
Acta Math. Univ. Comenianae
Vol. LXXXIV, 1 (2015), pp. 51–57

51

ON EXISTENCE OF POSITIVE SOLUTION FOR INITIAL

VALUE PROBLEM OF NONLINEAR FRACTIONAL

DIFFERENTIAL EQUATIONS OF ORDER 1 < α ≤ 2

M. M. MATAR

Abstract. The existence of positive solution for a class of nonlinear fractional
differential equations are investigated by the method of upper and lower solutions

and using Schauder and Banach fixed point theorems.

1. Introduction

The fractional differential equations (FDE) are considered as alternative models to
nonlinear differential equations which induced extensive researches in various ap-
plicable fields such as physics, mechanics, chemistry, engineering, etc. (see [4], [6],
[15]). In recent years, the theory of fractional differential equations has been given
a great interest, especially to finding sufficient conditions for existence and unique-
ness of the solutions of nonlinear FDE ([7]–[11], [13], and references therein).
Many researchers (see [1], [2], [5], [12] and [14]) investigated the positivity of
such solutions for FDE. More precisely, D. Delbosco and L. Rodino [3] proved the
existence of the solutions to FDE using Banach and Schauder fixed point theo-
rems; Zhang [12] investigated the existence and uniqueness of positive solution
using the method of the upper and lower solution and cone fixed-point theorem;
Lakshmikantham [13] obtained the existence of the local and global solutions us-
ing classical differential equation theorem. However, in the previous works, the
nonlinear function in the FDE has to satisfy a monotonous characteristic or some
control conditions. In fact, the FDEs with nonmonotone function can respond
better to impersonal law, so it is very important to weaken monotone condition.
Moreover, the cone fixed point theorems are used to get the existence of positive
a solution.

Motivated by these works, in this paper, we mainly investigate the existence of
solution to FDE of order 1 < α ≤ 2 without any monotonic conditions nor using
cone fixed theorem, but by considering the so-called upper and lower control func-
tions. These functions can be used in the technique of upper and lower solutions
in connection with Schauder and Banach fixed-point theorems.
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2. Preliminaries

Let X = C(J), J = [0, 1] be the Banach space of all real-valued continuous
functions defined on the compact interval J , endowed with the maximum norm.
Define the subspace A = {x ∈ X : x(t) ≥ 0, t ∈ J} of X. By a positive solution
x ∈ X, we mean a function x(t) > 0, 0 < t ≤ 1 and x(0) = 0.

Let a, b ∈ R+ such that b > a. For any x ∈ [a, b], we define the upper-
control function U(t, x) = sup{f(t, λ) : a ≤ λ ≤ x}, and lower-control function
L(t, x) = inf{f(t, λ) : x ≤ λ ≤ b}. Obviously, U(t, x), and L(t, x) are monotonous
non-decreasing on the argument x and L(t, x) ≤ f(t, x) ≤ U(t, x).

We assume hereafter that f : J×X → X is a continuous function such that the
fractional integral

Iαf(t, x(t)) =
1

Γ(α)

t∫
0

(t− s)α−1
f(s, x(s))ds

exists for any order 0 < α ≤ 2. Moreover, the Caputo fractional derivative Dαx =
I2−αx(2), x ∈ X exists for any order 1 < α ≤ 2.

Consider the following nonlinear fractional differential equation{
Dαx(t) = f(t, x(t)), 0 < t ≤ 1,
x(0) = 0, x′(0) = θ > 0,

(1)

where 1 < α ≤ 2. Equation (1) is the equivalent to the integral equation (see [7])

x(t) = θt+
1

Γ(α)

t∫
0

(t− s)α−1
f(s, x(s))ds.(2)

To transform equation (2) to be applicable to Schauder fixed point, we define
an operator Φ: A→ A by

(Φx)(t) = θt+
1

Γ
(α)

t∫
0

(t− s)α−1
f(s, x(s))ds, t ∈ J,(3)

where the figured fixed point must satisfy the identity operator equation Φx = x.
The following assumptions are needed for the next results.

H1 Let x∗(t), x∗(t) ∈ A, such that a ≤ x∗(t) ≤ x∗(t) ≤ b and{
Dαx∗(t) ≥ U(t, x∗(t)),
Dαx∗(t) ≤ L(t, x∗(t))

for any t ∈ J .
H2 For t ∈ J and x, y ∈ X, there exists a positive real number β < 1 such that

|f(t, y)− f(t, x)| ≤ β ‖y − x‖ .

The functions x∗(t) and x∗(t) are respectively called the pair of upper and lower
solutions for Equation (1).
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3. Existence of Positive Solution

In this section, we consider the results of existence problem for many cases of
the FDE (1). Moreover, we introduce the sufficient conditions of the uniqueness
problem of (1).

Theorem 3.1. Assume that (H1) is satisfied, then the FDE (1) has at least
one solution x ∈ X satisfying x∗(t) ≤ x(t) ≤ x∗(t), t ∈ J .

Proof. Let C = {x ∈ A : x∗(t) ≤ x(t) ≤ x∗(t), t ∈ J}, endowed with the norm
‖x‖ = maxt∈J |x(t)|, then we have ‖x‖ ≤ b. Hence, C is a convex, bounded, and
closed subset of the Banach space X. Moreover, the continuity of f implies the
continuity of the operator Φ on C defined by (3). Now, if x ∈ C, there exists a
positive constant c such that max{f(t, x(t)) : t ∈ J, x(t) ≤ b} < c. Then

|(Φx)(t)| ≤ θt+
1

Γ(α)

t∫
0

(t− s)α−1 |f(s, x(s))|ds ≤ θ +
ctα

Γ (α+ 1)
.

Thus,

‖Φx‖ ≤ θ +
c

Γ(α+ 1)
.

Hence, Φ(C) is uniformly bounded. Next, we prove the equicontinuity of Φ.
Let x ∈ C, ε > 0, δ > 0, and 0 ≤ t1 < t2 ≤ 1 such that |t2 − t1| < δ. If

δ = min

{
1, εΓ(α+1)

2(θΓ(α+1)+2c) ,
(
εΓ(α+1)

4c

) 1
α

}
, then

|(Φx)(t1)− (Φx)(t2)|
≤ θ (t2 − t1)

+

∣∣∣∣∣∣ 1

Γ(α)

t1∫
0

(t1 − s)α−1
f(s, x(s))ds− 1

Γ (α)

t2∫
0

(t2 − s)α−1
f(s, x(s))ds

∣∣∣∣∣∣
≤ θ (t2 − t1) +

∣∣∣∣∣∣ 1

Γ(α)

t1∫
0

(
(t1 − s)α−1 − (t2 − s)α−1

)
f(s, x(s))ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

Γ(α)

t2∫
t1

(t2 − s)α−1
f(s, x(s))ds

∣∣∣∣∣∣
≤ θ (t2 − t1) +

c

Γ (α+ 1)
(tα2 − tα1 + 2 (t2 − t1)

α
)

≤
(
θ +

2c

Γ (α+ 1)

)
δ +

2cδα

Γ (α+ 1)

< ε.

Therefore, Φ(C) is equicontinuous. The Arzelè-Ascoli Theorem implies that
Φ: A → A is compact. The only thing to apply Schauder fixed point is to prove
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that Φ(C) ⊆ C. Let x ∈ C, then by hypotheses, we have

(Φx)(t) = θt+
1

Γ(α)

t∫
0

(t− s)α−1
f(s, x(s))ds

≤ θt+
1

Γ(α)

t∫
0

(t− s)α−1
U(s, x(s))ds

≤ θt+
1

Γ(α)

t∫
0

(t− s)α−1
U(s, x∗(s))ds

≤ x∗(t),
and

(Φx)(t) = θt+
1

Γ(α)

t∫
0

(t− s)α−1
f(s, x(s))ds

≥ θt+
1

Γ(α)

t∫
0

(t− s)α−1
L(s, x(s))ds

≥ θt+
1

Γ(α)

t∫
0

(t− s)α−1
L(s, x∗(s))ds

≥ x∗(t).
Hence, x∗(t) ≤ (Φx)(t) ≤ x∗(t), t ∈ J , that is, Φ(C) ⊆ C. According to Schauder
fixed point theorem, the operator Φ has at least one fixed point x ∈ C. Therefore,
the FDE (1) has at least one positive solution x ∈ X and x∗(t) ≤ x(t) ≤ x∗(t),
t ∈ J . �

Next, we consider many particular cases of the previous theorem.

Corollary 3.2. Assume that there exist continuous functions k1(t) and k2(t)
such that 0 < k1(t) ≤ f(t, x(t)) ≤ k2(t) < ∞, (t, x(t)) ∈ J × [0,+∞). Then, the
FDE (1) has at least one positive solution x ∈ X. Moreover,

θt+ Iαk1(t) ≤ x(t) ≤ θt+ Iαk2(t).(4)

Proof. By the given assumption and the definition of control function, we have
k1(t) ≤ L(t, x) ≤ U(t, x) ≤ k2(t), (t, x(t)) ∈ J × [a, b]. Now, we consider the
equations

Dαx(t) = k1(t), x(0) = 0, x′(0) = θ
Dαx(t) = k2(t), x(0) = 0, x′(0) = θ.

(5)

Obviously, equations (5) are equivalent to

x(t) = θt+ Iαk1(t),

x(t) = θt+ Iαk2(t).
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Hence, the first implies x(t)−θt = Iαk1(t) ≤ Iα(L(t, x(t))), and the second implies
x(t) − θt = Iαk2(t) ≥ Iα(U(t, x(t))), which are the upper and lower solutions of
Equation (5), respectively. An application of Theorem 3.1 yields that the FDE
(1) has at least one solution x ∈ X and satisfies Equation (4). �

Corollary 3.3. Assume that 0 < σ < k(t) = limx→∞ f(t, x) < ∞ for t ∈ J .
Then the FDE (1) has at least a positive solution x ∈ X.

Proof. By assumption, if x > ρ > 0, then 0 ≤ |f(t, x)− k(t)| < σ for any t ∈ J .
Hence, 0 < k(t) − σ ≤ f(t, x) ≤ k(t) + σ for t ∈ J and ρ < x < +∞. Now if
max{f(t, x) : t ∈ J, x ≤ ρ} ≤ ν, then k(t) − σ ≤ f(t, x) ≤ k(t) + σ + ν for t ∈ J,
and 0 < x < +∞. By Corollary 3.2, the FDE (1) has at least one positive solution
x ∈ X satisfying

θt+ Iαk(t)− σtα

Γ (α+ 1)
≤ x(t) ≤ θt+ Iαk(t) +

(σ + ν)tα

Γ (α+ 1)
.

�

Corollary 3.4. Assume that 0 < σ ≤ f(t, x(t)) ≤ γx(t) + η < ∞ for t ∈ J ,
and σ, η and γ are positive constants. Then, the FDE (1) has at least one positive
solution x ∈ C[0, δ], where 0 < δ < 1.

Proof. Consider the equation

Dαx(t) = γx(t) + η, 0 < t ≤ 1,
x(0) = 0, x′(0) = θ > 0.

(6)

Equation (6) is equivalent to integral equation

x(t) = θt+
1

Γ(α)

t∫
0

(t− s)α−1
(γx(s) + η) ds

= θt+
ηtα

Γ (α+ 1)
+

γ

Γ(α)

t∫
0

(t− s)α−1
x(s)ds.

Let ω and φ be positive real numbers. Choose an appropriate δ ∈ (0, 1) such that

0 < γδα

Γ(α+1) < φ < 1 and ω > (1 − φ)−1
(
θδ + ηδα

Γ(α+1)

)
. Then if 0 ≤ t ≤ δ, the

set Bω = {x ∈ X : |x(t)| ≤ ω, 0 ≤ t ≤ δ} is convex, closed, and bounded subset
of C[0, δ]. The operator z : Bω → Bω given by

(zx)(t) = θt+
ηtα

Γ(α+ 1)
+

γ

Γ(α)

t∫
0

(t− s)α−1x(s)ds

is compact as in the proof of Theorem 3.1. Moreover,

|(zx)(t)| ≤ θt+
ηtα

Γ(α+ 1)
+

γtα

Γ (α+ 1)
‖x‖ .

If x ∈ Bω, then
|(zx)(t)| ≤ (1− φ)ω + φω = ω,
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that is ‖zx‖ ≤ ω. Hence, the Schauder fixed theorem ensures that the operator z
has at least one fixed point in Bω, and then Equation (6) has at least one positive
solution x∗(t), where 0 < t < δ. Therefore, if t ∈ J one can asserts that

x∗(t) = θt+
ηtα

Γ (α+ 1)
+

γ

Γ(α)

t∫
0

(t− s)α−1x∗(s)ds.

The definition of control function implies U(t, x∗(t)) ≤ γx∗(t) + η = Dαx∗(t),
then x∗ is an upper positive solution of the FDE (1). Moreover, one can consider

x∗(t) = θt+ σtα

Γ(α+1) as a lower positive solution of Equation (1). By Theorem 3.1,

the FDE (1) has at least one positive solution x ∈ C[0, δ], where 0 < δ < 1 and
x∗(t) ≤ x(t) ≤ x∗(t). �

The last result is the uniqueness of the positive solution of (1) using Banach
contraction principle.

Theorem 3.5. Assume that (H1) and (H2) are satisfied. Then the FDE (1)
has a unique positive solution x ∈ X.

Proof. From Theorem 3.1, it follows that the FDE (1) has at least one positive
solution in C. Hence, we need only to prove that the operator Φ defined in (3) is
a contraction on X. In fact, for any x, y ∈ X, we have

|(Φx)(t)− (Φy)(t)| ≤ 1

Γ(α)

t∫
0

(t− s)α−1 |f(s, x(s))− f(s, y(s))|ds

≤ βtα

Γ(α+ 1)
‖x− y‖ .

If 1 < α ≤ 2, then 1 < Γ (α+ 1) ≤ 2 implies βtα

Γ(α+1) < 1. Hence, the operator Φ

is a contraction mapping. Therefore, the FDE (1) has a unique positive solution
x ∈ X. �

Finally, we give an example to illustrate our results.

Example 3.6. We consider the fractional equation D
3
2x(t) = 1 + t e−tx(t)

1+cos t , 0 < t ≤ 1

x(0) = 0, x′(0) = θ > 0,
(7)

where f(t, x) = 1 + t e−tx

1+cos t . Since limx→∞(1 + t e−tx

1+cos t ) = 1 and 1 ≤ 1 + 1
2 t e−tx ≤

f(t, x) ≤ 1 + t e−tx ≤ 1 + t ≤ 2 for (t, x) ∈ [0, 1] × [0,+∞), hence by any of the
above Corollaries, the equation (7) has a positive solution. We lost the uniqueness
property of the existed solution due to the contraction principle is not applicable
on the function f(t, x).
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