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HERMITE-HADAMARD INEQUALITY FOR FRACTIONAL

INTEGRALS VIA η-CONVEX FUNCTIONS

M. A. KHAN, Y. KHURSHID and T. ALI

Abstract. In this paper, we prove Hermite-Hadamard inequality for fractional in-

tegrals by using η-convex function. We give some inequalities for Hermite-Hadamard
type fractional integrals.

1. Introduction and Preliminaries

If f : I → R is a convex function on the interval I, then for any a, b ∈ I with a 6= b,
we have the following double inequality

(1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(t)dt ≤ f(a) + f(b)

2
.

This significant result was given in ([13], 1893) and is well known in the lit-
erature as the Hermite-Hadamard inequality. Since then, many researchers have
given considerable attention to the inequalities in (1) and a number of extensions,
generalizations and variants have appeared in the literature of convex analysis, for
example, see [1, 2, 4, 5, 6, 7, 8, 9, 10, 16, 17, 18, 19, 21, 22, 24, 26, 27, 28]
and the references cited therein.

In [12], M. E. Gordji et al. introduced the idea of η-convex functions as general-
ization of ordinary convex functions and gave the following definition for η-convex-
ity of functions.

Definition 1.1. A function f : [a, b]→ R is said to be η-convex (or convex with
respect to η) if the inequality

(2) f(tx+ (1− t)y) ≤ f(y) + tη(f(x), f(y))

holds for all x, y ∈ [a, b], t ∈ [0, 1], and η is defined by η : f([a, b])× f([a, b])→ R.
In the above definition if we set η(x, y) = x−y, then we can directly obtain the

classical definition of a convex function.

Also in [12], the authors proved some important results but here we give only
one of them in the following theorem based on the above definition, which is also
known as η-convex version of Hermite-Hadamard inequality.
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Theorem 1.2 ([12]). Suppose that f : [a, b] → R is a η-convex function such
that η is bounded above on f([a, b])×f([a, b]). Then the following inequalities hold.

(3)

f

(
a+ b

2

)
− Mη

2
≤ 1

b− a

b∫
a

f(x)dx

≤ 1

2
[f(a) + f(b)] +

1

4
[η(f(a), f(b)) + η(f(b), f(a))]

≤ f(a) + f(b)

2
+
Mη

2
,

where Mη is the upper bound of η.

In the following, we give the definition of fractional Riemann-Liouville integral,
which will be used in the later part of the paper. For more details, one can consult
[11, 23].

Definition 1.3. Let f ∈ L[a, b]. The left-sided and right-sided Riemann-
Liouville fractional integrals Jαa+f and Jαb−f of order α > 0 with a ≥ 0 are defined
by

Jαa+f(x) =
1

Γ(α)

x∫
a

(x− t)α−1f(t)dt with x > a

and

Jαb−f(x) =
1

Γ(α)

b∫
x

(t− x)α−1f(t)dt with x < b,

respectively, where Γ(α) is the Gamma function and its definition is

(4) Γ(α) =

∫ ∞
0

e−u uα−1du.

It is to be noted that J0
a+f(x) = J0

b−f(x) = f(x). In the case of α = 1, the
fractional integral reduces to the classical integral.

In [25], M. Z. Sarikaya et al. presented the following Hermite-Hadamard’s
inequalities for fractional integrals.

Theorem 1.4 ([25]). Let f : I → R be a positive function with 0 ≤ a < b and
f ∈ L[a, b]. If f is a convex function on [a, b], then the following inequality for
fractional integrals holds.

(5) f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α

[
Jαa+f(b) + Jαb−f(a)

]
≤ f(a) + f(b)

2
.

Also in the same paper, the authors established an important lemma and proved
the following Hermite-Hadamard’s type inequalities for fractional integrals.
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Theorem 1.5 ([25]). Let f : [a, b] → R be a differentiable function on (a, b)
with a < b. If |f ′| is a convex function on [a, b], then the following inequality for
fractional integrals holds

(6)

∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]∣∣∣∣
≤ b− a

2(α+ 1)

(
1− 1

2α

)(
|f ′(b)|+ |f ′(a)|

)
.

The following Hermite-Hadamard’s type inequalities for fractional integrals
given by M. Iqbal et al. based on [15, Lemma 1].

Theorem 1.6 ([15]). Let f : [a, b] → R be a differentiable function on (a, b)
with a < b. If |f ′| is convex on [a, b], then the following inequality for Riemann-
Liouville fractional integrals holds for 0 < α ≤ 1

(7)

∣∣∣f (a+ b

2

)
+

Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣
≤ b− a

2α+1(α+ 1)

(
|f ′(a)|+ |f ′(b)|

)
.

Theorem 1.7 ([15]). Let f : [a, b] → R be a differentiable function on (a, b)
with a < b. If |f |q (q = p

p−1) is η-convex on [a, b] for some fixed p > 1, then the

following inequality for fractional integrals holds for 0 < α ≤ 1

(8)

∣∣∣f (a+ b

2

)
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣
≤ b− a

2α+1(αp+ 1)
1
p

[(
3|f ′(a)|q + |f ′(b)|q

4

) 1
q

+

(
|f ′(a)|q + 3|f ′(b)|q

4

) 1
q

]
.

Theorem 1.8 ([15]). Let f : [a, b] → R be a differentiable function on (a, b)
with a < b. If |f |q where q = p

p−1 , is convex on [a, b] for some fixed p > 1, then

the following inequality for fractional integrals holds for 0 < α ≤ 1

(9)

∣∣∣f (a+ b

2

)
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣
≤ b− a

2α+1(α+ 1)

[(
(α+ 1)|f ′(b)|q + (α+ 3)|f ′(a)|q)

2(α+ 2)

) 1
q

+

(
(α+ 1)|f ′(a)|q + (α+ 3)|f ′(b)|q)

2(α+ 2)

) 1
q

]
.

The main purpose of this paper is to establish a variant of Hermite-Hadamard
inequalities for Riemann-Liouville fractional integral using η-convex function (The-
orem 2.1). Then we give some interesting results (Theorems 3.2–3.9) connected
with the left hand side of Hermite-Hadamard inequalities for Riemann-Liouville
fractional integrals using the identities obtained for fractional integrals given in
[15, 25]. Also we discuss the importance of our results (Remarks 2.2–3.10).
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2. Hermite-Hadamard’s inequalities for fractional integrals

η-convex version of Hermite-Hadamard’s inequalities can be represented in the
fractional integral form as follows.

Theorem 2.1. Suppose that f : [a, b]→ R is an η-convex function such that η
is bounded above by Mη, then for α > 0, the following inequalities for fractional
integrals hold:

(10)

f

(
a+ b

2

)
−Mη ≤

Γ(α+ 1)

2(b− a)α

[
Jαa+f(b) + Jαb−f(a)

]
≤ f(a) + f(b)

2
+
α(η(f(a), f(b)) + η(f(b), f(a)))

2(α+ 1)

≤ f(a) + f(b)

2
+
αMη

α+ 1
.

Proof. Since f : [a, b]→ R is an η-convex function such that η is bounded above
by Mη, so from (3), we have

f

(
x+ y

2

)
− Mη

2
≤ f(x) + f(y)

2
+
Mη

2
,

where x, y ∈ [a, b]. Let x = ta+ (1− t)b and y = tb+ (1− t)a, then from the above
we have

f

(
a+ b

2

)
− Mη

2
≤ f(ta+ (1− t)b) + f(tb+ (1− t)a)

2
+
Mη

2
,

2f

(
a+ b

2

)
−Mη ≤ f(ta+ (1− t)b) + f(tb+ (1− t)a) +Mη.(11)

Multiplying both sides of (11) by tα−1 and then integrating the resulting inequality
with respect to t over [0, 1], we obtain

(12)

2

α
f

(
a+ b

2

)
− Mη

α
≤
∫ 1

0

tα−1f(ta+ (1− t)b)dt

+

∫ 1

0

tα−1f(tb+ (1− t)a)dt+
Mη

α
.

Let ta+ (1− t)b = u and (1− t)a+ tb = v, then∫ 1

0

tα−1f(ta+ (1− t)b)dt+

∫ 1

0

tα−1f(tb+ (1− t)a)dt

=

∫ a

b

(
b− u
b− a

)α−1
f(u)

du

a− b
+

∫ b

a

(
v − a
b− a

)α−1
f(v)

dv

b− a

=
Γ(α)

(b− a)α

[
Jαa+f(b) + Jαb−f(a)

]
.

Therefore, the inequality (12) takes the following shape

2

α
f

(
a+ b

2

)
− Mη

α
≤ Γ(α)

(b− a)α

[
Jαa+f(b) + Jαb−f(a)

]
+
Mη

α
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and the rearrangement of terms provides

(13)
Γ(α+ 1)

2(b− a)α

[
Jαa+f(b) + Jαb−f(a)

]
≥ f

(a+ b

2

)
−Mη,

which proves the first inequality in (10). Now we proceed to prove the second
inequality

f(ta+ (1− t)b) ≤ f(b) + tη(f(a), f(b)),(14)

f(tb+ (1− t)a) ≤ f(a) + tη(f(b), f(a)).(15)

Adding (14), (15) and multiplying both sides by tα−1, and then integrating the
resulting inequality with respect to t over [0, 1], yield the following

(16)

1∫
0

tα−1
(
f(ta+ (1− t)b) + f(tb+ (1− t)a)

)
dt

≤ [f(a) + f(b)]

1∫
0

tα−1dt
(
η(f(a), f(b)) + η(f(b), f(a))

) 1∫
0

tαdt

(by definition of η-convex function). By simplifying inequality (16), we have

(17)

Γ(α)

(b− a)α

[
Jαa+f(b) + Jαb−f(a)

]
≤ f(a) + f(b)

α
+
η(f(a), f(b)) + η(f(b), f(a))

α+ 1
.

From inequalities (13) and (17), we have

f

(
a+ b

2

)
−Mη ≤

Γ(α+ 1)

2(b− a)α

[
Jαa+f(b) + Jαb−f(a)

]
≤ f(a) + f(b)

2
+
α(η(f(a), f(b)) + η(f(b), f(a)))

2(α+ 1)
.

Furthermore, since η is bounded above by Mη, so from the above we can easily
obtain the desired result for (10). �

Remark 2.2. If f is η-convex with respect to η defined by η(x, y) = x − y,
then (10) reduces to the inequality of Theorem 1.4.

3. Hermite-Hadamard type inequalities for fractional integrals

In order to prove our next result, we need the following Lemma.
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Lemma 3.1 ([25]). Let f : [a, b]→ R be a differentiable function on (a, b) with
a < b. If f ′ ∈ L[a, b], then the following equality holds

(18)

f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
=
b− a

2

1∫
0

[(1− t)α − tα]f ′(at+ (1− t)b)dt.

Theorem 3.2. Let f : [a, b] → R be a differentiable function on (a, b) with
a < b. If |f ′| is an η-convex function on [a, b], then the following inequality for
fractional integrals holds

(19)

∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]∣∣∣∣
≤ b− a

2(α+ 1)

(
1− 1

2α
)(

2|f ′(b)|+ η(|f ′(a)|, |f ′(b)|)
)
.

Proof. By using Lemma 3.1 together with the fundamental property of absolute
value of real numbers, we have
(20)∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]∣∣∣∣
≤ b− a

2

1∫
0

|[(1− t)α − tα]||f ′(at+ (1− t)b)|dt

≤ b− a
2

1∫
0

|[(1− t)α − tα]|(|f ′(b)|+ tη(|f ′(a)|, |f ′(b)|))dt (by η-convexity of |f ′|)

=
b− a

2

[ 1
2∫

0

[(1− t)α − tα](|f ′(b)|+ tη(|f ′(a)|, |f ′(b)|))dt

+

1∫
1
2

[tα − (1− t)α](|f ′(b)|+ tη(|f ′(a)|, |f ′(b)|))

]
dt

=
b− a

2

[
|f ′(b)|

{ 1
2∫

0

[(1− t)α − tα]dt
}

+ η(|f ′(a)|, |f ′(b)|)
{ 1

2∫
0

t[(1− t)α − tα]dt
}

+ |f ′(b)|
{ 1∫

1
2

[tα − (1− t)α]dt
}

+ η(|f ′(a)|, |f ′(b)|)
{ 1∫

1
2

t[tα − (1− t)α]dt
}]
.
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Hence the R. H. S of (20) is equivalent to

|f ′(b)|
[ 1

α+1
− 1

2α(α+1)

]
+ η(|f ′(a)|, |f ′(b)|))

[ 1

(α+1)(α+2)
− 1

2α+1(α+1)

]
+ |f ′(b)|

[ 1

α+ 1
− 1

2α(α+ 1)

]
+ η(|f ′(a)|, |f ′(b)|))

[ 1

(α+ 2)
− 1

2α+1(α+ 1)

]
.

and furthermore, the simplification of the above terms provides the following∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]∣∣∣∣
≤ b− a

2(α+ 1)

(
1− 1

2α
)(

2|f ′(b)|+ η(|f ′(a)|, |f ′(b)|)
)
.

This completes the desired proof of the result. �

Remark 3.3. If |f ′| is η-convex with respect to η defined by η(x, y) = x − y,
then (19) reduces to the inequality of Theorem 1.5.

The following lemma is needed in the proof of our next result, which given in
[15].

Lemma 3.4. Let f : [a, b] → R be a differentiable function on (a, b). If f ′ ∈
L1[a, b], then the following identity for Riemann-Liouville fractional integrals holds

(21) f

(
a+ b

2

)
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)] =

b− a
2

4∑
k=1

Ik,

where

I1 =

1
2∫

0

tαf ′(tb+ (1− t)a)dt, I2 =

1
2∫

0

(−tα)f ′(ta+ (1− t)b)dt,

I3 =

1∫
1
2

(tα − 1)f ′(tb+ (1− t)a)dt, I4 =

1∫
1
2

(1− tα)f ′(ta+ (1− t)b)dt.

Theorem 3.5. Let f : [a, b] → R be a differentiable function on (a, b) with
a < b. If |f ′| is η-convex on [a, b] and 0 < α ≤ 1, then the following inequality for
Riemann-Liouville fractional integrals holds:
(22)∣∣∣f (a+ b

2

)
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣
≤ b−a

2α+1(α+1)

(
|f ′(a)|+|f ′(b)|+ η(|f ′(a)|, |f ′(b)|) + η(|f ′(b)|, |f ′(a)|)

)
.

Proof. By using the well-known triangular inequality on Lemma 3.4, we have∣∣∣f(a+ b

2

)
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣ ≤ b− a
2

4∑
k=1

|Ik|
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and then by applying the η-convexity of |f ′|, we get

|I1| ≤

1
2∫

0

tα|f ′(tb+ (1− t)a)|dt

≤

1
2∫

0

tα|f ′(a)|dt+

1
2∫

0

tα+1η(|f ′(b)|, |f ′(a)|)dt

=
1

2α+1(α+ 1)
|f ′(a)|+ 1

2α+2(α+ 2)
η(|f ′(b)|, |f ′(a)|).

Similarly,

|I2| ≤
1

2α+1(α+ 1)
|f ′(b)|+ 1

2α+2(α+ 2)
η(|f ′(a)|, |f ′(b)|).

Again using the η-convexity of |f ′| and the fact |tα1 − tα2 | ≤ |t1 − t2|α for all
α ∈ (0, 1] and t1, t2 ∈ [0, 1], leads to the following

|I3| ≤
1

2α+1(α+ 1)
|f ′(a)|+ α+ 3

2α+2(α+ 2)(α+ 1)
η(|f ′(b)|, |f ′(a)|)

and similarly

|I4| ≤
1

2α+1(α+ 1)
|f ′(b)|+ α+ 3

2α+2(α+ 2)(α+ 1)
η(|f ′(a)|, |f ′(b)|).

The addition of the above inequalities take us to the required conclusion. �

Remark 3.6. If |f ′| is η-convex with respect to η defined by η(x, y) = x − y,
then (22) reduces to the inequality of Theorem 1.6.

Theorem 3.7. Let f : [a, b] → R be a differentiable function on (a, b) with
a < b. If |f |q (q = p

p−1) is η-convex on [a, b] for some fixed p > 1 and 0 < α ≤ 1,

then the following inequality for fractional integrals holds

(23)

∣∣∣f (a+ b

2

)
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣
≤ b− a

2α+1(αp+ 1)
1
p

[(
4|f ′(a)|q + η(|f ′(b)|q, |f ′(a)|q)

4

) 1
q

+

(
4|f ′(a)|q + η(|f ′(b)|q, |f ′(a)|q)

4

) 1
q

]
.

Proof. By using the well-known triangular and Holder inequalities on Lemma 3.4
in turn, we have∣∣∣∣f (a+ b

2

)
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣∣ ≤ b− a
2

4∑
k=1

|Ik|,
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|I1| ≤
( 1

2∫
0

tpαdt

) 1
p
( 1

2∫
0

|f ′(tb+ (1− t)a)|qdt
) 1

q

≤
(

1

2pα+1(pα+ 1)

) 1
p
( 1

2∫
0

|f ′(a)|qdt+

1
2∫

0

tη(|f ′(b)|q, |f ′(a)|q)dt
) 1

q

=

(
1

2pα+1(pα+ 1)

) 1
p
[
|f ′(a)|

2
+
η(|f ′(b)|q, |f ′(a)|q)

8

] 1
q

(by η-convexity of f). Similarly,

|I2| ≤
(

1

2pα+1(pα+ 1)

) 1
p
[
|f ′(b)|

2
+
η(|f ′(a)|q, |f ′(b)|q)

8

] 1
q

and

|I3| ≤
( 1∫

1
2

(1− tα)pdt

) 1
p
( 1∫

1
2

|f ′(tb+ (1− t)a)|qdt
) 1

q

.

Let α ∈ (0, 1] and for all t1, t2 ∈ [0, 1], |tα1 − tα2 | ≤ |t1 − t2|α, therefore,

1∫
1
2

(1− tα)pdt ≤
1∫

1
2

(1− t)pαdt =
1

2pα+1(pα+ 1)
.

Hence

|I3| ≤
(

1

2pα+1(pα+ 1)

) 1
p
[
|f ′(a)|

2
+
η(|f ′(b)|q, |f ′(a)|q)

8

] 1
q

,

analogously,

|I4| ≤
(

1

2pα+1(pα+ 1)

) 1
p
[
|f ′(b)|

2
+
η(|f ′(a)|q, |f ′(b)|q)

8

] 1
q

.

By adding the above four inequalities, we get the required result. This completes
the proof. �

Remark 3.8. If |f |
p

p−1 is η-convex with respect to η defined by η(x, y) = x−y,
then inequality (23) becomes the inequality obtained in Theorem 1.7.

Theorem 3.9. Let f : [a, b] → R be a differentiable function on (a, b) with
a < b. If |f |q (q = p

p−1) is η-convex on [a, b] for some fixed p > 1 and 0 < α ≤ 1,
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then the following inequality for fractional integrals holds
(24)∣∣∣f (a+ b

2

)
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣
≤ b− a

2α+2(α+ 1)

[(
2(α+ 2)|f ′(a)|q + (α+ 1)η(|f ′(b)|q, |f ′(a)|q)

2(α+ 2)

) 1
q

+

(
2(α+ 2)|f ′(b)|q + (α+ 1)η(|f ′(a)|q, |f ′(b)|q)

2(α+ 2)

) 1
q

+

(
2(α+ 2)|f ′(a)|q + (α+ 3)η(|f ′(b)|q, |f ′(a)|q)

2(α+ 2)

) 1
q

+

(
2(α+ 2)|f ′(b)|q + (α+ 3)η(|f ′(a)|q, |f ′(b)|q)

2(α+ 2)

) 1
q

]
.

Proof. By using the triangular and power mean integral inequalities on
Lemma 3.4 in turn, we have∣∣∣f (a+ b

2

)
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣ ≤ b− a
2

4∑
k=1

|Ik|,

|I1| ≤
( 1

2∫
0

tαdt

)1− 1
q
( 1

2∫
0

tα|f ′(tb+ (1− t)a)|qdt
) 1

q

≤
(

1

2α+1(α+ 1)

)1− 1
q
( 1

2∫
0

tα|f ′(a)|qdt+

1
2∫

0

tα+1η(|f ′(b)|q, |f ′(a)|q)dt
) 1

q

=

(
1

2α+1(α+ 1)

)(
2(α+ 2)|f ′(a)|q + (α+ 1)η(|f ′(b)|q, |f ′(a)|q)

2(α+ 2)

) 1
q

(by η-convexity of f). Similarly,

|I2| ≤
(

1

2α+1(α+ 1)

)(
2(α+ 2)|f ′(b)|q + (α+ 1)η(|f ′(a)|q, |f ′(b)|q)

2(α+ 2)

) 1
q

and

|I3| ≤
(

2(α+ 2)|f ′(a)|q + (α+ 3)η(|f ′(b)|q, |f ′(a)|q)
2(α+ 2)

) 1
q

.

Analogously,

|I4| ≤
(

2(α+ 2)|f ′(b)|q + (α+ 3)η(|f ′(a)|q, |f ′(b)|q)
2(α+ 2)

) 1
q

.

By adding all the above inequalities, we can reach the conclusion. �
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Remark 3.10. If |f |
p

p−1 is η-convex with respect to η defined by η(x, y) = x−y,
then (24) reduces to the inequality of Theorem 1.8.
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