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NEW RESULTS ON THE SEQUENCE SPACES EQUATIONS

USING THE OPERATOR OF THE FIRST DIFFERENCE

B. DE MALAFOSSE

Abstract. Given any sequence z = (zn)n≥1 of positive real numbers and any set

E of complex sequences, we write Ez for the set of all sequences y = (yn)n≥1 such
that y/z = (yn/zn)n≥1 ∈ E; in particular, cz denotes the set of all sequences y

such that y/z converges. By w∞, we denote the set of all sequences y such that

supn≥1(n−1
∑n
k=1 |yk|) < ∞. By ∆ we denote the operator of the first difference

defined by ∆ny = yn − yn−1 for all sequences y and all n ≥ 1, with the convention

y0 = 0. In this paper, we state some results on the (SSE) (Ea)∆ + Fx = Fb,

where c0 ⊂ E ⊂ `∞ and F ⊂ `∞. Then for r, u > 0, we deal with the solvability
of the (SSE) (Er)∆ + Fx = Fu, where E, F ∈ {c0, c, `∞} and on the (SSE),

(Wr)∆+cx = cu. For instance, the solvability of the (SSE) (Wr)∆+cx = cu consists

in determining the set of all positive sequences x, for which the next statement holds.
The condition yn/un → l1 holds if and only if there are two sequences α and β with

y = α+ β, for which supn≥1(n−1
∑n
k=1 |∆kα|r−k) <∞ and βn/xn → l2 (n→∞)

for all sequences y and for some scalars l1 and l2.

1. Introduction

For any given set of sequences E and any positive sequence a, we write Ea =
(1/a)−1 ∗E for the set of all sequences y for which y/a = (yn/an)n≥1 ∈ E. In [3],

sa, s0
a and s

(c)
a , we defined by the sets Ea for E = `∞, c0, or c, respectively. Then

in [4] we defined the sum Ea + Fb and the product Ea ∗ Fb, where E and F are
any of the sets `∞, c0, or c. Then in [7], we gave a solvability of sequences spaces
inclusions Gb ⊂ Ea + Fx, where E, F , G ∈ {`∞, c0, c}, and some applications to
sequence spaces inclusions with operators. In the same way recall that the spaces
w∞ and w0 of strongly bounded and summable sequences are the sets of all y such
that (n−1

∑n
k=1 |yk|)n≥1 is bounded and tend to zero, respectively. These spaces

were studied by Maddox [1] and Malkowsky [19]. In [16, 13], some properties
were given of well known operators defined on the sets Wa = (1/a)−1 ∗ w∞ and
W 0
a = (1/a)−1 ∗ w0. The sets of analytic and entire sequences denoted by Λ and

Γ are defined by supn≥1(|yn|1/n) <∞ and limn→∞(|yn|1/n) = 0, respectively.
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In this paper, we deal with special sequence spaces inclusion equations (SSIE),
(resp., sequence spaces equations (SSE)), which are determined by an inclusion,
(resp. identity), for which each term is a sum or a sum of products of sets of the
form (Ea)T and (Ef(x))T , where f maps U+ to itself, E is any linear space of
sequences and T is a triangle. Some results on (SSE) were stated in [7, 5, 6, 8,
10, 14, 15, 17, 18].

In [14], we determined the set of all positive sequences x for which the (SSIE)

(s
(c)
x )B(r,s) ⊂ (s

(c)
x )B(r′,s′) holds, where r, r′, s′, and s are real numbers, and B(r, s)

is the generalized operator of the first difference defined by (B(r, s)y)n = ryn +
syn−1 for all n ≥ 2 and (B(r, s)y)1 = ry1. In this the set of all positive sequences
x for which (ryn + syn−1)/xn → l implies (r′yn + s′yn−1)/xn → l (n→∞) for all
y and some scalar l, way was determined.

In this paper we extend in a certain sense some results given in [5, 6, 7, 8, 15,
17, 18]. In [17], it was shown that for any given sequences a and b, the solutions
of the equations χa+s0

x = s0
b where χ is any of the symbols s, or s(c), are given by

sx = sb if a/b ∈ c0, and if a/b /∈ c0, each of these equations has no solution. We also
determined the set of all positive sequences x, for which yn/bn → l if and only if
there are sequences u and v, for which y = u+v and un/an → 0, vn/xn → l′ (n→
∞) for all y and some scalars l and l′. This statement is equivalent to the equation

s0
a + s

(c)
x = s

(c)
b . In [8], we gave some properties of the sets of a-analytic and a-

entire sequences denoted by Λa and Γa and defined by supn≥1

{
(|yn|/an)1/n

}
<∞

and limn→∞
{

(|yn|/an)1/n
}

= 0, respectively. Then we determined the set of all
x ∈ U+ such that for every sequence y, we have yn/bn → l if and only if there are
sequences u and v with y = u+ v, (|un|/an)1/n → 0, and vn/xn → l′ (n→∞) for

some scalars l and l′. This statement means Γa+s
(c)
x = s

(c)
b . In [6], can be found a

solvability of the (SSE) χa+(s
(c)
x )B(r,s) = s

(c)
x where χ = s, s0, or s(c) and x is the

unknown. In [5], under some conditions, we determined the solutions of (SSE) with
operators of the form (χa ∗χx +χb)∆ = χη and (χa ∗ (χx)2 +χb ∗χx)∆ = χη, and
χa+(χx)∆ = χx, where χ is any of the symbols s, or s0. In [17], we determined the
sets of all positive sequences x that satisfy the systems s0

a+(sx)∆ = sb, sx ⊃ sb and

sa+(s
(c)
x )∆ = s

(c)
b , s

(c)
x ⊃ s(c)

b . There is a study of the (SSE) with operators defined

by (χa)C(λ)Dτ +(s
(c)
x )C(µ)Dτ = s

(c)
b , where χ is either s0 or s. In [15], we dealt with

the (SSE) Ea + sx = sb, where E ∈ {w∞, w0, `p} and `p is the set of all sequences

of p-absolute type. Then there is a solvability of the (SSE) Ea + s
(c)
x = s

(c)
b , where

E ∈ {w0, `p} and a solvability of the equation Ea+sx = sb, where E ∈ {c, `∞}. In
[9] a study dicussed the (SSE) with operators (Ea)C(λ)C(µ) + (Ex)C(λσ)C(µ) = Eb,

where b ∈ Ĉ1 and E is any of the sets `∞, or c0. Recently in [10], we dealt
with the solvability of (SSE) of the form ET + Fx = Fb, where T is either one
of the triangles ∆ or Σ, where ∆ is the operator of the first difference and Σ is
the operator defined by Σny =

∑n
k=1 yk for all sequences y. More precisely, we

gave a solvability of the (SSE) E∆ + Fx = Fb, where E is any of the sets c0, `p,
(p > 1), w0, or Λ and F = c, or `∞. Then there is a solvability of the (SSE)
EΣ + Fx = Fb where E is any of the sets c0, c, `∞, `p, (p > 1), w0, Γ, Λ, and
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F = c, or `∞. Finally, there is a solvability of the (SSE) with operator defined
by EΣ + Fx = Fb, where E = Γ, or Λ, and F = c, or `∞, and a solvability of
the (SSE) ΓΣ + Λx = Λb. In [11], for any given positive sequence a, we solved

the (SSE) defined by (Ea)∆ + s
(c)
x = s

(c)
b , where E = c0, or `p, (p > 1), and the

(SSE) (Ea)∆ + s0
x = s0

b for E = c, or s1, and we gave applications to particular
classes of (SSE). In this paper, we extend some of the previous results and obtain
a resolution of the (SSE) (Er)∆ + Fx = Fu for r, u > 0, where E, F are any of
the spaces c0, c, or `∞, and of the (SSE) (Wr)∆ + cx = cu.

This paper is organized as follows. In Section 2, we recall some definitions and
results on sequence spaces and matrix transformations. In Section 3, are given
some results on the multiplier M(E,F ) of classical spaces. Then in Section 4 we
recall some results on the solvability of some sequence spaces equations of the form
Ea + Fx = Fb, where E and F are any of the sets c0, c, or `∞. In Section 5, we

recall some results on the sets Γ̂, Ĉ, Γ, Ĉ1, and G1. In Section 6, we state some
results on the (SSE) (Ea)∆ + Fx = Fb, where c0 ⊂ E ⊂ `∞ and F ⊂ `∞. In
Section 7, we determine the solutions of the (SSE) defined by (Er)∆ + Fx = Fu
for r, u > 0, where E, F are any of the spaces c0, c, or `∞. Finally, in Section 8,
we solve the (SSE) (Wr)∆ + cx = cu.

2. Premilinary results

An FK space is a complete metric space for which convergence implies coordi-
natewise convergence. A BK space is a Banach space of sequences that is an FK
space. A BK space E is said to have AK if for every sequence y = (yn)n≥1 ∈ E,

y = limn→∞
∑n
k=1 yke

(k), where e(k) = (0, . . . , 0, 1, 0, . . . ), 1 being in the k-th
position.

For a given infinite matrix Λ = (λnk)n,k≥1, we define the operators Λn for any
integer n ≥ 1, by Λny =

∑∞
k=1 λnkyk, where y = (yk)k≥1, and the series are

assumed convergent for all n. So we are led to the study of the operator Λ defined
by Λy = (Λny)n≥1 mapping between sequence spaces. When Λ maps E into F ,
where E and F are any sets of sequences, we write that Λ ∈ (E,F ), (cf. [1]). It
is well known that if E has AK, then the set B(E) of all bounded linear operators
L mapping in E, with norm ‖L‖ = supy 6=0(‖L(y)‖E/‖y‖E), satisfies the identity
B(E) = (E,E). For the sets of all sequences, by ω, c0, c and `∞, we denote the sets
of null, convergent and bounded sequences. Let U+ ⊂ ω be the set of all sequences
u = (un)n≥1 with un > 0 for all n. Then for any given sequence u = (un)n≥1 ∈ ω,
we define the infinite diagonal matrix Du with [Du]nn = un for all n. For u =
(rn)n≥1, we write Dr for Du. Let E be any subset of ω and u be any sequence with
un 6= 0 for all n, using Wilansky’s notations [22], we have (1/u)−1 ∗ E = DuE =
{y = (yn)n≥1 ∈ ω : y/u ∈ E}. By Eu, we can also denote the set DuE. We use the

sets s0
a, s

(c)
a , sa, and `pa defined as follows, (cf. [3]). For given a ∈ U+ and p ≥ 1, we

put Dac0 = s0
a, Dac = s

(c)
a , also denoted by ca, and Da`∞ = sa. Each of the spaces

DaE, where E ∈ {c0, c, `∞} is a BK space normed by ‖y‖sa = supn≥1(‖yn|/an),

and s0
a has AK. We use the set Wa = (w∞)a, where w∞ is the set of all sequences
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y such that supn≥1(n−1
∑n
k=1 |yk|) <∞. If a = (rn)n≥1 with r > 0, we write sr,

s0
r, s

(c)
r , and Wr for the sets sa, s0

a, s
(c)
a and Wa, respectively. When r = 1, we

obtain s1 = `∞, s0
1 = c0, s

(c)
1 = c and W1 = w∞. Recall that S1 = (s1, s1) is a

Banach algebra (cf. [2]) and (c0, s1) = (c, s1) = (s1, s1) = S1. We have A ∈ S1 if
and only if supn≥1(

∑∞
k=1 |λnk|) < ∞. Recall the next Schur’s result on the class

(s1, c). We have Λ ∈ (s1, c) if and only if limn→∞ λnk = lk for some scalar lk,
k = 1, 2,. . . , and limn→∞

∑∞
k=1 |λnk| =

∑∞
k=1 |lk|, the series being convergent.

For any subset F of ω, we write F (Λ) = FΛ = {y ∈ ω : Λy ∈ F} for the matrix
domain of Λ in F . The infinite matrix T = (tnk)n,k≥1 is said to be a triangle if
tnk = 0 for k > n and tnn 6= 0 for all n. Throughout this paper, we use the next
well known statement. If T , T ′, and T ′′ are triangles, E and F are any sets of
sequences, then we have

T ∈ (ET ′ , FT ′′) ⇐⇒ T ′′TT ′−1 ∈ (E,F ),

(cf. [5, Lemma 9, p. 45]). Finally, for any given set E of sequences, we write
ΛE = {y ∈ ω : y = Λx for some x ∈ E}.

3. The multipliers of some sets of sequences

First we need to recall some well known results. Let y and z be sequences and let
E and F be two subsets of ω, we then write yz = (ynzn)n≥1. Then by

M(E,F ) = {y ∈ ω : yz ∈ F for all z ∈ E} ,
we denote the multiplier space of E and F . In this way we recall the well known
result.

Lemma 1. Let E, Ẽ, F and F̃ be arbitrary subsets of ω. Then

(i) M(E,F ) ⊂M(Ẽ, F ) for all Ẽ ⊂ E.

(ii) M(E,F ) ⊂M(E, F̃ ) for all F ⊂ F̃ .

Lemma 2. Let a ∈ ω and b be a nonzero sequence and E, F ⊂ ω. Then
Λ ∈ (DaE,DbF ) if and only if D1/bΛDa = (λnkak/bn)n,k≥1 ∈ (E,F ).

We deduce the next lemma.

Lemma 3. Let a, b ∈ U+ and let E and F be two subsets of ω. Then DaE ⊂
DbF if and only if a/b ∈M(E,F ).

Proof. We have DaE ⊂ DbF if and only if I ∈ (DaE,DbF ), which is equivalent
to Da/b ∈ (E,F ) and to a/b ∈M(E,F ). �

In a similar way we obtain the following lemma.

Lemma 4. Let a, b ∈ U+ and let E, F , and G be subsets of ω that satisfy the
condition M(E,F ) = G. Then the next statements are equivalent:

i) a ∈ DbG,

ii) a/b ∈M(E,F ),

iii) DaE ⊂ DbF .
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By [20, Lemma 3.1, p. 648] and [21, Example 1.28, p. 157], we obtain the next
result.

Lemma 5. We have:
i) M(c, c0) = M(`∞, c) = M(`∞, c0) = c0 and M(c, c) = c.

ii) M(E, `∞) = M(c0, F ) = `∞ for E, F = c0, c, or `∞.

4. On the solvability of five (SSE) of the form Ea + Fx = Fb
where E, F are any of the sets c0, c, or `∞

The solvability of the (SSE) Ea + Fx = Fb consists in determining the set of all
positive sequences x that satisfy the statement y/b ∈ F if and only if there are
two sequences α, β such that y = α+ β and

α

a
∈ E and

β

x
∈ F.

For instance, the solvability of the equation sa + s
(c)
x = s

(c)
b for a, b ∈ U+, consists

in determining the set of all x ∈ U+ that satisfy the next statement. For every
sequence y, the condition yn/bn → l (n→∞) if and only if there are two sequences
α, β such that y = α+β for which supn≥1(|αn|/an) <∞ and βn/xn → l′ (n→∞)
for some scalars l, l′. For any given linear spaces of sequences E and F , we put
I(E,F ) = {x ∈ U+ : Fb ⊂ Ea + Fx} and

S(E,F ) =
{
x ∈ U+ : Ea + Fx = Fb

}
.

For b ∈ U+ and any subset F of ω, by clF (b), we denote the equivalent class
for the equivalence relation RF defined by xRF y if DxF = DyF for x, y ∈ U+.

It can be easily seen that clF (b) is the set of all x ∈ U+ such that x/b ∈M(F, F )

and b/x ∈ M(F, F ), (cf. [17]). We then have clF (b) = clM(F,F )(b). For instance

clc(b), is the set of all x ∈ U+ such that Dxc = Dbc, that is, s
(c)
x = s

(c)
b . This is the

set of all sequences x ∈ U+ such that xn ∼ Cbn (n→∞) for some C > 0. In the

following, we write cl∞(b) for cl`∞(b). For b = (rn)n≥1, we write clF (r) instead of

clF (b) to simplify.
Now recall the next elementary result on the sum of linear spaces of sequences.

Let E, F , and G be linear subspaces of ω, then we have E + F ⊂ G if and
only if E ⊂ G and F ⊂ G. For instance, we have c0 + sx ⊂ s1 if and only
if x ∈ s1 ∩ U+ and there is no positive sequence x for which s1 + s0

x ⊂ c0.

Then we let s•b = {x ∈ U+ : xn ≥ Kbn for some K>0 and for all n} and s
•(c)
b =

{x ∈ U+ : limn→∞(xn/bn)= l for some l∈ ]0,+∞]}, ([17]). To simplify, we write

s•(rn)n≥1
= s•r and s

•(c)
(rn)n≥1

= s
•(c)
r , (or c•r) for r > 0. Notice that cl(c)(b) = s

(c)
b rs0

b .

It can be easily seen that s
•(c)
b = c•b =

{
x ∈ U+ : s

(c)
b ⊂ s

(c)
x

}
, (cf. [17]). We need

to recall the next results.
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Lemma 6. ([17, Theorem 4.4, p. 7]) Let a, b ∈ U+.
i) We have S(c, c0) = S(s1, c0) and

S(c0, s1) =

{
cl∞(b) if a/b ∈ `∞,
∅ if a/b /∈ `∞.

S(s1, c0) =

{
cl∞(b) if a/b ∈ c0,
∅ if a/b /∈ c0.

ii)

S(c0, c) =

{
cl(c)(b) if a/b ∈ `∞,
∅ if a/b /∈ `∞.

S(s1, c) =

{
cl(c)(b) if a/b ∈ c0,
∅ if a/b /∈ c0.

5. The sets Γ̂, Ĉ, Γ, Ĉ1, and G1.

To solve the next equations, we recall some definitions and results. Now let U be
the set of all sequences (un)n≥1 ∈ ω with un 6= 0 for all n. The infinite matrix
C(a) with a = (an)n ∈ U is the triangle defined by [C(a)]nk = 1/an for k ≤ n.
It can be shown that the triangle ∆(a) whose the nonzero entries are defined by
[∆(a)]nn = an, and [∆(a)]n,n−1 = −an−1 for all n ≥ 2, is the inverse of C(a),

that is, C(a)(∆(a)y) = ∆(a)(C(a)y) for all y ∈ ω. If a = e, we obtain the well
known operator of the first difference represented by ∆(e) = ∆. We then have
∆ny = yn−yn−1 for all sequences y, for all n ≥ 1, with the convention y0 = 0. It is
usually written Σ = C(e). Note that ∆ = Σ−1 and ∆, Σ ∈ SR for any R > 1. By

Ĉ1 and Ĉ, we define the sets of all positive sequences a that satisfy the conditions

C(a)a ∈ `∞, and C(a)a ∈ c, respectively. Then by Γ̂ and Γ, we define the
sets of all positive sequences a that satisfy the conditions limn→∞(an−1/an) < 1,
and limn→∞(an−1/an) < 1, respectively, (cf. [3]). The set G1 is defined by
G1 = {x ∈ U+ : xn ≥ Kγn for all n and for some K > 0 and γ > 1}. We obtain
the next lemmas.

Lemma 7. We have Γ̂ = Ĉ ⊂ Γ ⊂ Ĉ1 ⊂ G1.

Proof. The identity Γ̂ = Ĉ follows from [12, Proposition 2.2 p. 88] and the

inclusions Γ ⊂ Ĉ1 ⊂ G1 follow from [3, Proposition 2.1, p. 1786]. �

We will use the next lemma.

Lemma 8. Let a ∈ U+. Then we have:
i) The following statements are equivalent:

α) a ∈ Ĉ1, β) (sa)∆ = sa, γ) (s0
a)∆ = s0

a.

ii) a ∈ Γ̂ if and only if (s
(c)
a )∆ = s

(c)
a .

iii) a ∈ Γ implies (Wa)∆ = Wa.

Proof. The statement in i) follows from [3, Theorem 2.6, pp. 1789–1790]. ii)
follows from [3, Theorem 2.6, pp. 1789–1790] and [12, Proposition 2.2, p. 88]. The
statement in iii) was shown in [16, Proposition 3.1, pp. 122–123]. �
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6. Some properties of the (SSE) with operator (Ea)∆ + Fx = Fb.

In this section, we give some properties of the (SSIE) Fb ⊂ (Ea)∆ + Fx, where E
and F are two linear subspaces of ω that satisfy E, F ⊂ s1 and F ⊃ c0. Then we
deal with the (SSE) (Ea)∆ + Fx = Fb, where c0 ⊂ E ⊂ s1 and F ∈ {c0, c, s1}.

6.1. On the solvability of the (SSIE) Fb ⊂ (Ea)∆ + Fx.

We need some lemmas, where by I((Ea)∆, F ), we define the set of all x ∈ U+

such that Fb ⊂ (Ea)∆ + Fx. We write IFE = I((Ea)∆, F ), and more precisely we

let I∞E = I`∞E and I0
E = Ic0E to simplify.

In the following, we use the sequence σ = (σn)n≥1 defined for a, b ∈ U+ by
σn = (

∑n
k=1 ak)/bn. First we state the next lemma.

Lemma 9. ([11, Lemma 16, pp. 116–117]) Let a, b ∈ U+, and let E and F be
two linear subspaces of ω that satisfy E, F ⊂ s1 and F ⊃ c0. Then we have:

i) Assume σ ∈ c0.
Then a) IFE ⊂ Is1s1 , b) IFE ⊂ s•b .

ii) Assume a ∈ c0. Then we have IFE ⊂ s•1 for b = e.

As a direct consequence of Lemma 9, we obtain the following.

Lemma 10. Let E be a linear subspaces of ω, that satisfies E ⊂ s1.
i) If σ ∈ c0, then

a) IχE ⊂ I∞s1 , where χ is any of the symbols 0, c, or ∞.

b) IχE ⊂ s•b , where χ is any of the symbols 0, c, or ∞.

ii) If a ∈ c0 and b = e, then IχE ⊂ s•1, where χ is any of the symbols 0, c, or ∞.

Now, we state an elementary result used further.

Lemma 11. Let E be a linear subspaces of ω, that satisfies c0 ⊂ E ⊂ s1. Then
(E, s1) = S1.

Proof. The proof follows from the fact that (s1, s1)=(c0, s1)=S1 and (s1, s1) ⊂
(E, s1)⊂ (c0, s1). �

6.2. On the sets S0
E, ScE and S∞E

By S((Ea)∆, F ), we denote the set of all x ∈ U+ such that (Ea)∆ + Fx =
Fb. To simplify, we write S0

E = S((Ea)∆, c0), ScE = S((Ea)∆, c) and S∞E =
S((Ea)∆, `∞) = S((Ea)∆, s1). In all that follows, we must have in mind that the
infinite matrix D1/bΣDa is the triangle whose the nonzero entries are defined by[
D1/bΣDa

]
nk

= ak/bn for all k ≤ n.

Theorem 12. Let E be a linear subspace of ω that satisfies c0⊂E⊂s1.
i) If σ ∈ c0, then S0

E = S∞E = cl∞(b) and ScE = clc(b).

ii) If σ /∈ `∞, then S0
E = S∞E = ScE = ∅.

Proof. i) First, let σ ∈ c0 and show S∞E = cl∞(b). For this, let x ∈ S∞E . Then,
we have (Ea)∆ + sx = sb which implies x ∈ sb, and since σ ∈ c0 by Lemma 9,
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we have S∞E ⊂ I∞E ⊂ s•b . We conclude x ∈ sb ∩ s•b = cl∞(b) and S∞E ⊂ cl∞(b).
Conversely, let x ∈ cl∞(b). By Lemma 11, we have σ ∈ c0 implies D1/bΣDa ∈
(s1, s1) = (E, s1) and (Ea)∆ ⊂ sb. Then we have (Ea)∆ + sx = (Ea)∆ + sb = sb
and x ∈ S∞E . So we have shown cl∞(b) ⊂ S∞E . We conclude S∞E = cl∞(b).

Now we show S0
E = cl∞(b) for σ ∈ c0. First, we show S0

E ⊂ cl∞(b). Let
x ∈ S0

E . Then we have (Ea)∆ + s0
x = s0

b . This implies s0
x ⊂ s0

b , implies x/b ∈
M(c0, c0) = s1 and x ∈ sb. As above, by Lemma 9, we have S0

E ⊂ I0
E ⊂ s•b

and conclude x ∈ sb ∩ s•b = cl∞(b) and S0
E ⊂ cl∞(b). Conversely, let x ∈ cl∞(b).

We have σ ∈ c0 implies D1/bΣDa ∈ (s1, c0), and since E ⊂ s1, we successively

obtain (s1, c0) ⊂ (E, c0), D1/bΣDa ∈ (E, c0), and (Ea)∆ ⊂ s0
b . Then, we have

(Ea)∆ + s0
x = (Ea)∆ + s0

b = s0
b and x ∈ S0

E . So we have shown S0
E = cl∞(b). It

remains to show ScE = clc(b). Let x ∈ ScE . Then we have (Ea)∆ + cx = cb which
implies x ∈ cb. Again by Lemma 9, we have x ∈ ScE implies x ∈ IcE ⊂ s•b , and
ScE ⊂ s•b . So we have shown ScE ⊂ cb ∩ s•b = clc(b) if σ ∈ c0. Conversely, let
x ∈ clc(b). We have σ ∈ c0 implies D1/bΣDa ∈ (s1, c0) ⊂ (E, c) since E ⊂ s1. We
conclude (Ea)∆ ⊂ cb. Then (Ea)∆ + cx = (Ea)∆ + cb = cb and x ∈ ScE . So we
have shown σ ∈ c0 implies ScE ⊂ cb ∩ s•b = clc(b) and ScE = clc(b). This concludes
the proof of i).

ii) It is trivial that σ /∈ `∞ implies S0
E = S∞E = ScE = ∅. Indeed, assume there is

x ∈ SχE , where χ is any of the symbols 0, ∞, or c. Then we have (Ea)∆ +Fx = Fb
which implies (Ea)∆ ⊂ Fb and D1/bΣDa ∈ (E,F ) for F ∈ {c0, s1, c}. But since
we have (E,F ) ⊂ (s1, s1), we conclude D1/bΣDa ∈ S1 and σ ∈ `∞. This is

contradictory, and S0
E = S∞E = ScE = ∅. �

Example 13. Let a, b > 0. We consider the set Scc of all x ∈ U+ such that
yn/n

b → l1 (n → ∞) if and only if there are α, β ∈ ω such that y = α + β,
n−a∆nα → l2, and βn/xn → l3 (n → ∞) for some scalars l1, l2, l3 and for
all y. We are led to deal with the (SSE) (c(na)n≥1

)∆ + cx = c(nb)n≥1
. We have∑n

k=1 k
a ∼ na+1/(a + 1) (n → ∞), and σn ∼ na−b+1/(a + 1) (n → ∞). By

Theorem 12, we obtain Scc = clc((nb)n≥1) for b > a+ 1; and Scc = ∅ for b < a+ 1.
For instance, for b = 2 and a = 1/2, we obtain Scc = clc((n2)n≥1) and x ∈ Scc if
and only if xn ∼ Kn2 (n→∞) for some K > 0.

Proposition 14. Let r, u > 0 and let E = s1, c0, or c.
i) S∞E = S0

E = cl∞(u) and ScE = clc(u) in each of the next cases:
a) r ≤ 1 < u and b) 1 < r < u.

ii) S∞E = S0
E = ScE = ∅ in each of the next cases:

a) r, u < 1, b) u ≤ r = 1, c) r > u if r > 1.

Proof. i) We successively have σn ∼ r(1 − r)−1u−n (n → ∞) for r < 1, σn ∼
nu−n (n → ∞) for r = 1, and σn ∼ r(r − 1)−1(r/u)n (n → ∞) for r > 1. So we
have σn → 0 (n→∞) in each of the cases a) and b).

ii) It can be easily seen that σ /∈ `∞ in each of the cases a), b), and c). �

Remark 15. Let R+2 be the set of all (r, u) with r, u > 0. Consider the subsets
I1, I2, and I3 of R+2, respectively, defined by i) a), and i) b) in Proposition 14 for
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I1; by ii) a), ii) b) and ii) c) in Proposition 14 for I2; and by α) r < u = 1, and β)
r = u > 1 for I3. We easily see that {I1, I2, I3} constitute a partition of R+2.

7. Application to the solvability of (SSE) of the form
(Er)∆ + Fx = Fu for r, u > 0

In this section, we deal with each of the (SSE) (Er)∆ + sx = su, (Er)∆ + s0
x = s0

u,

and (Er)∆ + s
(c)
x = s

(c)
u for r, u > 0 with E = c0, c, or `∞.

7.1. On the (SSE) (Er)∆ + sx = su for r, u > 0 with E = c0, c, or `∞.

Let r, u > 0 and E = c0, c, or `∞ = s1, and consider the (SSE) defined by
(Er)∆ + sx = su. For instance, for E = s1, it can be easily seen that x ∈ S∞s1
means that the condition supn≥1(|yn|/un) < ∞ holds if and only if there are α

and β ∈ ω such that y = α + β for which supn≥1(|αn − αn−1|r−n) < ∞ and

supn≥1(|βn|/xn) <∞ for all y. In all that follows, we write E ∩U+ = E+ for any
subset E of ω. We obtain the next theorem.

Theorem 16. Let r, u > 0 and let E = s1, or c0.
i) If r < 1, then

S∞E =

{
cl∞(u) if u ≥ 1,
∅ if u < 1.

ii) If r = 1, then

S∞E =

{
cl∞(u) if u > 1,
∅ if u ≤ 1.

iii) If r > 1, then
a)

S∞s1 =

 cl∞(u) if r < u,
s+
u if r = u,
∅ if r > u.

(1)

b)

S∞c0 =

{
cl∞(u) if r ≤ u,
∅ if r > u.

Proof. By Proposition 14 and Remark 15, it is enough to deal with the cases
α) r < u = 1, and β) r = u > 1. Consider

Case α): We have r < u = 1, so x ∈ S∞E implies (Er)∆ + sx = s1. Then we
have x ∈ s1 and

s1 ⊂ (Er)∆ + sx.(2)

Then by Lemma 9 ii), where a = (rn)n≥1 ∈ c0, the condition in (2) implies x ∈
I∞E ⊂ s•1. We conclude x ∈ s1 ∩ s•1 = cl∞(1). Conversely, assume x ∈ cl∞(1), that
is, sx = s1. It can be easily seen that ΣDr ∈ (s1, s1) since supn≥1(

∑n
k=1 r

k) <∞,
and the inclusion (s1, s1) ⊂ (E, s1) implies ΣDr ∈ (E, s1), which is equivalent to
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(Er)∆ ⊂ s1. We conclude (Er)∆ + sx = (Er)∆ + s1 = s1 and x ∈ S∞E . So we have
shown S∞E = cl∞(1).

Case β): By Lemma 8, we have (Er)∆ = Er since r > 1, and (Er)∆ + sx =
Er + sx = sr. Then the (SSE) Er + sx = sr is equivalent to x ∈ sr for E = s1,
and by Lemma 6, it is equivalent to x ∈ cl∞(r) for E = c0. This concludes the
proof. �

Remark 17. Notice that the statement ii) in Theorem 16 was extended in [13,
Proposition 7.1, pp. 95–96] in the following way. For any given b ∈ U+, the (SSE)
defined by (c0)∆ + sx = sb has solutions if and only if (n/bn)n≥1 ∈ `∞ which are
defined by x ∈ cl∞(b).

We immediately obtain the following corollary.

Corollary 18. Let r, u > 0 and let E ∈ {c0, s1}. Then S∞E 6= ∅ if and only if
r ≤ 1 < u, or 1 < r ≤ u.

Corollary 19. If u = 1, we obtain

S∞s1 =

{
cl∞(1) if r < 1,
∅ if r ≥ 1.

We deduce from Corollary 19 that the equation (sr)∆ + sx = `∞ has solutions
if and only if r < 1, that are determined by K1 ≤ xn ≤ K2 for all n and for some
K1, K2 > 0.

Concerning the space S∞c , we state the following proposition which can be
obtained by similar arguments as those used in Theorem 16, except in the case
r = u > 1 for which we have no response until now.

Proposition 20. Let r, u > 0.
i) If r ≤ 1, then S∞c = S∞E for E = c0, or `∞.

ii) If r > 1, then S∞c = cl∞(u) for r < u, and S∞c = ∅ if r > u.

Example 21. The set of all x ∈ U+ that satisfy (c1/2)∆ + sx = `∞, is equal to
cl∞(e). The solutions of the (SSE) (c1/2)∆ + sx = s2 are determined by K12n ≤
xn ≤ K22n for all n and for some K1, K2 > 0. The (SSE) defined by (c1/2)∆+sx =
s1/4 has no solution.

7.2. The solvability of the (SSE) (Er)∆ + s0
x = s0

u

Here, we consider the (SSE) (Er)∆ + s0
x = s0

u for r, u > 0 and E = s1, c0, or c.
For instance, for E = s1, it can be easily seen that x is a solution of the (SSE)
(sr)∆ + s0

x = s0
u, that is, x ∈ S0

s1 if the next statement holds. For every y ∈ ω, the
condition yn/u

n → 0 (n→∞) holds if and only if there are α and β ∈ ω such that
y = α + β for which |∆nα|/rn ≤ K for all n, and βn/xn → 0 (n → ∞) for some
scalar K > 0. The next result was extended in [11, Theorem 2, pp. 127–128] with
the solvability of the (SSE) (Ea)∆ + s0

x = s0
b for a, b ∈ U+ and for E ∈ {c, s1}. In

this part, we give another proof based on Proposition 14, and Lemma 6 and we
deal with the case E = c0.

We can state the next theorem.
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Theorem 22. Let r, u > 0 and let E ∈ {c0, c, s1}.
i) If r < 1, then

S0
E =

{
cl∞(u) if u > 1,
∅ if u ≤ 1.

ii) If r = 1, then

S0
E = S∞E =

{
cl∞(u) if u > 1,
∅ if u ≤ 1.

iii) If r > 1, then
a) S0

c0 = S∞s1 , where S∞s1 is determined by (1) in Theorem 16.

b) S0
c = S0

s1 and

S0
s1 =

{
cl∞(u) if r < u,
∅ if r ≥ u.

Proof. As above by Proposition 14, we only need to deal with the cases α)
r < u = 1, and β) r = u > 1.

Case α). Let E ∈ {c0, c, s1}. We have r < u = 1 so x ∈ S0
E implies (Er)∆+s0

x =
c0. Then we have

(Er)∆ ⊂ c0,(3)

and since [ΣDr]nk = rk 9 0 (n → ∞) for all k, we deduce ΣDr /∈ (c0, c0) and
ΣDr /∈ (E, c0). So the condition in (3) cannot hold and S0

E = ∅.
Case β). We have (Er)∆ = Er since r > 1. Then we have (Er)∆ + s0

x =
Er + s0

x = s0
r. Then the (SSE) Er + s0

x = s0
r is equivalent to x ∈ sr for E = c0,

and by Lemma 6 this (SSE) has no solution for E = c, or s1. This concludes the
proof. �

Remark 23. Theorem 22 was extended in [11, Theorem 2, p. 127] in the fol-
lowing way. For any given a, b ∈ U+, the (SSE) defined by (Ea)∆ + s0

x = s0
b has

solutions if and only if σn = b−1
n

∑n
k=1 ak → 0 (n → ∞) and they are defined by

x ∈ cl∞(b). We obtain the results stated above noticing that there are k1, k2 > 0
such that σn ∼ k1u

−n (n → ∞) for r < 1, σn ∼ nu−n (n → ∞) for r = 1, and
σn ∼ k2(r/u)n (n→∞) for r < 1.

7.3. Solvability of the (SSE) (Er)∆ + cx = cu.

Here we consider the set ScE of all x ∈ U+ that satisfy the (SSE) (Er)∆ + cx = cu
for r, u > 0 and E ∈ {c0, c, `∞}. It can be easily seen that x ∈ Scc means that for
every y ∈ ω, the condition yn/u

n → l (n → ∞) holds if and only if there are α
and β ∈ ω such that y = α+ β for which r−n∆nα→ l1 and βn/xn → l2 (n→∞)
for some scalars l, l1, and l2. We obtain the next theorem.
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Theorem 24. Let r, u > 0 and let E = c0, c, or `∞.
i) If r < 1, then

ScE =

{
clc(u) if u ≥ 1,
∅ if u < 1.

ii) If r = 1, then

ScE =

{
clc(u) if u > 1,
∅ if u ≤ 1.

iii) If r > 1, then

Scs1 =

{
clc(u) if r < u,
∅ if r ≥ u;

Scc0 =

{
clc(u) if r ≤ u,
∅ if r > u;

and

Scc =


clc(u) if r < u,

c+u if r = u,

∅ if r > u.

Proof. Again by Proposition 14 and Remark 15, we only need to deal with the
cases α) r < u = 1, and β) r = u > 1. Consider

Case α): We have r < u = 1 so x ∈ ScE implies (Er)∆ + cx = c. Then we have
x ∈ c and

(4) c ⊂ (Er)∆ + cx.

Then by Lemma 9 ii), where a = (rn)n≥1 ∈ c0, we have condition (4) implies
x ∈ s•1. We conclude x ∈ c∩ s•1 = clc(1). Conversely, x ∈ clc(1) implies cx = c and
since (Er)∆ ⊂ c, we obtain (Er)∆ + cx = (Er)∆ + c = c.

Case β): We have (Er)∆ = Er since r > 1. Then we have (Er)∆ + cx =
Er+cx = cr. Trivially the (SSE) Er+cx = cr is equivalent to x ∈ cr for E = c, by
Lemma 6, it is equivalent to x ∈ clc(r) for E = c0, and the (SSE) has no solutions
for E = s1. This concludes the proof. �

Remark 25. For u 6= 1, we have ScE 6= ∅ if and only if u > max(r, 1), or
r = u > 1. More precisely, we have ScE = clc(u) for u > max(r, 1), and ScE = cu
for r = u > 1.

Remark 26. The statement ii) in Theorem 24 was extended in [10, Proposi-
tion 7.1, pp. 95–96], in the following way. For any given b ∈ U+, the (SSE) defined
by (c0)∆ +cx = cb has solutions if and only if 1/b ∈ s(1/n)n≥1

defined by x ∈ clc(b).

Remark 27. Theorem 24 with E = c0 was extended in [11, Theorem 1, pp.
117–118] in the following way. For any given a, b ∈ U+, the (SSE) defined by
(s0
a)∆+cx = cb has solutions if and only if b−1

n

∑n
k=1 ak → 0 (n → ∞) that are

defined by x ∈ clc(b).
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8. The solvability of the (SSE) (Wr)∆ + cx = cu.

We will consider the set of a−strongly bounded sequences defined for a ∈ U+

by Wa =
{
y ∈ ω : ‖y‖Wa = supn≥1(n−1

∑n
k=1 |yk|/ak) <∞

}
, (cf. [16]). If a =

(rn)n≥1, the set Wa is denoted by Wr. For r = 1, we obtain the well known set w∞
defined by w∞ =

{
y ∈ ω : ‖y‖w∞ = supn≥1(n−1

∑n
k=1 |yk|) <∞

}
([19]). In [10,

Proposition 7.3, p. 98], was given a solvability of each of the (SSE) (w0)∆ + cx = cb
and (w0)∆ + sx = sb, where w0 =

{
y ∈ ω : limn→∞(n−1

∑n
k=1 |yk|) = 0

}
. It was

shown that S((w0)∆, c) is nonempty and equal to clc(b) if and only if
1/b ∈ s(1/n)n≥1

. So if b = (un)n≥1, we have S((w0)∆, c) = clc(b) if and only

if u > 1. In the following, we consider the set S((Wr)∆, c) of all x ∈ U+ that
satisfy the (SSE)

(Wr)∆ + cx = cu(5)

for r, u > 0. We write Scw = S((Wr)∆, c) to simplify. It can be easily seen that
x ∈ Scw, which means that for every y ∈ ω, the condition yn/u

n → l (n → ∞)
holds if and only if there are α and β ∈ ω such that y = α+ β for which

sup
n≥1

( 1

n

n∑
k=1

|∆kα|
rk

)
<∞ and

βn
xn
→ l′ (n→∞)

for some scalars l, l′. In the following, we use next elementary statement, whose
the proof is elementary and left to the reader.

s1 ⊂ w∞ ⊂ s(n)n≥1
.(6)

Now we may state the next theorem.

Theorem 28. Let r, u > 0. Then

i) If r ≤ 1, then Scw = ScE for E = c0, c, or s1, and ScE is determined by i)
and ii) in Theorem 24.

ii) If r > 1, then Scw = Scs1 , where Scs1 is determined by iii) in Theorem 24.

Proof. i) Case r < 1.
Inside the case r < 1, we deal with each of the cases a) u < 1, b) u > 1, and c)
u = 1.

a) Case u < 1. Assume Scw 6= ∅ and let x ∈ Scw. Then we have D1/uΣDr ∈
(w∞, c), and since s1 ⊂ w∞, we obtain D1/uΣDr ∈ (s1, c). But we have σn =

u−n
∑n
k=1 r

k → ∞ (n → ∞) and D1/uΣDr /∈ (w∞, c). This leads to a contradic-
tion and we conclude Scw = ∅.

b) Case u > 1. Let x ∈ Scw. Then we have x ∈ cu, and cu ⊂ (Wr)∆ + cx. Then
there are ν = (νk)k≥1 ∈ w∞ and ϕ = (ϕn)n≥1 ∈ c such that

un =

n∑
k=1

rkνk + xnϕn
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and

un

xn

(
1− 1

un

n∑
k=1

rkνk

)
= ϕn for all n.

By the condition in (6), there is K > 0 such that νk ≤ Kk for all k, and we have

u−n
∣∣∣ n∑
k=1

rkνk

∣∣∣ ≤ Ku−n n∑
k=1

krk = o(1) (n→∞).

Since we have
un

xn
=

ϕn

1− 1
un

∑n
k=1 r

kνk
,

we conclude (un/xn)n≥1 ∈ c and x ∈ c•u. So we have shown the inclusion Scw ⊂
clc(u). Conversely, assume x ∈ clc(u). We need to show

(Wr)∆ ⊂ cu.(7)

Since r < 1 < u, we have u−n
∑n
k=1 kr

k → 0 (n→∞) which implies

D1/uΣD(nrn)n≥1
∈ (s1, c)

and D1/uΣDr ∈ (s(n)n≥1
, c). Then the condition in (7) holds since (s(n)n≥1

, c) ⊂
(w∞, c). We conclude (Wr)∆ + cx = (Wr)∆ + cu = cu, and x ∈ Scw. So we have
shown Scw = clc(u) for u > 1.

c) Case u = 1. Let x ∈ Scw. Then we have x ∈ c. We may apply Lemma 9 ii)
with E = Wr1/2 . Indeed, we have (Wr)∆ = (Er1/2)∆, and since by [15, Lemma 4.2
pp. 598–599], get M(w∞, s1) = s(1/n)n≥1

, we deduce (rn/2)n ∈ M(w∞, s1) and
Wr1/2 ⊂ s1. So we may apply Lemma 9 and we have Scw ⊂ IcW

r1/2
⊂ s•1. We

conclude Scw ⊂ c ∩ s•1 and Scw ⊂ clc(1). Conversely, assume x ∈ clc(1), that is,
cx = c. Then we have ΣDr ∈ (s(n)n≥1

, c) since
∑n
k=1 kr

k → L (n→∞) for some
scalar L, and the inclusion

(s(n)n≥1
, c) ⊂ (w∞, c)

implies ΣDr ∈ (w∞, c) and (Wr)∆ ⊂ c. Finally, we obtain

(Wr)∆ + cx = (Wr)∆ + c = c

and x ∈ Scw. We conclude clc(1) ⊂ Scw and since, we have shown Scw ⊂ clc(1) we
conclude Scw = clc(1).

Case r = 1. Here we show x ∈ Scw if and only if x ∈ clc(e) and u > 1. For
this, let x ∈ Scw. Since we have w∞ ⊃ s1, the inclusion (w∞)∆ ⊂ cu implies
D1/uΣ ∈ (w∞, c) and D1/uΣ ∈ (s1, c). So we obtain (n/un)n≥1 ∈ c and u > 1.
Then x ∈ cu, since (w∞)∆ + cx ⊂ cu, and using similar arguments that in the case
i) b), we also have x ∈ c•u. We conclude x ∈ Scw implies x ∈ clc(e) and u > 1.
Conversely, assume x ∈ clc(e), that is, cx = cu and u > 1. We need to show

(8) (w∞)∆ ⊂ cu.
The condition u > 1 implies D1/uΣ ∈ (s(n)n≥1

, c0), and since (s(n)n≥1
, c0) ⊂

(w∞, c), we conclude (8) holds. Then we have (w∞)∆ + cx = (w∞)∆ + cu = cu,
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and we have shown x ∈ Scw if and only if x ∈ clc(e) and u > 1. We conclude
Scw = clc(e) for u > 1 and Scw = ∅ for u ≤ 1.

ii) Case r > 1. By Lemma 8 iii) we have (Wr)∆ = Wr, so we are led to solve
the (SSE)

Wr + cx = cu.(9)

Let x ∈ Scw. Then we have Wr ⊂ cu, which implies ((r/u)n)n≥1 ∈M(w∞, c). But
by [15, Lemma 4.2, p. 598], we have M(w∞, s1) = s(1/n)n≥1

, and since M(w∞, c) ⊂
M(w∞, s1), we obtain (n(r/u)n)n≥1 ∈ s1 and r < u. Then the identity in (9)
implies cu ⊂ Wr + cx. So there are two sequences ν ∈ w∞ and ϕ ∈ c such that
un = rnνn + xnϕn and unx−1

n [1− (r/u)nνn] = ϕn for all n. Again the condition
in (6) implies (r/u)n|νn| ≤ Cn(r/u)n for all n and for some C > 0. But since

n
( r
u

)n
→ 0 (n→∞),(10)

we deduce 1 − (r/u)nνn → 1 (n → ∞), and since un/xn = ϕn/ [1− (r/u)nνn],
we conclude (un/xn)n≥1 ∈ c and x ∈ c•u. Now, by the identity in (9) we have
cx ⊂ cu and x ∈ cu. We conclude x ∈ c•u

⋂
cu = clc(u). So we have shown x ∈ Scw

implies r < u and x ∈ clc(u). Conversely, assume r < u and x ∈ clc(u). Again
by [15, Lemma 4.2, p. 598], we have M(w∞, c0) = s0

(1/n)n≥1
and the condition

r < u implies that condition (10) holds and ((r/u)n)n≥1 ∈M(w∞, c0). So we have
shown Wr ⊂ cu. Finally, since we have cx = cu, we obtain Wr+cu = Wr+cx = cu
and x ∈ Scw. This concludes the proof. �

Corollary 29. Let r, u > 0. Then Scw = clc(u) if and only if r < 1 ≤ u, or
r = 1 < u, or 1 < r < u.

Remark 30. From Theorem 28 and [10, Proposition 7.3, p. 98], we obtain
S((w∞)∆, c) = S((w0)∆, c) = clc(u) if and only if u > 1. So the (SSE) (w∞)∆ +
cx = cu and (w0)∆ + cx = cu are equivalent for all u > 1.
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