k-GENERALIZED FIBONACCI NUMBERS CLOSE TO THE FORM\(2^a + 3^b + 5^c\)

N. IRMAK AND M. ALP

Abstract. The \(k\)-generalized Fibonacci sequence \(\{F^{(k)}_n\}_{n \geq 0}\) is defined as the sum of the \(k\) proceeding terms and initial conditions are \(0, \ldots, 0, 1\) (\(k\) terms). In this paper, we solve the diophantine equation \(F^{(k)}_n = 2^a + 3^b + 5^c + \delta\), where \(a, b, c\) and \(\delta\) are nonnegative integers with \(\max\{a, b\} \leq c\) and \(0 \leq \delta \leq 5\). This work generalizes a recent Marques [9] and the first author, Szalay [6] results.

1. Introduction

Let \(k \geq 2\) be an integer. The \(k\)-generalized Fibonacci sequence \(\{F^{(k)}_n\}_{n \geq 0}\) is defined by the following recurrence relation

\[F^{(k)}_n = F^{(k)}_{n-1} + F^{(k)}_{n-2} + \cdots + F^{(k)}_{n-k}, \quad n \geq -(k-2)\]

with the initial conditions \(F^{(k)}_{-(k-2)} = F^{(k)}_{-(k-3)} = \cdots = F^{(k)}_0 = 0\) and \(F^{(k)}_{-(k-1)} = 1\).

Naturally, the case \(k = 2\) turns to well-known Fibonacci sequence \(\{F_n\}\). If \(k = 3\), then it gives the Tribonacci sequence \(\{T_n\}\). The problem of finding different type of the numbers among the terms of linear recurrence has a long history. One of the results by Bugeaud, Mignotte and Siksek [1] is that only 0, 1, 8, 144 in Fibonacci numbers and 1, 4 in Lucas numbers can be written in the form \(y^t\), where \(t > 1\). Szalay and Luca showed that there are only finitely quadruples \((n, a, b, p)\) such that \(F_n = p^a \pm p^b + 1\), where \(p\) is a prime number in [7]. Recently, Bravo and Luca [2] solved the diophantine equation \(F^{(k)}_n = 2^m\) for positive integers \(n, k, m\) with \(k \geq 2\). The paper of Marques and Togbe [8] determines the Fibonacci numbers and the Lucas numbers of the form \(2^n + 3^b + 5^c\) where Lucas sequence is defined by relation \(L_n = L_{n-1} + L_{n-2}\) for \(n \geq 2\), together with \(L_0 = 2\) and \(L_1 = 1\). Recently, Marques [9] solved the diophantine equation \(F^{(k)}_n = 2^n + 3^b + 5^c\) with \(\max\{a, b\} \leq c\). The first author and Szalay showed that there are 22 solutions to the diophantine equation \(0 \leq T_n - 2^n - 3^b - 5^c \leq 10\), where \(T_n\) is the Tribonacci sequence.

Received May 6, 2016; revised March 22, 2017.
2010 Mathematics Subject Classification. Primary 11B39, 11J86.
Key words and phrases. \(k\)-generalized Fibonacci sequence; linear forms in logarithms; reduction method.
This project is supported by Niğde University’s Project No: FEB 2013/30 BAGEP.
In this paper, we solve the equation

\[F_n^{(k)} = 2^a + 3^b + 5^c + \delta, \]

where \(a\), \(b\), \(c\) and \(\delta\) are nonnegative integers with \(\max\{a, b\} \leq c\) and \(0 \leq \delta \leq 5\).

There is a difference from the paper [9]. We add a diameter to the equation. If we take \(k = 3\) and \(0 \leq \delta \leq 5\) in the equation (1), then we obtain the result of the paper [6]. Taking \(\delta = 0\) in the equation (1) yields the paper [9].

Our result is the following theorem.

Theorem 1.1. For \(n \geq k + 2\), the solutions of the equation

\[F_n^{(k)} = 2^a + 3^b + 5^c + \delta, \]

are given in the following tables

<table>
<thead>
<tr>
<th>(n)</th>
<th>(k)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>11</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

where \(a\), \(b\) and \(c\) are positive integers with \(\max\{a, b\} \leq c\) and the sequence \(\{F_n^{(k)}\}\) is the \(k\)-generalized Fibonacci sequence.

When we take \(\delta = 0\), it coincides with the Marques [9] results. Moreover, we note that the solutions \((n, k, a, b, c, \delta) = (7, 4, 0, 1, 2, 0)\) and \((9, 7, 0, 3, 0)\) are not observed in [9].

2. Auxiliary Results

Before proceeding further, we recall some facts and tools which will be used next. Dresden ([4, Theorem 1]) gave the Binet-type formula of the terms of the sequence \(\{F_n^{(k)}\}\) as follows

\[F_n^{(k)} = \sum_{i=1}^{k} \frac{\alpha_i - 1}{2 + (k + 1)(\alpha_i - 2)} \alpha_i^{n-1}, \]
for \(\alpha_1, \ldots, \alpha_k \), the roots \(x^k - x^{k-1} - \cdots - 1 = 0 \). Also, it was proven in the same paper that
\[
\left| F_n^{(k)} - g(\alpha, k)\alpha^{n-1} \right| < \frac{1}{2}
\]
where \(\alpha \) is the dominant root of the characteristic equation \(x^k - x^{k-1} - \cdots - 1 = 0 \) and the notation \(g(\alpha, k) := (\alpha - 1)/(2 + (k + 1)(\alpha - 2)) \). Also, Bravo and Luca [2] proved that
\[
\alpha^n - 2 \leq F_n^{(k)} \leq \alpha^n - 1
\]
for all \(n \geq 1 \).

Another tool to prove our theorem is a lower bound for linear forms in logarithms of algebraic numbers, given by Matveev [10]. The first one is the following lemma.

Lemma 2.1. Let \(K \) be a number field of degree \(D \) over \(\mathbb{Q} \), \(\gamma_1, \gamma_2, \ldots, \gamma_t \) be positive real numbers of \(K \), and \(b_1, b_2, \ldots, b_t \) be rational integers. Put
\[
B \geq \max \{|b_1|, |b_2|, \ldots, |b_t|\}
\]
and
\[
\Lambda := \gamma_1^{b_1} \cdots \gamma_t^{b_t} - 1.
\]
Let \(A_1, \ldots, A_t \) be real numbers such that
\[
A_i \geq \max \{Dh(\gamma_i), |\log \gamma_i|, 0.16\}, \quad i = 1, \ldots, t.
\]
Then, assuming that \(\Lambda \neq 0 \), we have
\[
|\Lambda| > \exp \left(-1.4 \times 30^{t+3} \times t^{1.5} \times D^2 \times (1 + \log D) \times (1 + \log B) \times A_1 \cdots A_t \right).
\]
As usual, in the above lemma, the logarithmic height of algebraic number \(\eta \) is defined as
\[
h(\eta) = \frac{1}{d} \left(\log a_0 + \sum_{i=1}^{d} \left(\max \{|\eta^{(i)}|, 1|\} \right) \right)
\]
where \(d \) is the degree of \(\eta \) over \(\mathbb{Q} \), \(\{\eta^{(i)}\}_{1 \leq i \leq d} \) are the conjugates of \(\eta \) over \(\mathbb{Q} \), and \(a_0 \) is the positive leading coefficient of the minimal polynomial of \(\eta \) over the integers.

The application of Matveev theorem gives a large upper bound. In order to reduce this bound, we use the following lemma ([5, Lemma 2.2]).

Lemma 2.2. Suppose that \(M \) is a positive integer. Let \(p/q \) be a convergent of the continued fraction expansion of the irrational number \(\gamma \) such that \(q > 6M \) and \(\varepsilon = \|\mu q - M\|q\| \), where \(\mu \) is a real number and \(\| \cdot \| \) denotes the distance from the nearest integer. If \(\varepsilon > 0 \), then there is no solution to the inequality
\[
0 < m\gamma - n + \mu < AB^{-m}
\]
in positive integers \(m \) and \(n \) with
\[
\frac{\log(Aq/\varepsilon)}{\log B} \leq m < M.
\]
We use also the following lemma from the paper [2].
Lemma 2.3. For every positive integer \(n \geq 2 \), we have
\[
F_n^{(k)} \leq 2^{n-2}.
\]

3. Proof of Theorem 1.1

The formula (2) together with the diophantine equation yields that
\[
\sum_{i=1}^{k} \frac{\alpha_i - 1}{2 + (k + 2)(\alpha_i - 2)} \alpha_i^{n-1} = 2^a + 3^b + 5^c + \delta.
\]
Then we have
\[
g(\alpha, k) \frac{\alpha^{n-1}}{5} - 1 = \frac{2^a + 3^b - \xi + \delta}{5^c}
\]
where \(1 < \alpha = \alpha_1 \in \mathbb{R} \) is the dominant root of the characteristic equation
\[
x^k - x^{k-1} - \cdots - 1 = 0
\]
and \(\xi = \sum_{i=2}^{k} g(\alpha_i, k)\alpha_i^{n-1} \) is the real number whose absolute value is less than 1. Therefore,
\[
g(\alpha, k) \frac{\alpha^{n-1}}{5^c} - 1 > 0.
\]
Consequently, we get
\[
g(\alpha, k) \frac{\alpha^{n-1}}{5^c} - 1 < \frac{2^a + 3^b + \delta}{5^c} < 3^{5^c}.
\]
since \(2 < \sqrt{5} \), \(3 < 5^{0.7} \), and \(c \geq \max\{a, b\} \).

In order to apply the Lemma 2.1, we take \(t := 3 \) and
\[
\gamma_1 := g(\alpha, k), \quad \gamma_2 := \alpha, \quad \gamma_3 := 5,
\]
together with the exponents \(b_1 := 1, \ b_2 := n - 1 \) and \(b_3 := -c \). For this choice, we have \(D = k, A_2 = k \log 5, A_3 = 0.7, \) and by the paper [2, page 73], \(A_1 = 4k \log k \).

By the inequality (3), \(5^c < r_n^{(k)} < \alpha^{n-1} \) gives that \(\frac{n - 1}{c} > \frac{\log 5}{\log \alpha} > 1 \). Hence,
\[
B = \max\{1, n - 1, c\} = n - 1.
\]
When we compare the upper and lower bounds for \(\Lambda \), we get
\[
e^{-T(1+\log k)(1+\log(n-1))(4k \log k)(k \log 5)0.7} < \frac{3}{1.6^c},
\]
where \(T = 1.4 \cdot 30^6 \cdot 3^{4.5} \cdot k^2 \). After taking logarithm of both sides and some simplifications together with \(1 + \log (n - 1) < 2 \log (n - 1) \) and \(1 + \log k < 2 \log k \), we obtain
\[
c \log 1.6 - \log 2 < 3.9 \cdot 10^{12} k^4 \log k \log (n - 1).
\]
Since \(\alpha^{n-2} < F_n^{(k)} < 3 \cdot 5^c < 5^{c+1} \), then \((n - 2) \frac{\log \alpha}{\log 5} - 1 < c \). So, the inequality
\[
\left((n - 2) \frac{\log \alpha}{\log 5} - 1 \right) \log 1.6 < 3.9 \cdot 10^{12} k^4 \log k \log (n - 1)
\]
yields that
\[
\frac{n - 1}{\log (n - 1)} < 2.8 \cdot 10^{13} k^4 \log k^2.
\]
Since the function \(x \to x/\log x \) is increasing for all \(x > e \), it is easy to check that the inequality
\[
\frac{x}{\log x} < A \quad \text{yields} \quad x < 2A \log A.
\]
Thus, taking \(A := 5.1 \cdot 10^{12} k^4 (\log k)^2 \), we have
\[
n - 1 < 2 \left(2.8 \cdot 10^{13} k^4 (\log k)^2 \right)
\times \log \left(2.8 \cdot 10^{13} k^4 (\log k)^2 \right)
< 5.6 \cdot 10^{13} k^4 (\log k)^2
\times (\log 2.8 + 13 \log 10 + 4 \log k + 2 \log (\log k))
\times (31 + 4 \log k + 2 \log (\log k))
\]
since \((31 + 4 \log k + 2 \log (\log k)) < 48 \log k \) for all \(k \geq 2 \), then
\[
n < 2.7 \cdot 10^{13} k^4 (\log k)^3.
\]
Since \(5^c < F_n^{(k)} < \alpha^{n-1} \) and \(\alpha^{n-2} < F_n^{(k)} < 5^{c+1} \), then the inequality
\[
2.3 \cdot c + 1 < n < 3.4 (c + 1) + 2
\]
holds.

In the sequel, assume that \(k \in [2,372] \). In order to apply Lemma 2.2, let
\[
t := (n - 1) \log \alpha + \log g(\alpha,k) - c \log 5.
\]
By the equation (4), we can write that
\[
et - 1 < \frac{3}{5^{0.3c}}.
\]
Since \(e^t - 1 > 0 \), then \(t > 0 \). Together with the equation (5),
\[
(n - 1) \log \alpha + \log g(\alpha,k) - c \log 5 < \frac{3}{5^{0.3c}} < \frac{3}{(1.6)^n}
< \frac{3}{(1.6)^{0.29n-1.6}}
< 6.37 \cdot (1.14)^{-n}
\]
holds. Dividing both sides of the above inequality by \(\log 5 \), we get
\[
n \left(\frac{\log \alpha}{\log 5} \right) + \frac{\log g(\alpha,k) - \log \alpha}{\log 5} - c < \frac{6.37}{\log 5} \cdot (1.14)^{-n}
\]
holds. With
\[
\gamma := \frac{\log \alpha}{\log 5}, \quad \mu := \frac{\log g(\alpha,k) - \log \alpha}{\log 5},
\]
\(A := 3.96, \quad B := 1.14,\)
the inequality (6) yields
\[0 < n\gamma - c + \mu < A \cdot B^{-n}. \]

It is obvious that \(\gamma \) is a irrational number. Take \(M := 3.96 \cdot 10^{15}k^4(\log k)^3 \). We use the Lemma 2.2 for each case \(k \in [2,372] \). Mathematica programme reveals that maximum value of \(\log(Aq/\varepsilon)/\log B \) is 1941, 25. . . . Hence, we deduce that possible solutions of the diophantine equation (1) are in the range \(k \in [2,372] \) and \(n \in [4,1941] \).

In order to decrease the upper bound for \(n \), we use the inequality
\[\log_3 \left(F_n^{(k)} - 5^{[\log_5 F_n^{(k)} - \delta]} \right) \leq \log_5 \left(F_n^{(k)} - \delta \right) \]
for \(0 \leq \delta \leq 5 \). Since we assume that \(\max\{a,b\} \leq c \), this inequality must hold. For \(k \in [2,372] \) and \(n \in [4,1941] \), the inequality \(\log_3 \left(F_n^{(k)} - 5^{[\log_5 F_n^{(k)} - \delta]} \right) \leq \log_5 \left(F_n^{(k)} - \delta \right) \) yields that \(n \leq 30 \). We go through the solutions of the diophantine equation. We find them as in Theorem 1.1.

From now on, assume that \(k \geq 373 \). Under this condition, the inequality (7)
\[n < 2.7 \cdot 10^{15}k^4(\log k)^3 \leq 2^\frac{3}{2} \]
holds. Using the same arguments in [2], with Lemma 2.3, we have
\[g(\alpha,k)\alpha^{n-1} = 2^{n-2} - \frac{\delta}{2} + 2^{n-1}\eta + \eta \delta, \]
where \(|\delta| < \frac{2^n}{2k^{1/2}} \) and \(|\eta| < \frac{2k}{\pi} \). Then,
\[|2^a + 3^b + 5^c + \delta - 2^{n-2}| = \left| 2^a + 3^b + 5^c - g(\alpha,k)\alpha^{n-1} - \frac{\delta}{2} + 2^{n-1}\eta + \eta \delta \right| < \frac{5 \cdot 2^{n-2}}{2k^{1/2}}, \]
where we used the facts \(1/2^{n-1} < 1/2^{k/2} \), \(4k/2^k < 1/2^{k/2} \) and \(8k/2^{3k/2} < 1/2^{k/2} \) for \(k > 363 \). If we divide both sides by \(2^{n-2} \), then we get
\[\left| \frac{2^a + 3^b + 5^c}{2^{n-2}} - 1 \right| < \frac{5}{2k^{1/2}}. \]
This inequality gives that
\[\left| 1 - \frac{5^c}{2^{n-2}} \right| < \frac{5}{2k^{1/2}} + \frac{2^n + 3^b}{2^{n-2}} + \delta \cdot \frac{2}{2^{n-2}}. \]
The facts \(2^{2a} < 5^c < F_n^{(k)} < 2^{n-2} \) and \(3^{1.456} < 5^c < F_n^{(k)} < 2^{n-2} \) yield that
\[\frac{5}{2k^{1/2}} + \frac{2^n + 3^b}{2^{n-2}} + \delta \cdot \frac{2}{2^{n-2}} < \frac{12}{20.3k}. \]
So,
\[\left| 1 - \frac{5^c}{2^{n-2}} \right| < \frac{12}{20.3k}. \]
Now we apply the Lemma 2.1 again. We take \(t := 2, D := 1, \gamma_1 := 5, \gamma_2 := 2, b_1 := c, b_2 := -(n - 2), B := n, A_1 := \log 5, \) and \(A_2 := \log 2. \) Then the Lemma 2.2 yields that

\[
e^{-1.4 \cdot 30^5 \cdot 2^{4.5} (1 + \log n) \log 5 \log 2} < \frac{12}{20 \cdot 3k}.
\]

Taking both sides with logarithm function, we have

\[
\frac{3k}{10} \log 2 - \log 12 < 1.4 \cdot 30^5 \cdot 2^{4.5} \log 5 \cdot \log 2 \cdot 1.5 \cdot \log n,
\]

where we use the fact \(1 + \log n < \frac{3}{2} \log n. \) Since

\[
\log n < \log \left(2.7 \cdot 10^{15} \cdot k^4 \cdot (\log k)^3 \right) < 11 \log k
\]

for \(k \geq 373, \) then

\[
\frac{3k}{10} \log 2 - \log 7 < 1.42 \cdot 10^{10} \cdot \log k.
\]

When we solve the above inequality, we get

\[
2 \leq k < 2 \cdot 10^{12} \quad \text{and} \quad 4 \leq n < 9.9 \cdot 10^{68}.
\]

In order to reduce the upper bound of \(n, \) we use Lemma 2.2 again. Let \(\tau := c \log 5 - (n - 2) \log 2. \) Since \(5^e < 2^{4.5}, \) then \(c \log 5 - (n - 2) \log 2 < 0 \) yields that \(\tau < 0. \) Thus, we obtain

\[
|\tau| < e^{|\tau|} - 1 = e^{|\tau|} (e^{|\tau|} - 1) < \frac{24}{20.3k},
\]

where we use that \(e^{|\tau|} < 2 \) since \(|e^{|\tau|} - 1| < \frac{1}{2}. \) Since \(n - 2 \geq k, \) then

\[
k \log 2 - c \log 5 \leq (n - 2) \log 2 - c \log 5 < 24 \cdot (2^{0.3})^{-k}.
\]

After dividing both sides by \(\log 5, \) we get

\[
k \log \frac{2}{\log 5} - c < 15 (2^{0.3})^{-k}.
\]

Let \(\gamma := \log \frac{2}{\log 5}, [a_0, a_1, a_2, \ldots] = [0, 2, 3, 9, \ldots] \) be the continued fraction of \(\gamma \) and \(\frac{p_k}{q_k} \) denote the \(k \)th convergent. Then we have \(q_{142} > 9.9 \cdot 10^{68}. \) Furthermore, \(a_M := \max \{a_i; i = 0, 1, \ldots, 142\}. \) Then we find \(a_M = a_{137} = 5394. \) Using the properties of the continued fraction, we get that

\[
|n - 2) \gamma - c| > \frac{1}{(a_M + 2) (n - 2)}.
\]

It yields that

\[
\frac{1}{5395 (n - 2)} < |(n - 2) \gamma - c| < 9 \cdot (2^{0.3})^{-k}.
\]

Then, by the inequality (7),

\[
2^{0.3k} < 9 \cdot 5395 \cdot (n - 2) < 1.32 \cdot 10^{30} k^4 \cdot (\log k)^3
\]

holds. This inequality implies that \(k \leq 361. \) This case is already treated.
Therefore, Theorem 1.1 is completed.

REFERENCES

6. Irmak N. and Szalay L., Tribonacci numbers close to the sum $2^a + 3^b + 5^c$, Math. Scand. 118 (1), (2016), 27–32.
7. Luca F. and Szalay L., Fibonacci numbers of the form $p^a \pm p^b + 1$, Fibonacci Quart., 45 (2007), 98–103.

N. Irmak, Corresponding author, Ömer Halisdemir University, Art and Science Faculty, Mathematics Department, 51240, Niğde, Turkey, e-mail: nirmak@nigde.edu.tr

M. Alp, Ömer Halisdemir University, Art and Science Faculty, Mathematics Department, 51240, Niğde, Turkey, e-mail: muratalp@nigde.edu.tr