HERMITE-HADAMARD INEQUALITY FOR FRACTIONAL INTEGRALS VIA \(\eta \)-CONVEX FUNCTIONS

M. A. KHAN, Y. KHURSHID AND T. ALI

Abstract. In this paper, we prove Hermite-Hadamard inequality for fractional integrals by using \(\eta \)-convex function. We give some inequalities for Hermite-Hadamard type fractional integrals.

1. Introduction and Preliminaries

If \(f : I \to \mathbb{R} \) is a convex function on the interval \(I \), then for any \(a, b \in I \) with \(a \neq b \), we have the following double inequality

\[
f \left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(t) dt \leq \frac{f(a) + f(b)}{2}.
\]

This significant result was given in ([13], 1893) and is well known in the literature as the Hermite-Hadamard inequality. Since then, many researchers have given considerable attention to the inequalities in (1) and a number of extensions, generalizations and variants have appeared in the literature of convex analysis, for example, see [1, 2, 4, 5, 6, 7, 8, 9, 10, 16, 17, 18, 19, 21, 22, 24, 26, 27, 28] and the references cited therein.

In [12], M. E. Gordji et al. introduced the idea of \(\eta \)-convex functions as generalization of ordinary convex functions and gave the following definition for \(\eta \)-convexity of functions.

Definition 1.1. A function \(f : [a, b] \to \mathbb{R} \) is said to be \(\eta \)-convex (or convex with respect to \(\eta \)) if the inequality

\[
f(tx + (1-t)y) \leq f(y) + t\eta(f(x), f(y))
\]

holds for all \(x, y \in [a, b], t \in [0, 1] \), and \(\eta \) is defined by \(\eta : f([a, b]) \times f([a, b]) \to \mathbb{R} \).

In the above definition if we set \(\eta(x,y) = x - y \), then we can directly obtain the classical definition of a convex function.

Also in [12], the authors proved some important results but here we give only one of them in the following theorem based on the above definition, which is also known as \(\eta \)-convex version of Hermite-Hadamard inequality.

Received March 18, 2016.

2010 Mathematics Subject Classification. Primary 26D15, 26D20, 26D99.

Key words and phrases. \(\eta \)-convex; Hermite-Hadamard inequality; fractional integrals.
Theorem 1.2 ([12]). Suppose that \(f: [a, b] \to \mathbb{R} \) is a \(\eta \)-convex function such that \(\eta \) is bounded above on \(f([a, b]) \times f([a, b]) \). Then the following inequalities hold.

\[
\frac{f \left(\frac{a+b}{2} \right) - M \eta}{2} \leq \frac{1}{b-a} \int_{a}^{b} f(x)dx \leq \frac{1}{2} [f(a) + f(b)] + \frac{1}{4} [\eta(f(a), f(b)) + \eta(f(b), f(a))]
\]

\[
\leq \frac{f(a) + f(b)}{2} + \frac{M \eta}{2},
\]

where \(M \eta \) is the upper bound of \(\eta \).

In the following, we give the definition of fractional Riemann-Liouville integral, which will be used in the later part of the paper. For more details, one can consult [11, 23].

Definition 1.3. Let \(f \in L[a, b] \). The left-sided and right-sided Riemann-Liouville fractional integrals \(J_{a+}^{\alpha}f \) and \(J_{b-}^{\alpha}f \) of order \(\alpha > 0 \) with \(a \geq 0 \) are defined by

\[
J_{a+}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (x-t)^{\alpha-1}f(t)dt \quad \text{with} \quad x > a
\]

and

\[
J_{b-}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{b} (t-x)^{\alpha-1}f(t)dt \quad \text{with} \quad x < b,
\]

respectively, where \(\Gamma(\alpha) \) is the Gamma function and its definition is

\[
\Gamma(\alpha) = \int_{0}^{\infty} e^{-u}u^{\alpha-1}du.
\]

It is to be noted that \(J_{a+}^{0}f(x) = J_{b-}^{0}f(x) = f(x) \). In the case of \(\alpha = 1 \), the fractional integral reduces to the classical integral.

In [25], M. Z. Sarikaya et al. presented the following Hermite-Hadamard’s inequalities for fractional integrals.

Theorem 1.4 ([25]). Let \(f: I \to \mathbb{R} \) be a positive function with \(0 \leq a < b \) and \(f \in L[a, b] \). If \(f \) is a convex function on \([a, b] \), then the following inequality for fractional integrals holds.

\[
f \left(\frac{a+b}{2} \right) \leq \frac{\Gamma(\alpha + 1)}{2(b-a)^{\alpha}} \left[J_{a+}^{\alpha}f(b) + J_{b-}^{\alpha}f(a) \right] \leq \frac{f(a) + f(b)}{2}.
\]

Also in the same paper, the authors established an important lemma and proved the following Hermite-Hadamard’s type inequalities for fractional integrals.
Theorem 1.5 ([25]). Let \(f: [a, b] \to \mathbb{R} \) be a differentiable function on \((a, b)\) with \(a < b \). If \(|f'|\) is a convex function on \([a, b]\), then the following inequality for fractional integrals holds
\[
\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b-a)\alpha} \left[J_{a+}^\alpha f(b) + J_{b-}^\alpha f(a) \right] \right| \\
\leq \frac{b-a}{2(\alpha + 1)} \left(1 - \frac{1}{2^\alpha} \right)(|f'(b)| + |f'(a)|).
\]

The following Hermite-Hadamard's type inequalities for fractional integrals holds for \(0 < \alpha \leq 1 \)
\[
\left| f \left(\frac{a+b}{2} \right) - \frac{\Gamma(\alpha + 1)}{2(b-a)\alpha} \left[J_{a+}^\alpha f(b) + J_{b-}^\alpha f(a) \right] \right| \\
\leq \frac{b-a}{2^{\alpha+1}(\alpha + 1)} \left(|f'(a)|^q + |f'(b)|^q \right)^\frac{1}{q}.
\]

Theorem 1.7 ([15]). Let \(f: [a, b] \to \mathbb{R} \) be a differentiable function on \((a, b)\) with \(a < b \). If \(|f|^q\) is \(\eta\)-convex on \([a, b]\) for some fixed \(p > 1\), then the following inequality for fractional integrals holds for \(0 < \alpha \leq 1 \)
\[
\left| f \left(\frac{a+b}{2} \right) - \frac{\Gamma(\alpha + 1)}{2(b-a)\alpha} \left[J_{a+}^\alpha f(b) + J_{b-}^\alpha f(a) \right] \right| \\
\leq \frac{b-a}{2^{\alpha+1}(\alpha + 1)^\frac{1}{p}} \left[\left(\frac{3|f'(a)|^q + |f'(b)|^q}{4} \right)^\frac{1}{q} + \left(\frac{|f'(a)|^q + 3|f'(b)|^q}{4} \right)^\frac{1}{q} \right].
\]

Theorem 1.8 ([15]). Let \(f: [a, b] \to \mathbb{R} \) be a differentiable function on \((a, b)\) with \(a < b \). If \(|f|^q\) where \(q = \frac{p}{p-1} \) is \(\eta\)-convex on \([a, b]\) for some fixed \(p > 1\), then the following inequality for fractional integrals holds for \(0 < \alpha \leq 1 \)
\[
\left| f \left(\frac{a+b}{2} \right) - \frac{\Gamma(\alpha + 1)}{2(b-a)\alpha} \left[J_{a+}^\alpha f(b) + J_{b-}^\alpha f(a) \right] \right| \\
\leq \frac{b-a}{2^{\alpha+1}(\alpha + 1)} \left[\left(\frac{(\alpha + 1)|f'(b)|^q + (\alpha + 3)|f'(a)|^q}{2(\alpha + 2)} \right)^\frac{1}{q} \right.
\]
\[
+ \left. \left(\frac{(\alpha + 1)|f'(a)|^q + (\alpha + 3)|f'(b)|^q}{2(\alpha + 2)} \right)^\frac{1}{q} \right].
\]

The main purpose of this paper is to establish a variant of Hermite-Hadamard inequalities for Riemann-Liouville fractional integral using \(\eta\)-convex function (Theorem 2.1). Then we give some interesting results (Theorems 3.2–3.9) connected with the left hand side of Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals using the identities obtained for fractional integrals given in [15, 25]. Also we discuss the importance of our results (Remarks 2.2–3.10).
2. Hermite-Hadamard’s Inequalities for Fractional Integrals

Theorem 2.1. Suppose that \(f : [a, b] \to \mathbb{R} \) is an \(\eta \)-convex function such that \(\eta \) is bounded above by \(M_\eta \), then for \(\alpha > 0 \), the following inequalities for fractional integrals hold:

\[
\frac{1}{\alpha} \left[J^\alpha_{a+} f(b) + J^\alpha_{b-} f(a) \right] \leq \frac{f(a) + f(b)}{2} \leq \frac{\alpha f(a) - \alpha f(b)}{2(\alpha + 1)} + \frac{\alpha M_\eta}{\alpha + 1}.
\]

Proof. Since \(f : [a, b] \to \mathbb{R} \) is an \(\eta \)-convex function such that \(\eta \) is bounded above by \(M_\eta \), so from (3), we have

\[
f \left(\frac{x + y}{2} \right) - \frac{M_\eta}{2} \leq \frac{f(x) + f(y)}{2} + \frac{M_\eta}{2},
\]

where \(x, y \in [a, b] \). Let \(x = ta + (1 - t)b \) and \(y = tb + (1 - t)a \), then from the above we have

\[
f \left(\frac{a + b}{2} \right) - \frac{M_\eta}{2} \leq \frac{f(ta + (1 - t)b) + f(tb + (1 - t)a)}{2} + \frac{M_\eta}{2},
\]

(11)

Multiplying both sides of (11) by \(t^{\alpha - 1} \) and then integrating the resulting inequality with respect to \(t \) over \([0, 1]\), we obtain

\[
\frac{2}{\alpha} f \left(\frac{a + b}{2} \right) - \frac{M_\eta}{\alpha} \leq \int_0^1 t^{\alpha - 1} f(ta + (1 - t)b) dt + \frac{M_\eta}{\alpha}.
\]

(12)

Let \(ta + (1 - t)b = u \) and \((1 - t)a + tb = v\), then

\[
\int_0^1 t^{\alpha - 1} f(ta + (1 - t)b) dt + \int_0^1 t^{\alpha - 1} f(tb + (1 - t)a) dt
\]

\[
= \int_b^a \left(\frac{b - u}{b - a} \right)^{\alpha - 1} f(u) \frac{du}{a - b} + \int_a^b \left(\frac{v - a}{b - a} \right)^{\alpha - 1} f(v) \frac{dv}{b - a}
\]

\[
= \frac{\Gamma(\alpha)}{(b - a)^\alpha} \left[J^\alpha_{a+} f(b) + J^\alpha_{b-} f(a) \right].
\]

Therefore, the inequality (12) takes the following shape

\[
\frac{2}{\alpha} f \left(\frac{a + b}{2} \right) - \frac{M_\eta}{\alpha} \leq \frac{\Gamma(\alpha)}{(b - a)^\alpha} \left[J^\alpha_{a+} f(b) + J^\alpha_{b-} f(a) \right] + \frac{M_\eta}{\alpha}
\]
and the rearrangement of terms provides

\begin{equation}
\frac{\Gamma(\alpha + 1)}{2(b - a)^\alpha} \left[J^\alpha_{a+} f(b) + J^\alpha_{b-} f(a) \right] \geq f\left(\frac{a + b}{2}\right) - M_\eta,
\end{equation}

which proves the first inequality in (10). Now we proceed to prove the second inequality

\begin{align}
\begin{alignat}{2}
&f(ta + (1 - t)b) \leq f(b) + t\eta(f(a), f(b)), \quad (14) \\
&f(tb + (1 - t)a) \leq f(a) + t\eta(f(b), f(a)). \\
\end{alignat}
\end{align}

Adding (14), (15) and multiplying both sides by \(t^{\alpha - 1}\), and then integrating the resulting inequality with respect to \(t\) over \([0, 1]\), yield the following

\begin{equation}
\int_0^1 t^{\alpha - 1} \left(f(ta + (1 - t)b) + f(tb + (1 - t)a) \right) dt \\
\leq [f(a) + f(b)] \int_0^1 t^{\alpha - 1} dt \left(\eta(f(a), f(b)) + \eta(f(b), f(a)) \right) \int_0^1 t^{\alpha} dt
\end{equation}

(by definition of \(\eta\)-convex function). By simplifying inequality (16), we have

\begin{equation}
\frac{\Gamma(\alpha)}{(b - a)^\alpha} \left[J^\alpha_{a+} f(b) + J^\alpha_{b-} f(a) \right] \\
\leq \frac{f(a) + f(b)}{\alpha} + \frac{\eta(f(a), f(b)) + \eta(f(b), f(a))}{\alpha + 1}.
\end{equation}

From inequalities (13) and (17), we have

\begin{equation}
f\left(\frac{a + b}{2}\right) - M_\eta \leq \frac{\Gamma(\alpha + 1)}{2(b - a)^\alpha} \left[J^\alpha_{a+} f(b) + J^\alpha_{b-} f(a) \right] \\
\leq \frac{f(a) + f(b)}{2} + \frac{\alpha(\eta(f(a), f(b)) + \eta(f(b), f(a)))}{2(\alpha + 1)}.
\end{equation}

Furthermore, since \(\eta\) is bounded above by \(M_\eta\), so from the above we can easily obtain the desired result for (10).

Remark 2.2. If \(f\) is \(\eta\)-convex with respect to \(\eta\) defined by \(\eta(x, y) = x - y\), then (10) reduces to the inequality of Theorem 1.4.

3. **Hermite-Hadamard type inequalities for fractional integrals**

In order to prove our next result, we need the following Lemma.
Lemma 3.1 ([25]). Let \(f: [a, b] \to \mathbb{R} \) be a differentiable function on \((a, b) \) with \(a < b \). If \(f' \in L[a, b] \), then the following equality holds

\[
\frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} [J_{a+}^{\alpha} f(b) + J_{b-}^{\alpha} f(a)]
\]

(18)

\[
= \frac{b - a}{2} \int_0^1 [(1 - t)^\alpha - t^\alpha] f'(at + (1 - t)b) dt.
\]

Theorem 3.2. Let \(f: [a, b] \to \mathbb{R} \) be a differentiable function on \((a, b) \) with \(a < b \). If \(|f'| \) is an \(\eta \)-convex function on \([a, b] \), then the following inequality for fractional integrals holds

\[
\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} [J_{a+}^{\alpha} f(b) + J_{b-}^{\alpha} f(a)] \right|
\]

(19)

\[
\leq \frac{b - a}{2(\alpha + 1)} \left(1 - \frac{1}{2^\alpha} \right) [2|f'(b)| + \eta(|f'(a)|, |f'(b)|)].
\]

Proof. By using Lemma 3.1 together with the fundamental property of absolute value of real numbers, we have

(20)

\[
\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} [J_{a+}^{\alpha} f(b) + J_{b-}^{\alpha} f(a)] \right|
\]

\[
\leq \frac{b - a}{2} \int_0^1 ||(1 - t)^\alpha - t^\alpha|| |f'(at + (1 - t)b)| dt
\]

\[
\leq \frac{b - a}{2} \int_0^1 ||(1 - t)^\alpha - t^\alpha|| (|f'(b)| + t\eta(|f'(a)|, |f'(b)|)) dt \quad \text{(by } \eta\text{-convexity of } |f'|)\]

\[
= \frac{b - a}{2} \left[\int_0^1 [(1 - t)^\alpha - t^\alpha]|f'(b)| + t\eta(|f'(a)|, |f'(b)|) dt
\right.
\]

\[
\left. + \int_{\frac{1}{2}}^1 [t^\alpha - (1 - t)^\alpha]|f'(b)| + \eta(|f'(a)|, |f'(b)|) dt \right]
\]

\[
= \frac{b - a}{2} \left[|f'(b)| \left\{ \int_0^1 [(1 - t)^\alpha - t^\alpha] dt \right\} + \eta(|f'(a)|, |f'(b)|) \left\{ \int_0^1 t[(1 - t)^\alpha - t^\alpha] dt \right\}
\right.
\]

\[
\left. + |f'(b)| \left\{ \int_{\frac{1}{2}}^1 [t^\alpha - (1 - t)^\alpha] dt \right\} + \eta(|f'(a)|, |f'(b)|) \left\{ \int_{\frac{1}{2}}^1 t[t^\alpha - (1 - t)^\alpha] dt \right\} \right].
\]
Hence the R. H. S of (20) is equivalent to
\[|f'(b)| \left[\frac{1}{\alpha + 1} - \frac{1}{2^\alpha(\alpha + 1)} \right] + \eta(|f'(a)|, |f'(b)|) \left[\frac{1}{(\alpha + 1)(\alpha + 2)} - \frac{1}{2^{\alpha+1}(\alpha + 1)} \right] \]
\[+ |f'(b)| \left[\frac{1}{\alpha + 1} - \frac{1}{2^\alpha(\alpha + 1)} \right] + \eta(|f'(a)|, |f'(b)|) \left[\frac{1}{(\alpha + 2)} - \frac{1}{2^{\alpha+1}(\alpha + 1)} \right]. \]
and furthermore, the simplification of the above terms provides the following
\[\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \left[J_{a^+}^\alpha f(b) + J_{b^-}^\alpha f(a) \right] \right| \]
\[\leq \frac{b - a}{2(\alpha + 1)} \left(1 - \frac{1}{2^\alpha} \right) \left(2 |f'(b)| + \eta(|f'(a)|, |f'(b)|) \right). \]
This completes the desired proof of the result.

Remark 3.3. If $|f'|$ is η-convex with respect to η defined by $\eta(x, y) = x - y$, then (19) reduces to the inequality of Theorem 1.5.

The following lemma is needed in the proof of our next result, which given in [15].

Lemma 3.4. Let $f : [a, b] \rightarrow \mathbb{R}$ be a differentiable function on (a, b). If $f' \in L^1[a, b]$, then the following identity for Riemann-Liouville fractional integrals holds
\[f \left(\frac{a + b}{2} \right) - \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \left[J_{a^+}^\alpha f(b) + J_{b^-}^\alpha f(a) \right] = \frac{b - a}{2} \sum_{k=1}^{4} I_k, \]
where
\[I_1 = \int_0^{\frac{1}{2}} t^\alpha f'(tb + (1-t)a) dt, \quad I_2 = \int_0^{\frac{1}{2}} (-t^\alpha) f'(ta + (1-t)b) dt, \]
\[I_3 = \int_{\frac{1}{2}}^{1} (t^\alpha - 1) f'(tb + (1-t)a) dt, \quad I_4 = \int_{\frac{1}{2}}^{1} (1-t^\alpha) f'(ta + (1-t)b) dt. \]

Theorem 3.5. Let $f : [a, b] \rightarrow \mathbb{R}$ be a differentiable function on (a, b) with $a < b$. If $|f'|$ is η-convex on $[a, b]$ and $0 < \alpha \leq 1$, then the following inequality for Riemann-Liouville fractional integrals holds:
\[\left| f \left(\frac{a + b}{2} \right) - \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \left[J_{a^+}^\alpha f(b) + J_{b^-}^\alpha f(a) \right] \right| \]
\[\leq \frac{b - a}{2^{\alpha+1}(\alpha + 1)} \left(|f'(a)| + |f'(b)| + \eta(|f'(a)|, |f'(b)|) + \eta(|f'(b)|, |f'(a)|) \right). \]

Proof. By using the well-known triangular inequality on Lemma 3.4, we have
\[\left| f \left(\frac{a + b}{2} \right) - \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \left[J_{a^+}^\alpha f(b) + J_{b^-}^\alpha f(a) \right] \right| \leq \frac{b - a}{2} \sum_{k=1}^{4} |I_k| \]
and then by applying the \(\eta\)-convexity of \(|f'|\), we get
\[
|I_1| \leq \frac{1}{\alpha+1} \int_0^1 tf'(tb + (1-t)a)dt \\
\leq \frac{1}{\alpha+1} \int_0^1 tf'(a)dt + \frac{1}{\alpha+1} \int_0^1 t^{\alpha+1}\eta(|f'(b)|, |f'(a)|)dt \\
= \frac{1}{2^\alpha+1(\alpha+1)} |f'(a)| + \frac{1}{2^\alpha+2(\alpha+2)} \eta(|f'(b)|, |f'(a)|).
\]
Similarly,
\[
|I_2| \leq \frac{1}{2^\alpha+1(\alpha+1)} |f'(b)| + \frac{1}{2^\alpha+2(\alpha+2)} \eta(|f'(a)|, |f'(b)|).
\]
Again using the \(\eta\)-convexity of \(|f'|\) and the fact \(|t_1^\alpha - t_2^\alpha| \leq |t_1 - t_2|^\alpha\) for all \(\alpha \in (0,1]\) and \(t_1, t_2 \in [0,1]\), leads to the following
\[
|I_3| \leq \frac{1}{2^\alpha+1(\alpha+1)} |f'(a)| + \frac{\alpha+3}{2^\alpha+2(\alpha+2)(\alpha+1)} \eta(|f'(b)|, |f'(a)|)
\]
and similarly
\[
|I_4| \leq \frac{1}{2^\alpha+1(\alpha+1)} |f'(b)| + \frac{\alpha+3}{2^\alpha+2(\alpha+2)(\alpha+1)} \eta(|f'(a)|, |f'(b)|).
\]
The addition of the above inequalities take us to the required conclusion. \(\square\)

Remark 3.6. If \(|f'|\) is \(\eta\)-convex with respect to \(\eta\) defined by \(\eta(x,y) = x - y\), then (22) reduces to the inequality of Theorem 1.6.

Theorem 3.7. Let \(f : [a, b] \to \mathbb{R}\) be a differentiable function on \((a, b)\) with \(a < b\). If \(|f|^q (q = \frac{p}{p+1})\) is \(\eta\)-convex on \([a, b]\) for some fixed \(p > 1\) and \(0 < \alpha \leq 1\), then the following inequality for fractional integrals holds
\[
\left| f \left(\frac{a+b}{2} \right) - \frac{\Gamma(\alpha+1)}{2(b-a)\alpha} \left[J_a^\alpha f(b) + J_b^\alpha f(a) \right] \right| \\
\leq \frac{b-a}{2^{\alpha+1}(\alpha p + 1)^{\frac{1}{2}}} \left[\left(4|f'(a)|^q + \eta(|f'(b)|^q, |f'(a)|^q) \right)^\frac{1}{2} + \left(4|f'(b)|^q + \eta(|f'(b)|^q, |f'(a)|^q) \right)^\frac{1}{2} \right].
\]

Proof. By using the well-known triangular and Holder inequalities on Lemma 3.4 in turn, we have
\[
\left| f \left(\frac{a+b}{2} \right) - \frac{\Gamma(\alpha+1)}{2(b-a)\alpha} \left[J_a^\alpha f(b) + J_b^\alpha f(a) \right] \right| \leq \frac{b-a}{2} \sum_{k=1}^4 |I_k|,
\]
\[|I_1| \leq \left(\int_0^{t_1} \frac{dt}{p^{\alpha} \, dt} \right)^{\frac{1}{p}} \left(\int_0^{t_1} |f'(tb + (1-t)a)|^q \, dt \right)^{\frac{1}{q}} \]

\[\leq \left(\frac{1}{2p^{\alpha+1}(p\alpha + 1)} \right)^{\frac{1}{p}} \left(\int_0^{t_1} |f'(a)|^q \, dt + \int_0^{t_1} \eta(|f'(b)|^q, |f'(a)|^q) \, dt \right)^{\frac{1}{q}} \]

\[= \left(\frac{1}{2p^{\alpha+1}(p\alpha + 1)} \right)^{\frac{1}{p}} \left[\frac{|f'(a)|}{2} + \frac{\eta(|f'(b)|^q, |f'(a)|^q)}{8} \right] \]

(by \(\eta \)-convexity of \(f \)). Similarly,

\[|I_2| \leq \left(\frac{1}{2p^{\alpha+1}(p\alpha + 1)} \right)^{\frac{1}{p}} \left[\frac{|f'(b)|}{2} + \frac{\eta(|f'(b)|^q, |f'(a)|^q)}{8} \right]^{\frac{1}{q}} \]

and

\[|I_3| \leq \left(\int_0^{1} (1-t^\alpha)^p \, dt \right)^{\frac{1}{p}} \left(\int_0^{1} (1-t^\alpha)^q \, dt \right)^{\frac{1}{q}} \]

Let \(\alpha \in (0, 1] \) and for all \(t_1, t_2 \in [0, 1] \), \(|t_1^\alpha - t_2^\alpha| \leq |t_1 - t_2|^\alpha \), therefore,

\[\int_0^{1} (1-t^\alpha)^p \, dt \leq \int_0^{1} (1-t)^{p\alpha} \, dt = \frac{1}{2p^{\alpha+1}(p\alpha + 1)} \]

Hence

\[|I_3| \leq \left(\frac{1}{2p^{\alpha+1}(p\alpha + 1)} \right)^{\frac{1}{p}} \left[\frac{|f'(a)|}{2} + \frac{\eta(|f'(b)|^q, |f'(a)|^q)}{8} \right]^{\frac{1}{q}} \]

analogously,

\[|I_4| \leq \left(\frac{1}{2p^{\alpha+1}(p\alpha + 1)} \right)^{\frac{1}{p}} \left[\frac{|f'(b)|}{2} + \frac{\eta(|f'(b)|^q, |f'(a)|^q)}{8} \right]^{\frac{1}{q}} \]

By adding the above four inequalities, we get the required result. This completes the proof. \(\Box \)

Remark 3.8. If \(|f|^\frac{p}{p+1} \) is \(\eta \)-convex with respect to \(\eta \) defined by \(\eta(x, y) = x - y \), then inequality (23) becomes the inequality obtained in Theorem 1.7.

Theorem 3.9. Let \(f : [a, b] \to \mathbb{R} \) be a differentiable function on \((a, b)\) with \(a < b \). If \(|f|^q \ (q = \frac{p}{p+1}) \) is \(\eta \)-convex on \([a, b]\) for some fixed \(p > 1 \) and \(0 < \alpha \leq 1 \),
then the following inequality for fractional integrals holds

\[(24)\]

\[
\left| f\left(\frac{a+b}{2}\right) - \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} [J_a^\alpha f(b) + J_b^\alpha f(a)] \right|
\]

\[\leq \frac{b-a}{2^{\alpha+1}(\alpha + 1)} \left[\left(\frac{2(\alpha + 2)\|f'(a)\|_q + (\alpha + 1)\eta(\|f'(a)\|_q, \|f'(a)\|_q) }{2(\alpha + 2)} \right)^\frac{1}{\eta}
+ \left(\frac{2(\alpha + 2)\|f'(b)\|_q + (\alpha + 1)\eta(\|f'(b)\|_q, \|f'(a)\|_q) }{2(\alpha + 2)} \right)^\frac{1}{\eta}
+ \left(\frac{2(\alpha + 2)\|f'(b)\|_q + (\alpha + 3)\eta(\|f'(b)\|_q, \|f'(a)\|_q) }{2(\alpha + 2)} \right)^\frac{1}{\eta} \right].
\]

Proof. By using the triangular and power mean integral inequalities on Lemma 3.4 in turn, we have

\[
\left| f\left(\frac{a+b}{2}\right) - \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} [J_a^\alpha f(b) + J_b^\alpha f(a)] \right|
\]

\[\leq \frac{b-a}{2} \sum_{k=1}^{4} |I_k|,
\]

\[
|I_1| \leq \left(\int_0^\frac{b-a}{2} t^\alpha dt \right)^{1-\frac{1}{\eta}} \left(\int_0^\frac{b-a}{2} t^\alpha |f(t^b + (1-t)a)|^q dt \right)^\frac{1}{\eta}
\]

\[\leq \left(\frac{1}{2^{\alpha+1}(\alpha + 1)} \right)^{1-\frac{1}{\eta}} \left(\int_0^\frac{b-a}{2} t^\alpha |f'(a)|^q dt + \int_0^\frac{b-a}{2} t^{\alpha+1} \eta(\|f'(b)\|_q, \|f'(a)\|_q) dt \right)^\frac{1}{\eta}
\]

\[= \left(\frac{1}{2^{\alpha+1}(\alpha + 1)} \right) \left(\frac{2(\alpha + 2)\|f'(a)\|_q + (\alpha + 1)\eta(\|f'(b)\|_q, \|f'(a)\|_q) }{2(\alpha + 2)} \right)^\frac{1}{\eta},
\]

(by \(\eta\)-convexity of \(f\)). Similarly,

\[
|I_2| \leq \left(\frac{1}{2^{\alpha+1}(\alpha + 1)} \right) \left(\frac{2(\alpha + 2)\|f'(b)\|_q + (\alpha + 1)\eta(\|f'(b)\|_q, \|f'(a)\|_q) }{2(\alpha + 2)} \right)^\frac{1}{\eta}
\]

and

\[
|I_3| \leq \left(\frac{2(\alpha + 2)\|f'(a)\|_q + (\alpha + 3)\eta(\|f'(b)\|_q, \|f'(a)\|_q) }{2(\alpha + 2)} \right)^\frac{1}{\eta}.
\]

Analogously,

\[
|I_4| \leq \left(\frac{2(\alpha + 2)\|f'(b)\|_q + (\alpha + 3)\eta(\|f'(b)\|_q, \|f'(a)\|_q) }{2(\alpha + 2)} \right)^\frac{1}{\eta}.
\]

By adding all the above inequalities, we can reach the conclusion. \(\square\)
Remark 3.10. If $|f|^\frac{p}{p-1}$ is η-convex with respect to η defined by $\eta(x,y) = x-y$, then (24) reduces to the inequality of Theorem 1.8.

REFERENCES

M. A. Khan, Department of Mathematics, University of Peshawar, Peshawar, Pakistan, e-mail: adilsat@gmail.com

Y. Khurshid, Department of Mathematics, University of Peshawar, Peshawar, Pakistan, e-mail: yousafkhurshid90@gmail.com

T. Ali, Department of Mathematics, University of Peshawar, Peshawar, Pakistan, e-mail: atahir623@gmail.com