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SELF ADJOINT OPERATOR KOROVKIN TYPE
QUANTITATIVE APPROXIMATIONS

G. A. ANASTASSIOU

ABSTRACT. Here we present self adjoint operator Korovkin type theorems via self
adjoint operator Shisha-Mond type inequalities. This is a quantitative treatment to
determine the degree of self adjoint operator uniform approximation with rates, of
sequences of self adjoint operator positive linear operators. We give several appli-
cations involving the self adjoint operator Bernstein polynomials.

1. BACKGROUND

Let A be a selfadjoint linear operator on a complex Hilbert space (H;(,)).
The Gelfand map establishes a *-isometrically isomorphism ® between the set
C(Sp(A)) of all continuous functions defind on the spectrum of A, denoted Sp(A),
and the C*-algebra C*(A) generated by A and the identity operator 1y on H as
follows (see, e.g., [6, p. 3]):
For any f,g € C(Sp(A)) and any «a, § € C, we have
(i) ®(af + Bg) = a®(f) + B2(9),
(i) ®(fg) = ®(f)®(g) (the operation composition is on the right) and ®(f) =
(@(f))",
(iii) [@(H)I = IlfIl := suprespcay [F ()],
(iv) ®(fo) =15 and ®(f1) = A, where fo (t) =1 and f; (t) =t, for t € Sp(A).
With this notation we define

f(A) == () for all f € C(Sp(A)),

and we call it the continuous functional calculus for a selfadjoint operator A.

If A is a selfadjoint operator and f is a real valued continuous function on
Sp(A), then f(t) > 0 for any t € Sp(A) implies that f(A) > 0, i.e., f(A) is a
positive operator on H. Moreover, if both f and g are real valued continuous
functions on Sp(A), then the following important property holds

(P) f(t) > g(t) for any t € Sp(A), implies that f(A) > g(A) in the operator
order of B(H).
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Equivalently, we use (see [4, pp. 7-8])the following statement.

Let U be a selfadjoint operator on the complex Hilbert space (H, (-,-)) with the
spectrum Sp (U) included in the interval [m, M] for some real numbers m < M,
and {E)}, be its spectral family.

Then for any continuous function f: [a,b] — C, where [m, M| C (a,b), it is
well known that we have the following spectral representation in terms of the
Riemann-Stieljes integral

M

(1) (O, y) = / FOVA(Exz, )

m—0

for any z,y € H. The function g, ,()\) := (E\z,y) is of bounded variation on the
interval [m, M], and

9z,y (m - 0) =0 and gw,y(M) = <.Z‘, y>

for any x,y € H. Furthermore, it is known that g,(\) := (Exz, ) is increasing
and right continuous on [m, M].
In this article, we will often use the formula

M

@) (F(U)e,7) = / FOVA((Exz,z))  for all o € H.
m—0
As a symbol we can write
M
3) )= [ ram,

Above, m = min{A | A € Sp(U)} := minSp(U), M = max{\ | A € Sp(U)} =
max Sp(U). The projections {E\},p are called the spectral family of A with the
properties:
(a) EA § E)\/ for A S )\/,
(b) E,.—o = 0g (zero operator), Epr = 1y (identity operator) and Ey;o = Ex
for all A € R.
Furthermore,

(4) Ey = @a(U) for all A € R,
is a projection which reduces U, with

(s) = 1 for —co<s <A
PASIZ 00 for A < s < +oo.

The spectral family {E)},p determines the self-adjoint operator U uniquely and
vice versa.

For more on the topic, see [5, pp. 256-266], and for more details, see there
pp. 157-266.

Some more basics are given (we follow [4, pp. 1-5]):

Let (H; (-,-)) be a Hilbert space over C. A bounded linear operator A defined
on H is selfjoint, i.e., A = A* iff (Az,z) € R for all x € H, and if A is selfadjoint,
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then
(5) [All = sup [(Az, ).
z€EH:||z|=1

Let A, B be selfadjoint operators on H. Then A < B iff (Ax,z) < (Bz,z) for all
e H.

In particular, A is called positive if A > 0.

Denote by

n

(6) P::{@(S)::Zaksk|n2(), akEC,OSkSn}.
k=0

If A € B(H) (the Banach algebra of all bounded linear operators defined on H,

i.e., from H into itself) is selfadjoint and ¢(s) € P has real coefficients, then ¢(A)

is selfadjoint, and

(7) le(A)]l = max{|p(A)], A € Sp(A)}.

If ¢ is any function defined on R, we define

(8) lell4 = sup{[o(M)], A € Sp(A)}.

If A is selfadjoint operator on Hilbert space H and ¢ is continuous and given that
p(A) is selfadjoint, then ||p(A)]| = ||¢lla. And if ¢ is a continuous real valued
function so it is ||, then ¢(A) and |p|(A) = |p(A)| are selfadjoint operators (by
[4, p. 4, Theorem 7]).

Hence it holds

(A = [llell 4 =sup{[le (M|, A € Sp(4)}
=sup{[p(A)], A € Sp(A)} = llell4 = lle(A)],
that is,

(9) (A = lle (A

For a selfadjoint operator A € B(H) which is positive, there exists a unique
positive selfadjoint operator B:=+/A € B(H) such that B>= A, that is, (\/2)2 =A.
We call B the square root of A.

Let A € B(H), then A*A is selfadjoint and positive. Define the “operator
absolute value” |A| := VA*A. If A= A*, then |A| = VA2.

For a continuous real valued function ¢, we observe

|p(A)| (the functional absolute value)

M M
- / I = [ VE)PE, = VAP

m—0 m—

= |¢(A)| (operator absolute value),

where A is a selfadjoint operator.
That is, we have

(10)  |¢(A)| (functional absolute value) = |¢(A)| (operator absolute value).

The next comes from [3, p. 3].
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We say that a sequence {4,,}°; C B(H) converges uniformly to A (convergence
in norm) iff

(11) Jim |4, - A] =0,
and we denote it as lim,, o 4, = A.

We will be using Hélder’s-McCarthy’s inequality, 1967 ([7]): Let A be a selfad-
joint positive operator on a Hilbert space H. Then

(12) (Az,z) < (Az,z)"
foral0<r<landze€ H: |z|| =1

Let A, B € B(H), then
(13) IAB] < [[All ]| B
by Banach algebra property.

2. AUXILIARY RESULTS

All functions here are real valued.

Let L : C([a,b]) — C ([a,b]), a < b, be a linear operator. If f,g € C([a,b])
such that f > g implies L (f) > L(g), we call L a positive linear operator. It is
well-known that a positive linear operator is a bounded linear operator.

We need the following lemma.

Lemma 1. Let L: C([a,b]) — C([a,b]) be a positive linear operator, 0 < a<1.
Then the function

(14) g(@) == (L (|- —2") (x)
is continuous in x € [a, b|.

Proof. Let x,, = x, xp, x € [a,b]. We notice that
(15)
(L (|- = 2al®)) (wn) = (L(] - —2%)) (2)
= (L (I = 2n]™)) (xn) = (L - =2]")) (@a) + (L (I = 2[")) (@0) = (L (|- = 2[)) ()
= (LI = znl™ = |- = 2|%)) (@n) + [(L (| = 2[)) (@n) — (L(| - —2|*)) (@)]-
Therefore, it holds

(L] - =2|%)) (n) = (L(] - —2|%)) (2)]

(16)
<NEQ- =) = | = 2o + (L (- = 2])) (2n) = (L (|- = 2[7)) (2)]
(17)
<L = 2nl™ = |- = 2%l + 1L (- = 217) (n) = (L (|- = 2]7)) ()] =: (&) -

Notice that
[t—zp| =t -+ —2,] <t —2x|+ [t — 24,
hence
[t —zn|® < (Jt = 2| + |2 — 2a])" < [t — 2" + |z — 20|
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That is,
(18) [t —zp|® = |t — 2| < |z —2,]|%.
Similarly,
[t —z| =t —zp + 2z, — 2| <|t — x|+ |Tn — 2],

hence

[t —z|* < |t —xn|* + |20 — 2|
and
(19) [t — x| — |t — xp|* < |z — 2|

Consequently, it holds

(20) [t = zn|® = |t — 2|*] < |zn — 2|
and
(21) - = znl|® = | =¥, < l2p — 2|

Therefore, we get

(22) (&) < Ll an = 2" + [(L(] - =2|%) (2n) = (L(] - =2]%)) ()] = 0

as T, — x, and by continuity of (L (|- — z|”)), as n — oo, proving the claim. [
We make the following remark.
Remark 2. Let L be a positive linear operator from C([a, b]) into itself. Then

(23) (t—a)" = Z (-1 Fk (Z)th"k, t,x € [a,b].

k=0

Hence we get
nyy _ - n—k (M) n—k k
(24) (L) =3 1 () ()
and
n _ - n—k (T n—k k
25) (L= () =30 0 (e * (L () o)

for all z € [a,b]. Clearly we have that (L ((-—x)")) (z) is continuous in x for all
n € N. So that |(L ((- —2)")) (x)| is continuous in z € [a, b].
It follows

Lemma 3. Let L be a positive linear operator from C ([a,b]) into itself. The
function (L (|- —z|™)) (x) is continuous in x € [a,b] for any m € N.
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Proof. Let x,, = x, Zpn,x € [a,b], as n — co. We observe that
(26) IL (I =zn|™ = |- =2[™) oo < NLIHIT- —2n|™ = |- —2]™ | -
We notice that (¢, 2,z € [a,b])
[t =z |™ — [t — =™
= ||t - xnl — |t - x” { |t — $n|m71 + |t — xn‘m_2|t — x|
+lt—an|m P =P+ =@ -2 [ — 2™}
<t —ap| =t —a||mb—a)™" < |z, —x|m(b—0a)™"".
Hence, we get
(28) I - =za™ = |- =2l < |2n —2[m(b—a)™ .
Similarly, as in the proof of Lemma 1 (instead of o we set m), we obtain

(L] - =2n|™)) (2n) = (L (] - —2[™)) ()]

(27)

(29)

<L =2al™ =1 =2l + 1L (- = 2]™)) (@) = (L (|- = 2™)) (2)]
(30)

<Ll |z — [ m (b= a)" " 4+ (L (|- =a™)) (20) = (L (|- =2|™)) (2)] =0,
proving the claim. O

We also need next lemma.

Lemma 4. Let L be a positive linear operator from C ([a,b]) into itself. The
function (L( |- — x|t ))(m) is continuous in x € [a,b], n €N, 0 < a < 1.
Proof. Let 0 < A;B <b—a, and v(2) := 2", r > 1, with 7: [0,b—a] = R,
ie,y(A)=A",v(B)=B". Then'(z) =rz""" and ||7/| =7 (- a)"
Hence it holds
(31) A" = B"|<r(b—a) ' |A-B|.
Let t, X, x € [a,b] with x,, = x, as m — oo.
Therefore (for r=n+a > 1, A= |t — x|, B= |t —z|) we get that

M= < () (b= )" T = 2| = [t 2]

1t = 2]
(32)
<+a)b—a)"™ " |z, — |

So that it holds
(33) |t =zl = =" < (nt @) (0—a)" T 2 — 2| = 0.
We have that

(L=l )) ) = (E(] = ")) ()]

g e e L

=) @) = (L= o) @)
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<Ll zm — 2| (n+a) (b= a)" 7
(34) =) ) = (L1 = 2l™)) ()] >0,
proving the claim. O

We make the following remark.

Remark 5. Let L be a positive linear operator from C([a, b]) into itself, a < b.
By Riesz representation theorem, for each s € [a,b], there exists a positive finite
measure fis on [a,b] such that

(35) (L(f)(s) = f@)dps(t)  forall f e C([a,b]).

[a,b]
Therefore, (k=1,...,n,0<a <1)

=)@l =| [ 0= )

< / A — s|k dps(A) (by Holder’s inequality)
[a,b]
(o)) (nta) e
(36) <(f pam) () dus@))
= (@) )T (L= "))

We have proved that (k=1,...,n; 0 < a <1)

A—s

(37 (LC—)%) ()] < (L (1) (DT (L] = 5"7)) () 7=

for all s € [a, b].

We mention the following theorem.

Theorem 6 (Shisha and Mond [8], 1968). Let [a,b] C R be a compact interval.
Let {Lyn},, ey be a sequence of positive linear operators acting from C([a,b]) into
itself. Forn = 1,2,..., suppose L,(1) is bounded. Let f € C([a,b]). Then for
n=12,..., we have

(38) [Lnf = flloo < I fllocllLnl = oo + [|Ln(1) + L[ocwr (f; ptn),
where
(39) 1= [ (Lo (= 2)%)) @)
with
(40) wi(f,6) = sup |[f(z)—f(y)l, >0,
z,y€la,b]:
|z—y|<o
and || - ||oo stands for the sup-norm over [a,b]. In particular, if L,(1) = 1, then

(38) becomes
(41) [ Ln(f) = flloo < 2w1(f, ftn)-
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Note. (i) In forming p2, x is kept fixed, however, ¢ forms the functions ¢, t2 on
which L,, acts.
(ii) One can easily find for n = 1,2, ...,

tn < [[(En () (2) = 27|  + 26ll(La(8) (@) = 200
+(Ln (1)) (@) = s,

where ¢ := max(|al, |b]).

So, if the Korovkin’s assumptions are fulfilled, i.e., if L, (id2) X id?, L, (id) =
id and L, (1) % 1 as n — oo, where id is the identity map and u is the uniform
convergence, then p, — 0, and then wi(f, u,) — 0 as n — 400, and, we obtain
from (38) that || L, f — fllec — 00, i.e., Lnf — f, as n — oo for all f € C([a,d]).

Clearly the assumption ||L, (1) — 1|, — 0 as n — oo, implies || L, (1)||s < p
for all n € N and for some p > 0.

Indeed we can write L, (1) = L,(1) — 1 4 1, hence

(42)

[Ln(Dlloe < [[Ln(1) = 1flee +1 < p,

proving the boundedness of L, (1).

3. MAIN RESULTS

Here we derive self adjoint operator-Korovkin type theorems via operator-Shisha-
Mond type inequalities. This is a quantitative approach studying the degree of
operator-uniform approximation with rates of sequences of operator-positive linear
operators in the operator order of B(H).

In all of our results here we give direct self contained proofs by the use of
spectral representation theorem. We are inspired by [1].

Our setting here follows:

Let A be a selfadjoint operator on the Hilbert space H with the spectrum
Sp(A) C [m, M] for some real numbers m < M , {Ex}x be its spectral family,

I = [a,b], a < b, a,b real numbers, with [m, M] C I = (a,b) (the interior of I).
Let f € C(I), where C(I) denotes all the continuous functions from I into R.
Let n € N and {L, }nen be a sequence of positive linear operators from C(I) into
itself.

We give the following theorems

Theorem 7. It holds
(43) [(Ln(f))(A) = FA < 1 Lnf = Flloo,fab) for all n € N.
If L,1 %5 1, L,(id) = id, L, (id®) = id®, then ||[Lnf — flloo,jap) [_Z] 0 (see
a,

Theorem 6 and Note).
By (43), we get |(La(f)) (4) — F(A)] = 0 as n— oo, ic.,

lim (L,(f)) (A) = f(A) uniformly for all f € C(I).

n—oo
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Proof. Here we use the spectral representation theorem.
For any x € H : ||z|| = 1, we have that fnj\f_od<E>\x7x> =1, see (1) and (2).
We observe that

(44)  (I(La(N))A) = F(Al = sup [(Ln(f))(A) = f(A))z, z)]

rE€H
lzll=1
M
= sup A) = f(A)d(Exz, x)
|z||=1] J m— O
M

— FVd{Exz, z)

Hx” 1 m— O

M
S||Ln<f>f||oo,[a,b](sup / 0 Em>

e =1 m—
(45) = 1Ln(f) = Flloo o) - 1 = [1n(f) = Flloo,fats

proving the claim. O

Next we give special Korovkin type quantitative convergence results for a self
adjoint operator A.

Theorem 8. Let f: [a,b] = R. Assume that
(46) lf(&) = f(s)| < K|t — s|* for all t,s € [a,b],

where 0 < a <1, K > 0.
Assume that

(47) 1 Ln(Dloojap) < 1y p>0 for allm € N,
and set
(48) p=p7

Set also ¢ := max(|al, |b]).
Then it holds

(L (F))(A) = S < 1FAIILn(1))(A) = La|
(49) + K p[[I(Ln(id?*))(A4) — A%|| + 2¢][(Ln (id))(A) — A]

+ N (La(W)(A) —1al]
for all n € N.

If we assume that (L, (id®))(A) — A2, (L,(id))(A) = A, (L,(1))(A) — 1g,
uniformly as n — oo, we get (L,(f)) (A) — f(A) uniformly, as n — oo for all
f € C([a,b]) fulfilling (46).

Proof. Here we consider the sequence of positive linear operators { L, } nen from
C([a, b)) into itself. By Riesz representation theorem, we have that

(50) (Ln(£))(s) = S () pins (dt)

[a,b]
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for all f € C([a,b]); where u,s is a non-negative finite measure for all s € [a, D]
and all n € N.
We can write the following

(Ln(F))(s) = f(s) = (Ln())(5) = f(5) + f(s)(Ln(1))(5) = f(s)(Ln(1))(5)

(51) _ /[ , (0 = 76 naldt) + £ (LaD)(E) = )

By the assumption (46), we obtain
[(Ln(£))(s) = f(s)l S/[ ) [f (&) = f ()| s (dt) + | f ()] [(Ln (1)) (5) — 1]
(52)

<K i [t — 8% pns(dt) + | f(s)||(Ln(1)) (s) — 1]

=K (Ln (|- = 5%) (s)) + [£ () [(Ln (1)) (s) — 1]
That is, we get
(53)  [(Ln())(s) = () < () 1(La(1)) (s) = L[ + K (Ln (|- = s|%) (s)) -

Notice that by Hoélder’s inequality

(Lo (| — 5% (5)) = /W] £ — 1” s (dt)
(54)

Hence it holds

(55) [(Ln(£))(s) = F(s)] < [F($)[1(Ln(1)) (s) = 1]
FE (La)6) 7 (B (= 57) ()
By the assumption (47) and (48), we get

[(Ln())(s) = f(s)] < [f(s)[[(Ln(1))s) —1]
K (Lo (%) ()

Nl)

(56)

=3
2

for all s € [a, b].

We see that
( )? L, (* —2ts+ s%)) (s)
67 = (L <2>> s)—zs n(D) (5) + 5% (Ln(1)) (5)
= ((La (7)) () = )—28(( n(1) (8) = ) + 5 (Ln(1))(s) = 1).

Calling ¢ := max(|al, |b]), we obtain

)
()05 e

+ 2CI(Ln( ) () = sl + ¢ [(Ln(1))(s) = 1.
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Therefore,

(LalF)(s) = £ (3)] < F)ILa(1))(s) ~ 1
(59) + Kp|| (Lo (£)) () = 8% +2¢(L(8)) (5) = 5]

e (L) (9) - 1]

for all s € [a,b] and all n € N.
Here we take = € H : ||z]| = 1. We find that

M
(60)  K((Ln(f)) (A) = f(A)) 2, 2)| = ’/O((Ln(f))(s) = f(s))d(Esz, x)

M
< / (La(£)(s) — £(5)| d(Eyz, z)
m—0

M
(61) S/ [F(&)[(Ln (1)) (5) = 1| d{Esz, z)

m—0
M
+Kp/_0[\(L (t%)) (s) — 82| + 2¢|(Ln(t)) (s) — 5|

+ ) (Ln(1))(5) - 1@ * (B, 2)
©) (AL ~ talao) + Kp([|(Ln
+ 2/(La(0)(4) - Al + (L <>><A>—1H|]%x z)
(by Holder-McCarthy inequality (12) and (5), (9), and (13))
< AN Ea(1) (4) = Ll + Kp

63)  (([(La(id®)(A) = A%+ 2¢|(Ln(id))(A) — A
+ 3 |(Ln(1))(A) = 15| |,2)) 2

(4) — 47|

(64) = [ F(AII(La(1)) (A) = 1|l + Kp((|(La(id*))(4) — A%z, x)
+ 20 (|(Ln(id))(A) — Al 7, 2) + ¢ (|(La(1)) (A) = 1u| 2, 7)) ?
(65) <AL (1) (A) = Lall + Kﬂ( (L (1d%)) (4) — A%
26 [ (La ) (A) — Al + € [(La(1)(A) — 1)),
proving (49). O

It follows a related result.

Theorem 9. Let f: [a,b] = R. Assume that
(66) SO = F) < Klt =5 for all t,s € [a,8]
where 0 < a <1, K > 0.
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Then
[(Ln(FN(A) = FA < FAII(Ln (1)) (A) = 1]l
+ K |[(Ly (| - =A|%)) (A)]| for all n € N.

Clearly, if (Ln(1))(A) = 1g and (Ln(] - —A]*))(A) = 0 uniformly as n — oo,
then by (67), we get that (L, (f))(A) — f(A) uniformly as n — oo.

Proof. We have established (53) from which follows:

(68)  [(La())(5) = F ()| < |F()[(Ln(1))(s) = 1] + K ((Ln (| - =5|%)) (5)) -
Consider z € H: |jz|| = 1. Then

M
(69)  [{(Ln(f)) (A) = f(A) 2,2} | = ‘/O((Ln(f))(S)f(S))d<Esx,fv>

(67)

M
< / (La(F)(s) — F(5)|d(Ear, z)
m—0
M
@ / I D)) - 11d(Ea.a)

M
K [ (L (=) () d(Bua)
= ([f(D[(Ln(1))(A) = 1a]) z,2) + K (Lo (| - —A[")) (A)) 2, 2)
(10) < fANI(La1)) (A) = 1l + K [[(Ly (|- =A]*)) (A,
proving the claim. O
We continue with next statement.

Theorem 10. Let {Lx}nen be a sequence of positive linear operators from
C([a,b]) into itself. Let f: [a,b] — R be such that f € C([a,b]) and

(71) [f(z) = fM(s)] < K|z =], K >0,

0<a<1 and for all z,s € [a,b].
Then it holds

I () (A) = A < 1A I EN () (4) - 1]
3 g o] (e (- 2) @]
k=1

(72)
K n+aoa
BT H(LN (| - —A )) (A)H
1] (i + @)
i=1
for all N € N. Assuming further that
(73) ILN(1)||,o <p  forall N €N, p>0,

and (Ln(1))(A) = 1g, (Ly (|- —A["t)) (A) — 0y uniformly as N — oo, we get
that (Ln(f)) (A) = f(A) uniformly as N — oo for all f € C™([a,b]), fulfilling
(71).
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Proof. Here f : [a,b] — R is such that ™ € C([a,b]). Let s € [a,b], n € N.
Then

ek g
(74) =32 - 9 4 Rutes),
k=0 ’
where
M) Rt = gy [ [ G =10 -2

for all ¢, s € [a, b].
Under the assumption (71), next we estimate Ry, (¢,s). Let t > s, then

/ [ @)= 100 (- 2 dz|

S

< t F (@) = ) (= 2)" dz
(76) /

['(n)D(a + 1)

= K/:(t 2)" (2 —s) ety = Km(t —s)nte,
So, when t > s, we get
(77) /9 [f(n)(z) _ f(n)(s)] (t _ Z)n_ldz‘ < Km (t — s>n+a .

Let t < s, then

(a4 1)T'(n)

n+ao
Tmtlta) (s—1t)""".

t

We have proved that

/3, [f(n)(z) _ f(”)(s)](t _ z)n_ldz < Klmt _ S|n+a

(79) (n—1)!

I+a)2+a)...(n+a)

|t — s|" T for all ¢, s € [a, b].



178 G. A. ANASTASSIOU

Hence it holds

IRu(t,5)| ’/ (£ (2) )]t — )" 'dz
(80)
[t — 5|t for all ¢, s € [a, b].

(1+a)(2+a)...(n+a)

Let now Ly, N € N, be a sequence of positive linear operators from C([a, b]) into
itself. Then we get

| (Ln (Bn (+,9))) ()] < (L (| (R (+8)) ) (5)
(81) < — (L (|- —s[""*)) (s) for all s € [a,b].

i=1
Above, (Ly (|- —s|"™%)) (s) is continuous in s € [a,b] (by Lemma 4).
We can rewrite (74) as follows

(82) - :kal R (),

and we notice that Ry, (-, s) € C([a,b]), here we keep s fixed.
Hence we find

(Ln(f)) (s) = f(s) (Ln (1)) ()

6 5T (1 (= ) () (L (R (D) (5) for all s € [a B,
k=1 ’

Therefore, we have
(Ln(f) (s)=f(s)=(Ln(f)) ()= f(s)=f(s) (Ln(1)) (s)+f(s) (Ln (1)) (s)
= (Ln(f)) (s) = f(s) (Ln(1)) (s) + f(s) (Ln(1)) (s) — 1)

(84) f(k)
= f(s) ((Ln -1+ Z —)") () + (L (Ry (-,5))) (5)

for all s € [a,b]. Thus, it holds

(k)
(L () () = £(s) = F() (L (1)) () — 1) Z i —9)%) (s)

+ (Ln (Rn (+,8))) (s) for all s € [a,b].

Above, (Ln(- — $)*) (s) is continuous in s € [a,b] for all k =1,...,n
Furthermore, it holds
(86)

(L) ()= F(5)' S 1£(5)] (L1 1|+Z

Hin_lfé_i_a) (LN (\ - s|n+a>) (s) for all s € [a,b].

(85)

IV (-9) ()

+
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Next we observe that

®7)  N(Ln () (A) = F (A= (L (f) (A) = FA
= sup (I (Ln(f)) (A) = £ (A) |z, ) |

veH:|lz]=1

M
(88) = sup ’/ | (Ln(f)) (s) = f(s)|d(Es, x)
z€H:||z||=1"' Jm—-0

M
~  swp / |(Ex () (5) - F()d(Euz, )
z€H:||z||=1Jm—0

< sup ([f(A(Ln(1))A = 1al|z,2)

zeH:||z||=1

3 g (I ) Al )

L su . AInta o
! IT=: (i + @) ven: \|EH 1<(L" (I-=A"")) (A)z, )

(89) =|||f<A>||<Ln<1>><)—1H|||+Zk,H\f<'f> (L (= ")) )|

Mo 10

< LA ) () — 1l + 3 2 [F9)] | Ea ( — 4
k=1

+ C—A[MF) (A)]|

L . AInta
e I En (= A ) (]

proving the inequality (72).
By (37), we have (k=1,..., n, 0 < a <1) that

~

nt+a—=k

90) (L= ") ()] < (L) (DT (L (1 = 5F)) () 757

for all s € [a,b], N € N.
By assumption (73), we get

(91) ‘(LN(. - s)k) (s)’ < M(”ii;k)((LN( | — s|"+a))(s))$

forall s € [a,b], Ne N, k=1,...,nand 0 < o < 1.
Hence we derive

H(Zn (=N = lx (¢ = "))

= sup ‘<|LN(('*A)]€)(A)|1'7$>|

z€H:||z||=1

92) = sup (|Ln((-—A)")(A)|z,z)
z€H:||z||=1
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M
— swp / (L (- = 9)9)) (5)] d(Bsa, )
m—0

z€EH:||z||=1
M k
< u(%) sup / ((LN( | _ S|n+o¢ ))(5))md<Es:L‘,$>
z€H:||z||=1Jm—0
= p(555) e;}ﬁp”:1<((LN( - — AT ))(A))m%x>

(by Holder-McCarthy’s inequality (12))
k

03 <uCHD) swp (v (= A))@)e)) ™

z€H:||z||=1

k

R (s (1= AP )Y )

z€H:||z||=1

k
n+a

n+a—k)

:u( nta (LN(\'—A\n+Q))(A)

We have proved that

_k_
nta—k ) nto

00 (e - 4] < uC
forallk=1,...,n,0<a<1land N € N.

(L (1= A"")) (4)

By (94) and assuming that (Lx (1)) (4) — 1y and (Ly (|- — A""))(4) = 0g,
uniformly as N — oo, we get that (L ( (- — A)F ))(A) = 0y and (Ln(f)) (A) —

f (A) uniformly for all f € C([a,b]) under assumptions (71), (73).

We continue with next theorem.

Theorem 11. Let {Ln} ey be a sequence of positive linear operators from

C([a, b)) into itself. Let f: [a,b] — R be such that f™ € C([a,d]) and
(95)

fOE) = )| <Kl =sl® K >0,

forall0 < a<1 and z,s € [a,b)].
Then it holds

%) | i) ) - £a) - Z P (ov -2 )
< IFAIEN (D) (4) = Ll + s (B (= A )|

Conclusion. If (Ly(1)) (A) — 1z and (Ly (|- — A""))(A) — O, uniformly

as N — oo, then

npk)
[en @) -3 T (- ) @) - s
k=1

uniformly as N — oo and for all f as above.
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Proof. The next is a continuous function in s € [a, b]:

(k)
(Ln(f) Z A — ) (s)

= f()(Ln (1)) () =1) + (Ln (Rn (-,5)) (s))  for all s € [a,b].

Hence it holds

[t s - LoD @y - ap )

k=1
k)
— [[entm @ - ) - I g - )|
k=1
nofk)
= o st @ - s -2 o (- ) @as)|
rxeEH:||x||= k=1 .
k)
0 = s (a0 @ -1 - I (@) <)
y k=1
= s [ () () = 1)+ (D (R (3) (9] A )
z€H:||z||=1 -0
) < s [ ) () - 1 a2
z€H:||z||=1/m—0
M
su (Ln (|Rx d(Esx, x
xEHHSH 1/mo v N ()l )
= AIEAD) () - 1l
K M n+aoa
b e T G @) Sy P (o)) ) B
= AN NN ) () = 1] + g En (= AT ) )
(100)
= SIS (D) (4) = Ll + g | v (1 = A ) ()]
proving the claim. O

4. APPLICATIONS

For the next, see [2, pp. 169-170].
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Let g € C([0,1]), N € N, the Nth basic Bernstein polynomial for g is defined
by

(101) (Bn (9)) () = i (Z)g(]]\c[)zk (1—z)NF for all z € [0,1].

k=0
It has the properties:

An(1) =1, (Bu(id)) () = 2,
102
U2 e =0 (o) (= (1- %)+ 2

and
(5N(('*Z)2))(Z):7_ for all z € [0, 1].

Here we consider f € C([a, b]) and the general Bernstein positive linear polynomial
operators from C([a,b]) into itself, defined by (see [9, p. 80])

o o= (1) (o 5) (=) ()

=0
for all s € [a,b]. By [9, p. 81], we get that
5 b—a
_ < 2 7
(104) 183 = flloo < G (£ 750)

ie., Byf — f, uniformly as N — oo and for all f € C([a,b]), the convergence is
given with rates.
We obtain easily that

(105) (By(1))(s) =1 for all s € [a,] , i.e., By(1) =1.
We notice that
(106) (Z:Z>+<Z:Z> =1 forall s € [a,b],

b—s

calling y := $=%, we have =2 =1 —y.
So we can write

awon B )= i (V) (o 5w a-n.
We observe that

(By(id))(s) = i (N ) ( ; (b];)) yi(1— gV

=0
:a+(b—a)§; <]j> (;,) ya—yN
(102)
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proving (B, (id)) (s) = s, i.e., it holds
(108) By (id) = id.
We see that
(By ((id=5))) (5) = (Bu(id)) () = s (Bx (1) (5) ‘= s =5 =0,
ie.,
(109) (BN ((-—35)))(s)=0 for all s € [a, b].

Next we calculate

(Bn(d*)(s) =Y

(110) +(b—a)’ i <]j> (%)Qy 1—y

(102) o +2a(b—a)y+ (b— a)2[(1 — %)f + %y}

2 (s—a) + (b ) {(1_;)22:3;;(;:3)}
:a2+2a(sfa)+(1—%)(5—a)2+%(b7a)(s—a)
=a’+(s—a) (2a+b]:[a)+(lf%) (s —a).

We have proved that

(111) (B(id®) (s) = a® + (s — a) (20 + b;V“) +(1- i) (s — a)?

for all s € [a,b]. Finally we calculate

(B ((id—s)*))(s) = (By ((id* —2s id +s%))) ()
= (Bn(id*) (s) = 25 (Bw(id)) (s) + 5> (B (1)) (5)

(112) — a2+ (5—a) (2a+ b*Ta) n (k%) (s —a)® — 2% +
=a’+(s—a) (2a+b;]a)+<1f%) (s —a)® — s*
=2d> 4 (s — a) <2a+b_Ta>72asfi(sfa)2
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We have proved that
. 2 2 b—a 1 2
(113)  (Bn((id=s)"))(s) = 2a* + (s — a) <2a + T) —2as — i (s—a)

for all s € [a,b].
Notice that

(114) Jim (By((id=s)"))(s) =0,
as well as
(115) ]\;gnoo (BN(id2)) (5) = s° for all s € [a,b],

both uniformly.
Next we apply the results of section 3 for the case of By operators. Here again
Sp(A) C [m, M] C (a,b); A as a selfadjoint operator on the Hilbert space H. By

(1) and (2) and z € H : ||z|| = 1, we get ff_0d<E>\x,m> =1.
So Theorem 7 is going to read as follows.

Corollary 12. Let f € C([a,b]). Then
(116) B (A) — AN < IBxf — fllpuy  forall NEN.

By earlier comments on By, see (104), we get that limy_,o (Bn(f)) (4) = f(A)
uniformly for all f € C ([a,b]).
Next we apply Theorem 8 to By operators.

Corollary 13. Let f: [a,b] — R. Assume that

(117) lf(t)— f(s)| < K|t —s|” for allt,s € [a,b],
where 0 < a <1, K > 0.
Then

(118) (BN () (4) - f(A)] < K ||(Bn(ia?) (4) - 42||F  forall N €N,

Since (see Remark 14 next) (By(id®)) (4) — A2, uniformly as N — oo, we get
that (By(f)) (A) — f(A) uniformly as N — oo and for all f € C([a,b]), fulfilling
(117).

Remark 14. Indeed it holds
(119)

(Bl (4) — 42 = sup [((Brlid®) (4) — 42) )|

cEH:
llzll=1

| ) -
]7:/’;70

< / |(BN(id2)) (s) — 32’ d(Esz,x) < H (BN(idz)) (s) — szHoo’[%b] — 0,
m—0

as N — oo, by (115).
Proving that (By (id2)) (A) — A2, uniformly as N — oo.
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Corollary 15 (to Theorem 9). Let f: [a,b] = R such that

(120) PO FI <K= for alit,s € [a,b],
where 0 < a <1, K > 0.
Then

(121)  IBNn(N(A) = fFAI < K[I(By (I = A[*) (A for all N € N.

Since (By (|- — A|%)) (A) — 0Oy uniformly, (see Remarks 16 and 18) then
(BN(f))(A) — f(A), uniformly as N — oo for every f as above, see (120).

Remark 16. We easily obtain (by Holder’s inequality and (105))

(122) (B (|- —5|) (5) < (By ((-— 9)?)) (s))®  forall s € [a,0].
Hence it holds
[(Bn (I = A1) (A)]| = sup [{((Bwn (|- — A[")) (4)) z, z)|

rEH:
lll|=1

= sup (((By (|- —A[")) (4)) z, )
reH:

lzll=1
19 = [ Gl 0 B
lzll=1
[ (Bl o)) P B
- s (Bl AP0 )
lz]|=1
122 s (el AT A)ee))
Izl =1

That is, we have

o
2

(125) 1B (- = A1) ()] < || (Bx (- =4)")) (4)

Corollary 17 (to Theorem 10 for n =1, o = 1). Let f: [a,b] = R such that
(126) If'(z) = f'(s)| < K|z —s|, K >0, forall z,s € |a,b].
Then

(127) B () (A) — 1A < o] By (=N @) foranNen.
Proof. See also (105) and (109). O
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‘We make
Remark 18. We observe

[ B (=) @) = sup [(((By(( = 4%)(A)7.2)

llzll=1

ccH:
[lz]|=1
M
—sup [ (By((-—9°))(s)d (Bur,)
x€H: Jm—0
[lz]|=1

< (B (6= 572)) (9] gy 0

as N — oo, (by (114)). That proves

|(Bx (= a7)) () =0,

and by (127), we derive that (By(f)) (A) — f(A) uniformly as N — oo for every

f

G

as in (126).

REFERENCES

. Anastassiou G. A., Moments in probability and approximation theory, Longman Scientific &

Technical, Pitman Research Notes in Mathematics Series, No. 287, John Wiley & Sons, Inc.,
Essex, New York, 1993.

. Bartle R. G., The Elements of Real Analysis, 2nd edition, John Wiley & Sons, New York,

1976.

. Dragomir S. S., Inequalities for functions of selfadjoint operators on Hilbert Spaces,

ajmaa.org/RGMIA/monographs/InFuncOp.pdf, 2011.

. Dragomir S., Operator inequalities of Ostrowski and Trapezoidal type, Springer, New York,

2012.

. Helmberg G., Introduction to Spectral Theory in Hilbert Space, John Wiley & Sons, Inc., New

York, 1969.

. Furuta T., Mié¢i¢ J., Pecari¢ J. and Seo Y., Mond-Pecari¢ Method in Operator Inequalities.

Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.

. McCarthy C. A., ¢p, Israel J. Math., 5 (1967), 249-271.
. Shisha O. and Mond B., The degree of convergence of sequences of linear positive operators,

Nat. Acad. of Sci. U.S., 60 (1968), 1196-1200.

. Shumaker L., Spline functions basic theory, Wiley-Interscience, New York, 1981.

. A. Anastassiou, Department of Mathematical Sciences, University of Memphis, Memphis, TN

38152, U.S.A., e-mail: ganastss@memphis.edu



