
Acta Math. Univ. Comenianae
Vol. LXXXVI, 2 (2017), pp. 263–270

263

A NOTE ON CERTAIN MATRICES

WITH h(x)-FIBONACCI POLYNOMIALS

P. CATARINO

Abstract. In this paper, it is considered a g-circulant, right circulant, left cir-
culant and a special kind of tridiagonal matrices whose entries are h(x)-Fibonacci
polynomials. The determinant of these matrices is established and with the tridi-
agonal matrices we show that the determinant is equal to the nth term of the
h(x)-Fibonacci polynomials.

1. Introduction

For a natural number n we consider a g-circulant matrix as square matrix of order
n with the following form

(1) Ag,n =


a1 a2 · · · an

an−g+1 an−g+2 · · · an−g
an−2g+1 an−2g+2 · · · an−2g

...
...

. . .
...

ag+1 ag+2 · · · ag

 ,

where g is a nonnegative integer and each of the subscripts is understood to be
reduced modulo n. The first row of Ag,n is (a1, a2, · · · , an) and its (j + 1)th row
is obtained by giving its jth row a right circular shift by g positions.

Note that g = 1 or g = n + 1 yields the standard right circulant matrix, or
simply, circulant matrix. Thus a right circulant matrix is written as

(2) RCirc(a1, a2, · · · , an) =


a1 a2 · · · an
an a1 · · · an−1
...

...
...

a2 a3 · · · a1

 .
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If g = n − 1, we obtain the so called left circulant matrix or reverse circulant
matrix. In this case we write a left circulant matrix as

(3) LCirc(a1, a2, · · · , an) =


a1 a2 · · · an
a2 a3 · · · a1
...

...
...

an a1 · · · an−1

 .

The history of circulant matrices is a long one (see, for example, [6], [10], [12],
[19] and [24]). All types of circulant matrices arise in the study of periodic or
multiply symmetric dynamical systems and play a crucial role for solving various
differential equations (see, for example, [1], [7], [16] and [23]). These matrices
were exploited to obtain the transient solution in closed form for fractional order
differential equations (see, for example, [1]). Wu and Zou in [23] discussed the
existence and approximation of solutions of asymptotic or periodic boundary value
problems of mixed functional differential equations. In the recent years, there
have been several papers on several types of circulant matrices (see, for example,
[3], [11], [17], [18] and [20]). Some authors study these type of matrices whose
entries are integers sequences defined recursively. This is, for example, the case
of [11], [17], [18] and [22] where the authors considered circulant matrices with
the Fibonacci and Lucas numbers, the case of [3] and [9] where the entries of the
circulant matrices are Jacobsthal and Jacobsthal-Lucas numbers, and the case of
[20] and [21] where the k-Horadam mumbers are considered as entries of circulant
matrices.

In this paper, we consider a g-circulant, right and left circulant matrices whose
entries are kind of polynomials instead of numbers. The Fibonacci polynomials are
polynomials that can be defined by Fibonacci-like recursion relations were studied
in 1883 by E. C. Catalan and E. Jacobsthal. For example, E. C. Catalan studied
the polynomials Fn(x) defined by the recurrence relation

(4) Fn(x) = xFn−1(x) + Fn−2(x), n ≥ 3,

where F1(x) = 1 and F2(x) = x. This is an example of several polynomial se-
quences that can be defined by recurrence relations of order two. Many mathe-
maticians were involved in the study of Fibonacci polynomials such as P. F. Byrd,
M. Bicknell-Johnson among others.

Let h(x) be a polynomial with real coefficients. Nalli and Haukkanen [15]
introduced h(x)-Fibonacci polynomials that generalize both Catalan’s Fibonacci
polynomials and Byrd’s Fibonacci polynomials. In their paper, the h(x)-Fibonacci
polynomials {Fh,n(x)}∞n=0 are defined by the recurrence relation

(5) Fh,n+1(x) = h(x)Fh,n(x) + Fh,n−1(x), n ≥ 1,

with the initial conditions Fh,0(x) = 0 and Fh,1(x) = 1.
For h(x) = x, we obtain Catalan’s Fibonacci polynomials (4) and for h(x) = 2x,

we obtain Byrd’s Fibonacci polynomials. Moreover, for h(x) = k, k any real
number, we obtain the k-Fibonacci numbers studied by several researchers (see, for
example, [2], [4], [5] and [8] among others) and in particular, for k = 1 and k = 2,
we obtain the sequences of Fibonacci numbers and Pell numbers, respectively.



A NOTE ON CERTAIN MATRICES WITH h(x)-FIBONACCI POLYNOMIALS 265

This paper is organized as follows: In Section 2, we consider the g-circulant,
right circulant and left circulant matrices whose entries are h(x)-Fibonacci poly-
nomials and present the determinant of these matrices. In Section 3, we consider a
special kind of tridiagonal matrices whose entries are also h(x)-Fibonacci polyno-
mials and show that the determinant is equal to the nth term of the h(x)-Fibonacci
polynomial sequence. We end this paper with some conclusions and plans for fur-
ther investigation.

2. Circulant type matrices with h(x)-Fibonacci polynomials

Let An(x) = RCirc(Fh,1(x), Fh,2(x), · · · , Fh,n(x)) be a right circulant matrix. We
give a new expression for detAn(x) following the idea of Gong, Jiang and Gao in
[9].

Theorem 2.1. For n ≥ 1, let An(x) = RCirc(Fh,1(x), Fh,2(x), · · · , Fh,n(x)) be
a right circulant matrix. Then we have

(6) detAn(x) = (1−Fh,n+1(x))n−1 +Fh,n(x)n−2
n−1∑
k=1

(
1− Fh,n+1(x)

Fh,n(x)
)k−1Fh,k(x).

Proof. For n = 1, detA1(x) = 1 satisfies the formula (6). In the case n ≥ 2, we
consider the following square matrices of order n of common use in the theory of
circulant matrices

Γ(x) =



1 0 0 0 · · · 0 0 0
−h(x) 0 0 0 · · · 0 0 1
−1 0 0 0 · · · 0 1 −h(x)
0 0 0 0 · · · 1 −h(x) −1
...

...
...

... · · ·
...

...
...

0 0 0 1 · · · 0 0 0
0 0 1 −h(x) · · · 0 0 0
0 1 −h(x) −1 · · · 0 0 0


and

Π(x) =



1 0 0 · · · 0 0

0
( Fh,n(x)

1− Fh,n+1(x)

)n−2
0 · · · 0 1

0
( Fh,n(x)

1− Fh,n+1(x)

)n−3
0 · · · 1 0

...
...

...
...

...
...

0
Fh,n(x)

1− Fh,n+1(x)
1 · · · 0 0

0 1 0 · · · 0 0


.

Note that

(7) det Γ(x) = det Π(x) = (−1)
(n−1)(n−2)

2 .
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Considering the product Γ(x)An(x)Π(x) of matrices, we obtain the following
matrix

C =



Fh,1(x) αn Fh,n−1(x) · · · Fh,3(x) Fh,2(x)
0 βn Fh,n−2(x) · · · Fh,2(x) Fh,1(x)
0 0 Fh,1(x)− Fh,n+1(x)

0 0 −Fh,n(x)
. . . 0

...
...

. . .
. . .

0 0
0 0 0 −Fh,n(x) Fh,1(x)− Fh,n+1(x)


,

where

αn =

n−1∑
k=1

(
Fh,n(x)

Fh,1(x)− Fh,n+1(x)
)n−(k+1)Fh,k+1(x)

and

(8) βn = (Fh,1(x)− Fh,n+1(x)) +

n−1∑
k=1

(
Fh,n(x)

Fh,1(x)− Fh,n+1(x)
)n−(k+1)Fh,k(x).

Next we calculate the determinant of the matrix C = Γ(x)An(x)Π(x) and obtain

(9) detC = Fh,1(x)βn(Fh,1(x)− Fh,n+1(x))n−2.

Now, using the identity (8), the recurrence relation (5) with the initial con-
ditions, and doing some calculations, a new expression for detC is obtained as
follows

(10) detC = (1− Fh,n+1(x))n−1 + Fh,n(x)n−2
n−1∑
k=1

(
1− Fh,n+1(x)

Fh,n(x)
)k−1Fh,k(x).

Using the property of the determinant of a product of matrices and the identity
(7), we conclude that

detAn = detC

and the result follows. �

Let Bn(x) = LCirc(Fh,1(x), Fh,2(x), · · · , Fh,n(x)) be a left circulant matrix
which entries are h(x)-Fibonacci polynomials. Next we give a new expression
for detBn(x) following once more the idea used by Gong, Jiang and Gao in [9]
and [13] that helps us to obtain the determinant of Bn(x). In [13, Lemma 5], the
authors define the following matrix

(11) ∆ :=



1 0 0 · · · 0 0
0 0 0 · · · 0 1
0 0 0 · · · 1 0
...

...
... · · ·

...
...

0 0 1 · · · 0 0
0 1 0 · · · 0 0


,
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that is an orthogonal cyclic shift matrix (and a left circulant matrix) of order n.
The main result is

(12) LCirc(a1, a2, · · · , an) = ∆ RCirc(a1, a2, · · · , an).

Using the fact of det ∆ = (−1)
(n−1)(n−2)

2 , calculating the determinant in both
sides of the identity (12) and according the result obtained in Theorem 2.1, the
following result is easily proved.

Theorem 2.2. For n ≥ 1, let Bn(x) = LCirc(Fh,1(x), Fh,2(x), · · · , Fh,n(x)) be
a left circulant matrix. Then we have

(13)

detBn(x) = (−1)
(n−1)(n−2)

2 (1− Fh,n+1(x))n−1

+ Fh,n(x)n−2
n−1∑
k=1

(
1− Fh,n+1(x)

Fh,n(x)
)k−1Fh,k(x).

Now let Cn(x) = Ag,n be a g-circulant matrix as in (1), which entries are h(x)-
Fibonacci polynomials. In order to obtain a new expression for detCn(x), we use
the following results of [13].

Lemma 2.3. ([13, Lemma 6]) The n × n matrix Qg is unitary if and only if
(n, g) = 1, where Qg is a g-circulant matrix with the first row e∗ = [1, 0, · · · , 0].

Lemma 2.4. ([13, Lemma 7]) Ag,n is a g-circulant matrix with the first row
[a1, a2, · · · , an] if and only if Ag,n = Qg RCirc(a1, a2, · · · , an).

From these Lemmas and Theorem 2.1, we deduce the following result.

Theorem 2.5. Let Cn(x) = Ag,n be a g-circulant matrix as in (1), which
entries are h(x)-Fibonacci polynomials. Then one has

(14)

detCn(x) = detQg[(1− Fh,n+1(x))n−1

+ Fh,n(x)n−2
n−1∑
k=1

(
1− Fh,n+1(x)

Fh,n(x)
)k−1Fh,k(x)].

3. Tridiagonal Matrices with h(x)-Fibonacci polynomials

Following the ideas of Falcón in [8], we have that the determinant of a special kind
of tridiagonal matrices is related to a special n-th order polynomial. If we consider
the (n× n) tridiagonal matrices Mn, defined as

(15)



a b
c d e

c d e
. . .

. . .
. . .

c d e
c d


,



268 P. CATARINO

and compute the sequence of determinants, we obtain:

|M1| = a

|M2| = d |M1| − bc
|M3| = d |M2| − ce |M1|
|M4| = d |M3| − ce |M2|

...

|Mn+1| = d |Mn| − ce |Mn−1| ,
and therefore we can easily obtain the following result

Proposition 1. The (n× n) tridiagonal matrices

Fh
n (x) =



h(x) −1
1 h(x) −1

1 h(x) −1
. . .

. . .
. . .

1 h(x) −1
1 h(x)


satisfy ∣∣Fh

n−1(x)
∣∣ = Fh,n(x),

that is, the n-th h(x)-Fibonacci polynomial may be obtained through the computa-
tion of the determinant of the ((n− 1)× (n− 1)) tridiagonal matrix Fh

n−1(x).

Proof. If we consider a = d = h(x), b = e = −1 and c = 1, it is straightforwardly
seen that the sequence of determinants becomes:

|M1| =
∣∣Fh

1 (x)
∣∣ = h(x) = Fh,2(x)

|M2| =
∣∣Fh

2 (x)
∣∣ = 1 + (h(x))2 = Fh,3(x)

|M3| =
∣∣Fh

3 (x)
∣∣ = (h(x))3 + 2h(x) = Fh,4(x)

...

|Mn−1| =
∣∣Fh

n−1(x)
∣∣ = Fh,n(x),

as required. �

Another way of relating the nth order h(x)-Fibonacci polynomial as the com-
putation of a tridiagonal matrix may be obtained using the ideas of [14], where
the following result was presented

Theorem 3.1. Let {xn}n be any second order linear sequence defined recur-
sively as

xn+1 = Axn +Bxn−1, n ≥ 1,
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with x0 = C, x1 = D. Then, for all n ≥ 0

xn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

C D 0 0 · · · 0 0
−1 0 B 0 · · · 0 0
0 −1 A B · · · 0 0
...

...
...

. . .
. . .

...
...

0 0 0 0 · · · A B
0 0 0 0 · · · −1 A

∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

.

In the case of the h(x)-Fibonacci polynomials sequence, we have A = h(x),
B = D = 1 and C = 0, and then, a direct application of Theorem 3.1 leads to the
following proposition

Proposition 2. For n ≥ 0, we have

Fh,n(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 · · · 0 0
−1 0 1 0 · · · 0 0
0 −1 h(x) 1 · · · 0 0
...

...
...

. . .
. . .

...
...

0 0 0 0 · · · h(x) 1
0 0 0 0 · · · −1 h(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

.

4. Conclusions

Several studies involving all types of circulant matrices and tridiagonal matrices
can be easily found in the literature. Here we have considered the g-circulant,
right and left circulant matrices whose entries are h(x)-Fibonacci polynomials.
For these cases we have provided the determinant of these matrices. Some kind
of tridiagonal matrices whose entries are h(x)-Fibonacci polynomials have been
considered and we presented a different way, to obtain the n-th term of the h(x)-
Fibonacci polynomial sequence.

In the future, we intend to discuss the invertibility of these circulant type ma-
trices associated with these polynomials, such as, for example, the work of Shen
[17] in the case of Fibonacci and Lucas numbers, Yazlik [21] with Generalized
k-Horadam numbers, and Bozkurt [3] with Jacobsthal and Jacobsthal-Lucas num-
bers, among others.
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