESULTS

An FK space is a complete metric space for which convergence implies coordi-
natewise convergence. A BK space is a Banach space of sequences that is an FK
space. A BK space E is said to have AK if for every sequence y = (Yn)n>1 € E,
y = lmy oo Y ey yre® | where e®) = (0,...,0,1,0,...), 1 being in the k-th
position.

For a given infinite matrix A = (Aux)n k>1, We define the operators A,, for any
integer n > 1, by Ayy = > 7o AkYk, where y = (yx)k>1, and the series are
assumed convergent for all n. So we are led to the study of the operator A defined
by Ay = (Any)n>1 mapping between sequence spaces. When A maps E into F,
where E and F are any sets of sequences, we write that A € (E, F), (cf. [1]). Tt
is well known that if E has AK, then the set B(E) of all bounded linear operators
L mapping in E, with norm [|L|| = sup,_o([[L(y)||z/|lyll£), satisfies the identity
B(E) = (E, E). For the sets of all sequences, by w, ¢, ¢ and £,, we denote the sets
of null, convergent and bounded sequences. Let U™ C w be the set of all sequences
u = (Up)n>1 with u, > 0 for all n. Then for any given sequence u = (up)p>1 € w,
we define the infinite diagonal matrix Dy, with [Dy],,, = u, for all n. For u =
(r™)p>1, we write D, for D,,. Let E be any subset of w and u be any sequence with
up, # 0 for all n, using Wilansky’s notations [22], we have (1/u)~! * E = D E =
{y = (Yn)n>1 € w: y/u € E}. By Ey, we can also denote the set D, E. We use the
sets s2, {9 sq, and P defined as follows, (cf. [3]). For givena € Ut and p > 1, we
put Dyco = 89, Dyc = st also denoted by cq, and Dylos = sq. Each of the spaces
D.E, where E € {co,¢,{x} is a BK space normed by |ylls, = sup,>1(|ynl/an),
and s¥ has AK. We use the set W, = (woo)a, Where wy, is the set of all sequences



230 B. DE MALAFOSSE

y such that sup,~;(n=" Y27 Jyk|) < 0o. If a = (r™)n>1 with 7 > 0, we write s,

0 (o) 0

Spy Sy, and W, for the sets sq, s;, s¢  and W,, respectively. When r = 1, we

obtain s1 = l, s} = co, sgc) = cand Wi = we. Recall that S; = (s1,s1) is a
Banach algebra (cf. [2]) and (co, s1) = (¢, 1) = (s1,51) = S1. We have A € S if
and only if sup,,~1 (3> s [Ank]) < oo. Recall the next Schur’s result on the class
(s1,¢). We have A € (s1,¢) if and only if lim, oo Api = I for some scalar [,
k=1,2..., and lim, 00 > gy [Ank| = Dopey |lk|, the series being convergent.
For any subset F' of w, we write FI(A) = Fy = {y €w: Ay € F} for the matrix
domain of A in F. The infinite matrix T = (¢,4)n,k>1 is said to be a triangle if
tnr = 0 for £ > n and t,,, # 0 for all n. Throughout this paper, we use the next
well known statement. If T', T, and T” are triangles, £ and I are any sets of
sequences, then we have
T € (Bp,Frv) <= T'TT '€ (E,F),

(cf. [5, Lemma 9, p. 45]). Finally, for any given set F of sequences, we write
AFE ={y € w:y = Ax for some = € E}.

3. THE MULTIPLIERS OF SOME SETS OF SEQUENCES

First we need to recall some well known results. Let y and z be sequences and let
E and F be two subsets of w, we then write yz = (yn2n)n>1. Then by

M(E,F)={y€w:yz € Fforall z € E},
we denote the multiplier space of E and F. In this way we recall the well known
result.
Lemma 1. Let I, E‘, F and F: be arbitrary subsets of w. Then
(i) M(E,F)C M(E,F) forall ECE.
(i) M(E,F)C M(E,F) forall F C F.

Lemma 2. Let a € w and b be a nonzero sequence and E, F C w. Then
A € (Do E, DyF) if and only if Dyp,ADo = (Ankar/bn)nk>1 € (B, F).

We deduce the next lemma.

Lemma 3. Let a, b UT and let E and F be two subsets of w. Then D, E C
DyF if and only if a/be M(E, F).

Proof. We have D,E C DyF if and only if I € (D,FE, Dy F'), which is equivalent
to Dy € (E, F) and to a/b € M(E, F). O

In a similar way we obtain the following lemma.

Lemma 4. Leta, b€ UT and let E, F, and G be subsets of w that satisfy the
condition M(E,F) = G. Then the next statements are equivalent:
i) a € DG,
ii) a/be M(E,F),
ili) D,E C DyF.
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By [20, Lemma 3.1, p. 648] and [21, Example 1.28, p. 157], we obtain the next
result.

Lemma 5. We have:
i) M(c,c0) =M(loo,¢) = M(loo,c0) =co and M(e,c) = c.
il) M(E,ls) =M(co, F) =4l for E, F =cy, ¢, or .

4. ON THE SOLVABILITY OF FIVE (SSE) OF THE FORM E, + F, = F
WHERE F, F' ARE ANY OF THE SETS cg, ¢, OR {4

The solvability of the (SSE) E, + F,, = F}, consists in determining the set of all
positive sequences z that satisfy the statement y/b € F if and only if there are
two sequences «, [ such that y = a4+ 8 and

“ep ad Per
a X

For instance, the solvability of the equation s, + sgf) = séc) for a, b € U™, consists

in determining the set of all z € U™ that satisfy the next statement. For every
sequence y, the condition y,, /b, — I (n — o0) if and only if there are two sequences
a, 8 such that y = a+ 3 for which sup,,~; (Jon|/an) < 0o and By, /x, — I (n — 00)
for some scalars [, I'. For any given linear spaces of sequences F and F, we put
I(BE,F)={zxeU": F,C E,+ F,} and

SE,F)={zcUt: E,+F,=F}.

For b € Ut and any subset F' of w, by of (b), we denote the equivalent class
for the equivalence relation Rp defined by zRpy if D,F = D,F for x, y € UT.
It can be easily seen that cl”'(b) is the set of all # € UT such that z/b € M(F, F)
and b/z € M(F,F), (cf. [17]). We then have cI¥'(b) = cl™FF)(p). For instance
cl(b), is the set of all z € U™ such that D,c = Dyc, that is, sgf) = sl()c). This is the
set of all sequences x € U™ such that z,, ~ Cb,, (n — o0) for some C' > 0. In the
following, we write c1°°(b) for c1(b). For b = (r"),>1, we write cl¥' (r) instead of
¥ (b) to simplify.

Now recall the next elementary result on the sum of linear spaces of sequences.
Let E, F, and G be linear subspaces of w, then we have £ + F C G if and
only if ¥ C G and F C (. For instance, we have ¢y + s, C s; if and only

if x € sy NUT and there is no positive sequence = for which s; + s C c¢o.

Then we let sp = {# € U : x,, > Kb, for some K >0 and for all n} and sg(c) =
{z € U" : limy,— 00 (2, /by,) =1 for some [ €]0,+o0]}, ([17]). To simplify, we write

Strn)nsy = Srand Szr(i))@l = 509, (or ¢?) for r > 0. Notice that c1'® (b) = séc) ~sd.

It can be easily seen that s;(c) =g ={recU": sl(f) C sg(f)}, (cf. [17]). We need
to recall the next results.
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Lemma 6. ([17, Theorem 4.4, p. 7]) Let a, b€ U™T.
i) We have S(c,cp) = S(s1,¢0) and

= {70 GRS stw= {0 oo
i)

A9 ifa/be by, A9 ifa/bec,
st ={ § fuper  sewa={§ Tafbé o

5. THE SETS f, @, T, 6\1, AND G7.

To solve the next equations, we recall some definitions and results. Now let U be
the set of all sequences (up)p>1 € w with u, # 0 for all n. The infinite matrix
C(a) with @ = (an)n € U is the triangle defined by [C(a)],, = 1/a, for k < n.
It can be shown that the triangle A(a) whose the nonzero entries are defined by
[A(a)l,,,, = an, and [A(a)],, ,,_; = —an—1 for all n > 2, is the inverse of C(a),
that is, C'(a)(A(a)y) = A(a)(C(a)y) for all y € w. If a = e, we obtain the well
known operator of the first difference represented by A(e) = A. We then have
Ay = Yn —yn—1 for all sequences y, for all n > 1, with the convention gy = 0. It is
usually written ¥ = C(e). Note that A = £~! and A, ¥ € Sg for any R > 1. By
6’\1 and C , we define the sets of all positive sequences a that satisfy the conditions
C(a)a € lo, and C(a)a € ¢, respectively. Then by [ and I', we define the
sets of all positive sequences a that satisfy the conditions lim, o (an—1/a,) < 1,
and lim, o0 (an—1/a,) < 1, respectively, (cf. [3]). The set G; is defined by
G1 ={xeUT:2, > K~y" for all n and for some K > 0 and v > 1}. We obtain
the next lemmas.

Lemma 7. We ha’uef:aCFCé'\chl.

Proof. The identity I' = C follows from [12, Proposition 2.2 p. 88] and the
inclusions I' C C C G follow from [3, Proposition 2.1, p. 1786]. O

We will use the next lemma.

Lemma 8. Let a € UT. Then we have:
i) The following statements are equivalent:
a)aeCi,  B)(sa)a=sa ) (s9)a =5
ii) aeT if and only if (s))a = si.

ili) a €T implies (Wo)a = W,

Proof. The statement in i) follows from [3, Theorem 2.6, pp. 1789-1790]. ii)
follows from [3, Theorem 2.6, pp. 1789-1790] and [12, Proposition 2.2, p. 88]. The
statement in iii) was shown in [16, Proposition 3.1, pp. 122-123]. O
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6. SOME PROPERTIES OF THE (SSE) WITH OPERATOR (Ey)a + Fy = Fy.

In this section, we give some properties of the (SSIE) F, C (E,)a + Fi, where E
and F' are two linear subspaces of w that satisfy E, F C s; and F D ¢p. Then we
deal with the (SSE) (E,)a + Fy = Fy, where ¢ C E C s1 and F € {cg,¢,51}.

6.1. On the solvability of the (SSIE) F, C (E,)a + F.

We need some lemmas, where by Z((E,)a, F), we define the set of all x € U™
such that F, C (E,)a + Fy. We write ZE = Z((E,)a, F), and more precisely we
let Zg? = Zpeand Z9 =I5 to simplify.

In the following, we use the sequence o = (0,),>1 defined for a, b € UT by
on = (> p_; ax)/by. First we state the next lemma.

Lemma 9. ([11, Lemma 16, pp. 116-117]) Let a, be U™, and let E and F be
two linear subspaces of w that satisfy £, F' C s; and F D ¢g. Then we have:
i) Assume o € cp.
Then a) If C I:, b) IE C sp.
ii) Assume a € co. Then we have T5 C s forb=e.
As a direct consequence of Lemma 9, we obtain the following.

Lemma 10. Let E be a linear subspaces of w, that satisfies E C s1.
i) If o € co, then

a) IxC I, where x is any of the symbols 0, ¢, or oo.

b) IX C sp, where x is any of the symbols 0, ¢, or oo.

ii) Ifa€co andb=e, then I} C s}, where x is any of the symbols 0, ¢, or co.
Now, we state an elementary result used further.

Lemma 11. Let E be a linear subspaces of w, that satisfies co C E C s1. Then
(E, 81) = Sl-

Proof. The proof follows from the fact that (s1,s1)=/(co, s1)=51 and (s1,$1) C
(E,s1)C (co,51). O

6.2. On the sets S%, S¢ and S

By S((Ea)a,F), we denote the set of all x € U™ such that (E,)a + F, =
Fy. To simplify, we write S% = S((Ea)a,c0), S§ = S((Eu)a,c) and S¥ =
S((Ea)asloo) = S((Ea)a, s1). In all that follows, we must have in mind that the
infinite matrix Dy ,,3D, is the triangle whose the nonzero entries are defined by

[Dl/bZDa] k= ay /by, for all k < n.

Theorem 12. Let E be a linear subspace of w that satisfies co C E C s1.
i) If o € co, then S% = S = c1™(b) and S = cl°(b).
ii) Ifo ¢ (s, then S% = S =5 =1.
Proof. 1) First, let 0 € ¢p and show S = c1°°(b). For this, let x € S¥. Then,
we have (E,)a + S, = sp which implies x € s, and since o € ¢y by Lemma 9,
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we have S C I3 C sp. We conclude x € s, N'sp = cl™(b) and S C cI™(b).
Conversely, let x € cI™(b). By Lemma 11, we have o € ¢ implies D, /XD, €
(s1,81) = (E,s1) and (E4)a C sp. Then we have (Ey)a + Sz = (Ea)a + Sp = Sp
and z € S¥. So we have shown cl*(b) C S%. We conclude S = cl™(b).

Now we show S% = cl™®(b) for o € c¢p. First, we show S% C cI™(b). Let
xz € S5%. Then we have (E,)a + s% = s). This implies s C s, implies z/b €
M(cg,co) = s1 and z € s,. As above, by Lemma 9, we have S% - I% C s
and conclude x € s, N s§ = cl*(b) and S% C c1*°(b). Conversely, let x € 1™ (b).
We have o € co implies Dy ,,¥D, € (s1,¢0), and since £ C 51, we successively
obtain (s1,c0) C (E,cp), D1yXDs € (E, o), and (E,)a C sj). Then, we have
(Ea)a + 82 = (Eo)a + s = s) and z € S%. So we have shown S% = c1™(b). It
remains to show S§ = cl?(b). Let x € S%. Then we have (E,)a + ¢z = ¢, which
implies z € ¢,. Again by Lemma 9, we have « € S, implies = € Z§ C s;, and
S% C sp. So we have shown S§ C ¢, Nsp = cl?(b) if 0 € ¢y. Conversely, let
x € cl’(b). We have o € ¢ implies Dy ,X.D, € (s1,¢9) C (E,c) since E C 51. We
conclude (Eq)a C . Then (Eg)a + ¢z = (Eo)a + & = ¢, and z € SG. So we
have shown o € ¢ implies S§ C ¢, N sp = cl(b) and S§, = cl°(b). This concludes
the proof of i).

ii) It is trivial that o ¢ £ implies S% = S = S = (). Indeed, assume there is
x € S%, where x is any of the symbols 0, oo, or ¢. Then we have (Ey)a + Fy, = F}
which implies (E,)a C Fp and Dy, XD, € (E,F) for F € {co, s1,c}. But since
we have (E,F) C (s1,s1), we conclude Dy XD, € 51 and 0 € lo. This is
contradictory, and S% = S = S¢ = 0. O

Example 13. Let a, b > 0. We consider the set S¢ of all z € UT such that
Yn/n® — 11 (n — oo) if and only if there are a, 8 € w such that y = o + f,
n A, — Iy, and B, /x, — I3 (n — oo0) for some scalars lj, la, I3 and for
all y. We are led to deal with the (SSE) (c(ne),.,)a + C2 = C(np),.,- We have
Sk ~n*tt/(a+1) (n - ), and 0, ~ n**T!/(a+1) (n = o). By
Theorem 12, we obtain S¢ = cl®((n®),>1) forb >a+1; and S¢ =0 for b < a+ 1.
For instance, for b = 2 and a = 1/2, we obtain S¢ = cl°((n?),>1) and z € S¢ if
and only if z,, ~ Kn? (n — oo) for some K > 0.

Proposition 14. Let r, u > 0 and let E = s1, co, or c.
i) S =8% =cl®(u) and S§ = cl°(u) in each of the next cases:
a)r<l<u and b)1<r<u.
ii) S =859 =S% =0 in each of the next cases:
a)r, u<l, b)u<r=1, c)r>uifr>1.

Proof. i) We successively have o, ~ r(1 —r)"tu™ (n — oo) for r < 1, o, ~
nu~" (n — oo) for r = 1, and o, ~ 7(r — 1)"(r/u)" (n — oo) for r > 1. So we
have ¢,, = 0 (n — 00) in each of the cases a) and b).

ii) It can be easily seen that o ¢ £, in each of the cases a), b), and ¢). O

Remark 15. Let R*? be the set of all (r,u) with r, u > 0. Consider the subsets
I, I, and I3 of R*2, respectively, defined by i) a), and i) b) in Proposition 14 for
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I; by ii) a), ii) b) and ii) ¢) in Proposition 14 for I5; and by ) r < u = 1, and 3)
r =u > 1 for I5. We easily see that {Iy, I, I3} constitute a partition of R*2.

7. APPLICATION TO THE SOLVABILITY OF (SSE) OF THE FORM
(B)a+FE, =F, FOR r, u >0

In this section, we deal with each of the (SSE) (E,)a + 8z = Su, (Er)a + 50 =82,
and (F,)a + s — 5l for r,u >0 with E = ¢, ¢, or lo.

7.1. On the (SSE) (E.)A + . = s for 7, u > 0 with E = ¢, ¢, or {.

Let 7, u > 0 and E = ¢, ¢, or £ = s1, and consider the (SSE) defined by
(Ev)a + sz = sy. For instance, for E = sy, it can be easily seen that x € 57
means that the condition sup,,~(|yn|/u™) < oo holds if and only if there are «
and 8 € w such that y = o + 8 for which sup,~;(Jan — an_1|r™") < oo and
sup,,>1 (|Bn]/xn) < oo for all y. In all that follows, we write ENUT = E* for any
subset E of w. We obtain the next theorem.

Theorem 16. Let 7, u > 0 and let E = s1, or ¢g.
i) Ifr <1, then

g [ @ ifuzl,
ET0 ifu< 1.

il) If r =1, then

goo cl™ (u) ifu>1,
0 ifu<1.

iii) Ifr > 1, then
a)
cl*(u) ifr <u,
(1) Sol = s if r =u,

0 if r > u.
b)
qo_ [ d¥@)  ifr<u,
o 10 if > u.
Proof. By Proposition 14 and Remark 15, it is enough to deal with the cases
a) r<u=1,and §) r =u > 1. Consider

Case a): We have r < v = 1, so x € S¥ implies (E,)a + sz = 1. Then we
have z € s1 and

(2) 51 C (Er)a + Sz

Then by Lemma 9 ii), where a = (r"),>1 € co, the condition in (2) implies z €
I% C s}. We conclude z € s3Nsy = cl*(1). Conversely, assume z € c1*°(1), that
is, s, = s1. It can be easily seen that XD, € (s1,s1) since sup,,~;(Y>_p_, 7¥) < o0,
and the inclusion (s1,s;) C (E,s1) implies ¥D,. € (E, s1), which is equivalent to
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(Er)a C s1. We conclude (Ep)a +s; = (Er)a + 51 =51 and z € SF. So we have
shown S% = c1™(1).

Case ): By Lemma 8, we have (E,)a = E, since r > 1, and (E.)a + sy =
E, + s, = s,. Then the (SSE) E, + s, = s, is equivalent to z € s, for E = sy,
and by Lemma 6, it is equivalent to x € cl*°(r) for E = ¢o. This concludes the
proof. (]

Remark 17. Notice that the statement ii) in Theorem 16 was extended in [13,
Proposition 7.1, pp. 95-96] in the following way. For any given b € U™, the (SSE)
defined by (co)a + sz = s, has solutions if and only if (n/b,)n>1 € oo Which are
defined by z € cl™(b).

We immediately obtain the following corollary.

Corollary 18. Let r, u > 0 and let E € {co,s1}. Then S # 0 if and only if
r<l<u,orl<r<u.

Corollary 19. If u =1, we obtain

goo _ cl™(1) ifr<l,
SE S ) ifr > 1.

We deduce from Corollary 19 that the equation (s;)a + 8, = £ has solutions
if and only if r < 1, that are determined by K; < z,, < K5 for all n and for some
Ki, Ky > 0.

Concerning the space S°, we state the following proposition which can be
obtained by similar arguments as those used in Theorem 16, except in the case
r = u > 1 for which we have no response until now.

Proposition 20. Letr, u > 0.
i) If r <1, then S =S¥ for E = ¢, or {s.
i) If r > 1, then S° = cl*(u) for r <u, and S° =0 if r > u.

Ezample 21. The set of all x € U™ that satisfy (c¢1/2)a + sz = loo, is equal to
cl*(e). The solutions of the (SSE) (c1/2)a + sz = s2 are determined by K;2" <
T, < K52" for all n and for some Ky, Ky > 0. The (SSE) defined by (c1/2)a+52 =
51/4 has no solution.

7.2. The solvability of the (SSE) (E,)a + s = s¥

Here, we consider the (SSE) (E.)a + 5% = sY for r, u > 0 and E = s1, ¢o, or c.
For instance, for E = si, it can be easily seen that = is a solution of the (SSE)
(sr)a + 2 =5, that is, 2 € 52 if the next statement holds. For every y € w, the
condition y, /u™ — 0 (n — o0) holds if and only if there are « and 8 € w such that
y = a+ S for which |Apal/r™ < K for all n, and 8, /z, — 0 (n — o0) for some
scalar K > 0. The next result was extended in [11, Theorem 2, pp. 127-128] with
the solvability of the (SSE) (E,)a + s2 = s) for a, b € Ut and for E € {c¢,s1}. In
this part, we give another proof based on Proposition 14, and Lemma 6 and we
deal with the case E = cg.
We can state the next theorem.
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Theorem 22. Let r, u > 0 and let E € {cg,c, $1}.
i) Ifr <1, then

g0 _ el (u) if u>1,
ETL10 ifu<l1.

i) If r =1, then

0 aco _ | () ifu>1,
SE_SE_{(Z) ifu<l.

iii) Ifr > 1, then
a) 59 = S5, where S$° is determined by (1) in Theorem 16.

817

b) S? = 5% and

g0 _ { cl*(u) if r <w,
s1 ] if r > u.
Proof. As above by Proposition 14, we only need to deal with the cases «)
r<u=1,and f) r=u>1.
Case a). Let E € {co,c,s1}. Wehaver < u=1soz € S% implies (E,)a+s =
co. Then we have

(3) (Er)a C co,

and since [ED,],, = r* - 0 (n — oo) for all k, we deduce D, ¢ (co,c) and
YD, ¢ (E,cp). So the condition in (3) cannot hold and S% = 0.

Case 3). We have (E,)ao = E, since r > 1. Then we have (E,)a + s =
E, + s = s0. Then the (SSE) E, + s2 = s¥ is equivalent to = € s, for E = ¢,
and by Lemma 6 this (SSE) has no solution for E = ¢, or s1. This concludes the
proof. O

Remark 23. Theorem 22 was extended in [11, Theorem 2, p. 127] in the fol-
lowing way. For any given a, b € U™, the (SSE) defined by (E,)a + s2 = s) has
solutions if and only if o, = b, ' Y-}, a = 0 (n — c0) and they are defined by
x € cl™(b). We obtain the results stated above noticing that there are kq, ko > 0
such that o, ~ kiu™ (n — o0) for r < 1, o, ~ nu™" (n — o0) for r = 1, and
On ~ ko(r/u)™ (n — o00) for r < 1.

7.3. Solvability of the (SSE) (E.)a + ¢z = ¢y.

Here we consider the set S§, of all z € U™ that satisfy the (SSE) (E,)a + ¢z = ¢y
for r, u > 0 and E € {cg,¢,lx}. It can be easily seen that « € S¢ means that for
every y € w, the condition y,/u™ — | (n — o0) holds if and only if there are «
and 8 € w such that y = a+ S for which r " A,a — I; and B, /z, — Iz (n = o)
for some scalars [, [1, and l5. We obtain the next theorem.



238 B. DE MALAFOSSE

Theorem 24. Let v, u > 0 and let E = ¢y, ¢, or {s.
i) Ifr <1, then

cl®(u) ifu>1,
0 if u < 1.

il) If r =1, then
ge _ cl®(u) ifu>1,
E7L0 ifu<1.

iii) Ifr > 1, then

cl®(u) if r <u,
0 ifr=w

cl®(u) if r <uw,
0 if r > u;

and
cl(u) if r <u,
S¢=< ¢f if r = u,
0 if r > u.

Proof. Again by Proposition 14 and Remark 15, we only need to deal with the
cases o) r <u =1, and 8) r =u > 1. Consider

Case a): We have r < u =1 so z € S§ implies (E,)a + ¢; = ¢. Then we have
x € ¢ and

(4) cC (Er)a+ ¢y

Then by Lemma 9 ii), where a = (r"),>1 € ¢o, we have condition (4) implies
x € s}. We conclude x € ¢N s} = cl®(1). Conversely, € cl°(1) implies ¢, = ¢ and
since (E,)a C ¢, we obtain (E,)a + ¢z = (Er)a +c=c.

Case 8): We have (E,)ao = F, since r > 1. Then we have (E,)a + ¢; =
E, +c, = ¢,. Trivially the (SSE) E,. + ¢, = ¢, is equivalent to x € ¢, for E = ¢, by
Lemma 6, it is equivalent to € cl(r) for E = ¢y, and the (SSE) has no solutions
for £ = s;. This concludes the proof. O

Remark 25. For w # 1, we have S§ # 0 if and only if v > max(r,1), or
r = > 1. More precisely, we have S§ = cl®(u) for v > max(r,1), and S§ = ¢,
forr=u>1.

Remark 26. The statement ii) in Theorem 24 was extended in [10, Proposi-
tion 7.1, pp. 95-96], in the following way. For any given b € U™, the (SSE) defined
by (co)a +cz = ¢ has solutions if and only if 1/b € 5(1/n), ., defined by z € cl®(b).

n>1

Remark 27. Theorem 24 with £ = ¢y was extended in [11, Theorem 1, pp.
117-118] in the following way. For any given a,b € U™, the (SSE) defined by
(s9)a+cs = ¢ has solutions if and only if b,;' Y7 ar — 0 (n — oo) that are
defined by x € cl°(b).
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8. THE SOLVABILITY OF THE (SSE) (W,)a + ¢z = ¢y.

We will consider the set of a—strongly bounded sequences defined for a € U™
by Wa = {y€w: lyllw, = sup,oy (0~ S5y lynl/ax) < 00}, (. [16]). If a =
(r™)n>1, the set W, is denoted by W,.. For r = 1, we obtain the well known set ws
defined by s = {y € [yl = Sup,or (1 0, Jyxl) < o0} ([19]). In [10,
Proposition 7.3, p. 98], was given a solvability of each of the (SSE) (wo)a + ¢z = ¢
and (wo)a + Sz = sp, where wo = {y € w : limpoo (R Y0, |yi]) = 0}. It was
shown that S((wg)a,c¢) is nonempty and equal to cl°(b) if and only if
1/b € 5(1/m),s,- S0 if b = (u")n>1, we have S((wo)a,c) = cl®(b) if and only
if w > 1. In the following, we consider the set S((W,)a,c) of all x € U™ that
satisfy the (SSE)

(5) (Wo)a + ¢z = cu

for r, u > 0. We write S¢, = S((W,)a,c) to simplify. It can be easily seen that
x € S, which means that for every y € w, the condition y,/u™ — I (n — o0)

w?

holds if and only if there are o and 8 € w such that y = a + § for which

sup (ié |Aka|) < oo and &%l’ (n — o0)

n>1 ’rk Tn

for some scalars [, I’. In the following, we use next elementary statement, whose
the proof is elementary and left to the reader.

(6) S1 C Wee C S(n)p>1
Now we may state the next theorem.

Theorem 28. Letr, u > 0. Then

i) If r <1, then S5, = S§ for E = co, ¢, or si, and S§ is determined by i)

and i) in Theorem 24.

ii) If r > 1, then S5, = S5, where S¢, is determined by iii) in Theorem 24.

Proof. i) Case r < 1.

Inside the case r < 1, we deal with each of the cases a) u < 1, b) u>1, and c)
u = 1.

a) Case u < 1. Assume Sg, # (0 and let z € Sg. Then we have D;,, XD, €
(Weo, €), and since 51 C wso, We obtain Dy, XD, € (s1,¢). But we have o, =
u" > p_ % — 00 (n — 00) and Dy, XD, ¢ (weo,c). This leads to a contradic-
tion and we conclude S¢ = 0.

b) Case u > 1. Let x € S¢,. Then we have z € ¢, and ¢, C (W,)a + ¢;. Then
there are v = (Vg)k>1 € Woo and ¢ = (¢ )n>1 € ¢ such that

n
u" = g rfu + TnPn
k=1
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and

u” J
. ( o Z r I/k) ©On for all n
k=1
By the condition in (6), there is K > 0 such that v, < Kk for all k, and we have

u*’ﬂ

Zrkl/k’ < Ku™ Z kr* = o(1) (n — 0).
k=1 k=1

Since we have

u’l’L

u" on
T 1= g Y TR

we conclude (u”/x,)n>1 € c and = € ¢. So we have shown the inclusion S§, C

cl®(u). Conversely, assume z € cl®(u). We need to show

(7) (Wr)a C cy.

Since r < 1 < u, we have u=" "', kr* — 0 (n — oo) which implies

DI/UED(nTn)nzl S (81, C)

and Dy,,%D; € (S(n),~,,c). Then the condition in (7) holds since (s(n),.,,c) C
(Woo, €). We conclude (W,)a + ¢, = (Wy)a + ¢y = ¢y, and z € SS. So we have
shown S¢ = cl(u) for u > 1.

c) Case u = 1. Let z € S;. Then we have z € ¢. We may apply Lemma 9 ii)
with E = W,1,2. Indeed, we have (W,.)a = (E,1/2)a, and since by [15, Lemma 4.2
pp. 598-599], get M (wes,51) = S(1/n),-,, We deduce (r"/?), € M(w,s1) and
W12 C s1. So we may apply Lemma 9 and we have S5 C Iﬁ,—rl/z C s7. We
conclude Sg, C c¢N sy and SE C cl?(1). Conversely, assume z € cl®(1), that is,
¢z = ¢. Then we have D, € (s(n),.,,c) since Y p_; kr* — L (n — oo) for some
scalar L, and the inclusion

n>1?

(S(n)nzvc) C (woov C)
implies £ D, € (weo,¢) and (W,.)a C ¢. Finally, we obtain
Wia+ce=We)a+ec=c
and z € S¢. We conclude cl®(1) C S¢ and since, we have shown S¢S C cl°(1) we
conclude S¢, = cl(1).

Case r = 1. Here we show x € S¢ if and only if x € cl°(e) and v > 1. For
this, let x € S¢. Since we have ws, D $1, the inclusion (weo)a C ¢, implies
D1/,% € (Weo,c) and Dy, Y € (s1,¢). So we obtain (n/u"),>1 € ¢ and u > 1.
Then z € ¢y, since (Woo)A + ¢z C ¢y, and using similar arguments that in the case

i) b), we also have z € ¢!. We conclude x € S, implies x € cl°(e) and u > 1.
Conversely, assume z € cl(e), that is, ¢, = ¢, and u > 1. We need to show

(8) (woo)A C Cy.

The condition w > 1 implies D;;,X € (8(n),5,,C0), and since (S(n),,,c0) C
(Weo, ¢), we conclude (8) holds. Then we have (woo)a + €z = (Woo)A + €y = €,
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and we have shown z € S¢ if and only if x € cl°(e) and u > 1. We conclude
S¢ = cl%(e) for u > 1 and S5, = 0 for u < 1.

ii) Case r > 1. By Lemma 8 iii) we have (W,.)a = W,., so we are led to solve
the (SSE)

9) W, +cp = cy.

Let z € S§,. Then we have W, C ¢, which implies ((r/u)")n>1 € M(ws,c). But
by [15, Lemma 4.2, p. 598], we have M (weo, §1) = 5(1/n),.»,, and since M (weo, ) C
M (woo, 51), We obtain (n(r/u)"),>; € s; and r < u. Then the identity in (9)
implies ¢, C W, 4 ¢,. So there are two sequences v € wy, and ¢ € ¢ such that
u™ = 1"y, + Tppn and uz 1 — (r/u)"v,] = ¢, for all n. Again the condition
in (6) implies (r/u)"|v,| < Cn(r/u)™ for all n and for some C' > 0. But since

(10) n(%)”—m (n = o),

we deduce 1 — (r/u)"v, — 1 (n = 0), and since u"/x, = @,/ [1 — (r/u)"v,],
we conclude (u"/zp)n>1 € ¢ and x € ¢!. Now, by the identity in (9) we have
¢y C ¢y and z € ¢,. We conclude z € ¢ () ¢, = cl®(u). So we have shown x € S,
implies r < u and x € cl®(u). Conversely, assume r < u and = € cl°(u). Again

by [15, Lemma 4.2, p. 598], we have M (w0, co) = s?l/n)n>l and the condition

r < u implies that condition (10) holds and ((r/u)")n>1 € M (wae, o). So we have
shown W,. C ¢,. Finally, since we have ¢, = ¢,, we obtain W,.4+c¢, = W, +c¢, = ¢y

and x € S;,. This concludes the proof. O

Corollary 29. Let r, u > 0. Then S = cl°(u) if and only if r <1 < u, or
r=1<u,orl<r<u.

Remark 30. From Theorem 28 and [10, Proposition 7.3, p. 98], we obtain
S((woo)a,c) = S((wo)a,c) = cl®(u) if and only if u > 1. So the (SSE) (weo)a +
¢z = ¢, and (wg)a + ¢ = ¢, are equivalent for all u > 1.
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