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HERMITE-HADAMARD TYPE INEQUALITIES VIA
CONFORMABLE FRACTIONAL INTEGRALS

E. SET, A. GOZPINAR aND A. EKINCI

ABSTRACT. In this study, a new identity involving conformable fractional integrals
is given. Then, by using this identity, some new Hermite-Hadamard type inequalities
for conformable fractional integrals have been developed.

1. INTRODUCTION AND PRELIMINARIES

Since begining of the 20. century, the following famous inequality has been well
known in the literature as Hermite-Hadamard’s inequality. Many of researchers
have extended, generalized and established lots of results with it.

(L.1) f(“;b) Sbla/abf(x)dxéw

The function which holds the above inequality is convex and the definition of
convexity is given as follows:

Definition 1.1. Let f: I CR — R be a function and a,b € I with a < b, the
function f: I C R — R is said to be convex if the inequality

flte+ 1 —t)y) <tf(z)+(1—-1)f(y)
holds for all z,y € I and ¢ € [0, 1].

Definition 1.2. A function f: Ry — R is said to be s-convex in the second
sense if

flaz + By) < o f(z) + B°f(y)
for all z,y e Ry and all o, f > 0 with a + 3 = 1.

We denote this by K2. It is obvious that the s-convexity means just the con-
vexity when s = 1, for more detail see also ([2, 3, 4, 5, 7, 9]).

In [6], Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality
which holds for s-convex functions in the second sense.
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Theorem 1.1. Suppose that f: [0,00) — [0,00) is an s-convex function in the
second sense, where s € (0,1], and let a,b € [0,00), a < b. If f € Ly[a,b], then the
following inequality holds

b
(12) i (U5) < g [ e < HOEID

The constant k = H% is the best possible in the second inequality in (1.2).

Recently authors have generalized some identities and some results via Riemann-
Liouville fractional integrals. In this part of paper, we will give some necessary
definitions and properties which we use in this study, for more useful studies see
8, 10, 11, 13, 14, 15, 16, 23].

Definition 1.3. Let f € Li[a,b]. The Riemann-Lioville integrals J¢, f and
Ji f of order & > 0 with a > 0, are defined by

1

J3+f($) = @

/w(x — t)o‘*lf(t)dt, T > a,
and ,
T2 (@) = ﬁ / (t— o)A, x<b,

respectively. Here I'(¢) is the Gamma function and its definition is T'(t) =
Jo e !~ da. It is to be noted that JO, f(z) = JP_ f(z) = f(z) in the case
of a =1, the fractional integral reduces to the classical integral.

The Beta function is defined as follows
[(a)I'(b)
I'(a+b)

where I'(«) is Gamma function, and the incompleted beta function is defined as

B, (a,b) = / t2 =11 — )bt
0

For z = 1, the incomplete beta function coincides with the complete beta function.
In [14], Sarikaya et al. gave remarkable integral inequalities of Hermite-Hadamard
type involving Riemann-Liouville fractional integrals as follows.

1
B (a,b) = :/ t2= 11 — )b tdt, a,b>0,
0

Theorem 1.2. Let f: [a,b] — R be a positive function with 0 < a < b and f €
[a,b]. If f is convex function on [a,b], then the following inequality for fractional
integrals holds

a+b IMNa+1)
1. < a b ol <
1 (U50) = gm0 + U Dl <
It is obviously seen that if we take a = 1 in Theorem 1.2, then the inequality
(1.3) reduces to well known Hermite-Hadamard’s inequality as (1.1).
Set et al. gave the Hermite Hadamard type inequality for s-convex functions
on Riemann-Liouville fractional integral as follows.

fla) + £(b)
TR
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Theorem 1.3. [15] Let f : [a,b] — R be a positive function with 0 < a < b
and f € Lila,b]. If f is an s-convexr mapping in the second sense on |a,b], then
the following inequality for fractional integral with « > 0 and s € (0,1] hold

271 (150) < s R N0 + D)

< o[ + Bla,s + 1) 1O EY

(1.4)

2 )
where B(a,b) is Euler Beta function.

In [13], Ozdemir et.al proved a new identity and obtained some new results by
using this identity, as follows.

Lemma 1.1. Let f: I CR — R be a differentiable function on I1°, the interior
of I, where a,b € I with a <b. If f' € L[a,b], then for all x € [a,b] and o > 0,
we have

@0 @+ o)) Lot l)go i)y e, o)

(Jj _ a)a—i—l

_ ﬁ/0 (t* = 1)f (tz + (1 — t)a)dt

+ % /01(1 —t%) f'(tz + (1 — t)b)dt,

where T'(a) = [ e~ u®~1du.

Theorem 1.4. Let f: I C [0,00) — R be a differentiable function on I° such
that f' € Lla,b], where a,b € I with a < b. If |f’| is s-convex on [a,b] for some
fized s € (0,1] and x € [a,b], then the following inequality for fractional integrals
with a > 0 holds

(1.5)
(@ — a) f(ab):rib —2)°f(b) F(bo‘jal) [T f(a) + o f(b)]‘
o (z—a)* ™+ (b—a)**']
S(s+1)(oz+s+1){ b-a }U(I)'

b

+[ 1 F(Oé+1)r(8+1)] [(ff—a)a“lf'(aﬂ+(b—95)”‘“|f/(b)|}
s+1 Mla+s+2) b—a

where I' is Fuler Gamma function.

Theorem 1.5. Let f: I C [0,00) = R be a differentiable function on I° such
that f' € Lla,b], where a,b € I with a <b. If |f'|7 is s-convex on [a,b] for some
fized s € (0,1] and x € [a,b], then the following inequality for fractional integrals
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holds.

(z—a)*f(@) + (b=2)*f) Tlatl) a ), Jaf(b)]‘

b—a .
<(Criror ;i)); [l (el
U <f'(x)|zjrr|1f’(b)|Q>é}

where % + % =1, a>0 and I is Euler Gamma function.

Theorem 1.6. Let f: I C [0,00) — R be a differentiable function on I° such
that f' € L{a,b], where a,b € I with a <b. If |f'|7 is s-convex on [a,b] for some
fized s € (0,1], ¢ > 1 and x € [a,b], then the following inequality for fractional
integrals holds

(w-a)*f(@)+(b=2)°F(}) Tla+1) o o, J"-X—f(b)]‘

b—a b—a

1—1
(07 q
<
- <a+1>

(r—a)t! o Nl
X{ b—a ((s+1)(a+s+1)|f(x)| +[5—|—1  D(a+s+2)

(b—z)>* a voa [ 1 DT+, 00 0)
O (e O s ey ror) )

where o > 0 and T is Euler Gamma function.

1 r(a+1)r(s+1)}|f,(a)q)i

In the following, we give some definitions and properties of conformable frac-
tional integrals which help to obtain main identity and results. Recently, some
authors, started to study on conformable fractional integrals. In [12], Khalil et al.
defined the fractional integral of order 0 < o < 1 only. In [1], Abdeljawad gave
the definition of left and right conformable fractional integrals of any order « > 0.

Definition 1.4. Let o € (n,n+ 1] and set 8 = a—n, then the left conformable
fractional integral starting at a is defined by
1 t
12h@) == [ (=0 (e - @) ),

Analogously, the right conformable fractional integral is defined by

b
(L0 = 5 [ =02/ ).

Notice that if « = n+1, then § = a—n =n+1-n =1, where n =0,1,2,...,
and hence (I$f)(t) = (J5,1f)(t). For easy understanding the computation in our
theorems, let us give some properties of beta and incompleted beta function

(1.6)  B(a,b) = Bi(a,b) + Bi_¢(b,a), ie., B(a,b)=DBi(a,b)+ Bi(ba),

1
2
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aB.(a,b) — z%(1 — z)®

By(a+1,b) = =
a _ b
Butab 1) = e 120 =)

n [17], Set et.al. gave Hermite Hadamard’s inequality for conformable frac-
tional integrals as follows.

Theorem 1.7. Let f: [a,b] = R be a function with0 < a <b and f € L1[a,b].
If f is a convex function on [a,b], then the following inequalities for conformable
fractional integrals holds

fla) + f(b)
2

a0 1(%57) < g er— g N0 + (e <

with o € (n,n + 1], where T is Euler Gamma function.

In [20], Set et al. established a generalization of Hermite-Hadamard type in-
equality for s-convex functions and gave some remarks to show the relationships
with the classical and Riemann Liouville fractional integrals inequality by using
the given properties of conformable fractional integrals.

Theorem 1.8. Let f: [a,b] = R be a function with 0 < a < b, s € (0,1], and
f € Lifa,b]. If f is a convex function on [a,b], then the following inequalities for
conformable fractional integrals hold

(1.8)
Naw—n) ,(a+Db 1 a b
R () < o 00 + (L))
< {B(n—l—s—&—l,a—n)+B(n+17a—n+s) fla)+ f(b)
- n! 28
with a € (ny,n+1], ne N, n=0,1,2..., where I is Euler Gamma function and

B(a,b) is a beta function.

Remark 1.1. If we choose s = 1 in Theorem 1.8, using relation between I" and
B functions, the inequality (1.8) reduces to inequality (1.7).

Remark 1.2. If we choose a = n+1 in Theorem 1.8, the inequality (1.8) reduces
to inequality (1.4). And also if we choose & = s = 1 in the inequality (1.8), then
we get the Hermite Hadamard’s inequality as (1.2).

Also Set et al. established some results for some kind of inequalities via con-
formable fractional integrals in [18, 19, 21, 22].

2. MAIN RESULTS

Lemma 2.1. Let f: I CR — R be a differentiable function on I°, the interior
of I, where a,b € I with a <b. If f' € L[a,b], then for all x € [a,b] and o > 0,



314 E. SET, A. GOZPINAR anp A. EKINCI

we have
w [(@=a)*fla)+ (b =2)"f(B)] = 5 Ta [PI.f(a) + I3 f(b)]
(z —a)ott [ I o
ﬁ/o [Bi(n+1,a—n) = B(n+La-n)]f(tz+ (1 -t)a)dt
(bzx)aﬂ/ [B(n+1,a —n) = Bi(n+1,a —n)] f'(tz + (1 - t)b)dt.
“a

Proof. Using the Definiton 1.4, integrating by parts and changing variables with
u=tr+ (1l —t)a and u =tz + (1 —¢)b in

_|_

1
Bo= [ (B Lo =) = B+ Lo — )] 1+ (1=
0
and

/ [ (n 1’ o Tl) Bt(n 1? @ ’I’L)] )/(tl‘ + (1 )b)dt
0 t
1 / [Bt(n‘i’l,a*n)*B(Tlﬁ*],(l*n)]1/(t$+(]71)a)dt

0

— (Bun+La—n)— Bn+1,a—nyL0erd=0a)

T —a 0
1 J—
f/ t”(lft)a*”ﬂMdt
0 T —a
z — n _ a—n—1
r—a zT—aj, \x—a T —a v —a
f(a) n!
:B 1 _ _ 17
(n+1«a n)xia @ —aprile f(a)
and
1
= / [B(n+1,a=n) = Bi(n+1,a—n)] f'(tz + (1 - t)b)dt
0
1— 1
— (B(n+La—n)—Bin+1,a—nylterd =00
Tz —0b 0
1 p—
+/ t"(l—t)a—"—lwdt
0 z—b
_ f(b) 1 /I u—>b n T —u a—n—1 f(u)
_B(n—’_La n)b—$+m—b b x—b r—0b Z‘—bdu
f(b) n!
=B+ la- - L+ f(b).
(n+1,« n)b—x b= z)r 2+ [ (b)
By multiplying Iy by % and I by (b;ai): +1, we get the desired result. [

Remark 2.1. If we choose « = n + 1 in Lemma 2.1, the above Lemma reduces
to Lemma 1.1.
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Theorem 2.1. Let f : I C [0,00) — R be a differentiable function on I°
such that f' € Lla,b], where a,b € I with a < b. If |f'| is s-conver on [a,b] for
some fized s € [0,1] and x € [a,b], then the following inequality for conformable
fractional integrals with o > 0 holds

B0 0 o)l + (- 20 10) - 2 PLaf(a) + 1210
n+s a—n) [(x—a)*t! —x)et!
_ B +5:21 )(( ) bjc(tb ) >|f/(x)|
N B(n+1,a—n)—B(n+1,a—n+s+1) <(m—a)0‘+1|f(a)|+(b — x)“+1|f(b)|>
s+1 b—a ’

where a € (n,n+ 1], n=0,1,2..., B(a,b) is Euler Beta function.

Proof. Taking modulus in Lemma 2.1 and using the s-convexity of |f'|, we get
(2.1)

’w (= a)* f(a) + (b—2)" (b)) - b%' "o (@) + 12£(0)] \
S%/01‘Bt(n+1,a7n)7B(n+1,afn)||f’(tx+(17t)a)‘dt
+%/1 IBn+1,a—n) = Bi(n+1,a —n)| | (tz + (1 — 1)b)| dt
<O [ Bt L)~ B+ L) (717 @)+ (- 071 @) di
0

—a)*t y S| gt
Jr%/0 Bln+1a—n)— Bin+La—n) (&' @)] + (1—0)°|7 B)]) d.

After some calculation we can write as follows:
1
[ Bt La—n) = Bin+ o= n) (€1 @) + (1= 0°IF @) d
0

- |f’(1:)|/0 [Bn+1,a—n)— Bi(n+ 1,0 —n)]'dt

+ |f’(a)\/0 [B(n+1,a—n)—Bi(n+1,a—n)](1 —1t)°dt

st |1 1 s+1
(2.2) :|f/(;g)|{(B(n+l,a—n)—Bt(n—i—l,a—n)) pre 0+/() t"(l—t)a—n—1iﬁdt]
, (1 -t
I @] (Bl o =) = B+ 10— ) D]

1 s+1
_ n _ pa—n—1 (1_t)
/Ot (g2 dt]

B(n+s+2,a—n)

= 1 (@) =

HF (@) (B(n+1,a—n)—B(n+1,a—n+s—|—1))

s+1
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and

/0 B(n+1l,a—n) = Bi(n+1La—n) (°|f (@) + 1 —t)°[f (b)) dt

, s+1 |1 1 n a—n—lts+1
y (ac)|{(B(n-l—l,a—n)—Bt(n—i—l,a—n)) - O+/O "= 1) H—ldt}
, (1=t
23 IO B+ La=n) - Bt La-n)
s+1 |
1 s+1
_ n _ a—n—1 (1 - t)
/O - 20 dt}
g,y Bn+s+2,a—n) y B(n+1,a—n)—B(n+1,a—n+s+1)
= 17 ) B AR B |
Combining (2.3) and (2.2) with (2.1), we get desired result. O

Remark 2.2. If we choose o = n + 1, then the inequality (2.1) reduces to the
inequality (1.5).

Theorem 2.2. Let f: I C [0,00) — R be a differentiable function on I° such
that ' € Lla,b], where a,b € I with a <b. If |f'|? is s-convex on [a,b] for some
fized s € (0,1] and x € [a,b] with % + % = 1, then the following inequality for
conformable fractional integrals holds

BOELO () + 620 10) — 5 (e (@) + 120)

Q=

< (sil)z’ﬁ (2 e ir@n i+ (22 irmrsron ]

where X = fol[B(n—Fl, a—n)—Bi(n+1,a—n)]Pdt and a € (n,n+1],n=10,1,2...
Also B(a,b) is Euler beta function and By(a,b) is incompleted Euler beta function.

Proof. By using Holder inequality and taking modulus in Lemma 2.1, we have

BOELEZR) (4 0y fa) + (b — )" 0) ~ 5 (*Taf(a) + Igf(b))’
Tr—a a+1 1 )

< %/{) |Bi(n+1,a—n)— B(n+1,a—n)||f (tx+ (1 — t)a)| dt
+%/1 |B(n+1,a —n) — Bi(n+ L,a—n)||f (tz+ (1 — t)b)| dt

P =l T e —

X [/01 |f (tx + (1 —t)a)thr }

(b—x)*t!

+ﬁ{ {/01 (Bn+1,a—n) th(n+1,afn))]pdt}

« [/01 \f (¢ + (1—t)b)|thr }

|=

P
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Since |f'|9 is s-convex on [a, b], we get

L g | (@)]7 +[f (a)]?
(2.5) /O ' (t + (1 — t)a)|"dt < —
and

Y g | (@) 4 |f'(b)]?
(2.6) /0 7+ (= oy rae < HDE O,
Let
(2.7) )\:/ [B(n+1,a—n)— Bi(n+1,a—n)Pdt.

0

Hence, combining (2.5), (2.6) and (2.7) with (2.4), we get the desired result. O
Remark 2.3. If we choose o = n+1, then Theorem 2.2 reduces the Theorem 1.5.

Theorem 2.3. Let f: I C [0,00) = R be a differentiable function on I° such
that f' € Lla,b], where a,b € I with a <b. If |f'|7 is s-convex on [a,b] for some
fized s € [0,1], ¢ > 1 and x € [a,b], then the following inequality for conformable
fractional integrals holds
(2.8)

‘w (2 = )" f(a) + (b= )" 0) — 5 (“afla) + ffif(b))‘

< (B(n+2.0-n)" <s-1u>é * { <%)

x [|f (@)|"B(n+s+2,a—n)+|f'(a)|? (B(n+1,a—n)—B(n+1,a—n+s+1))]

(55)

x [If'(@)|"B(n+s5+2,a—n) + | f'(b)|? (B(n+1,a—n)—B(n+1, a—n—l—s-i—l))]% }7

Q=

where o € (n,n+1], n =0,1,2... Also B(a,b) is Euler beta function and Bi(a,b)
is incompleted Euler beta function.

Proof. Taking modulus on Lemma 2.1 and using well-known power-mean in-
equality, we get

PO LO0) (4 gy o) + (0 0" 10— 52 (Lo (o) + 1250)

_1
(m_a)aJrl 1

< ﬁ{ {/()I(B(n—l-l,a—n)—Bt(n—i—l,a—n))dt}

(2.9) x [/01 (B(n+1,a —n) — Bi(n+1,a — n)) | f (tz + (1 — t)a)\th} ! }

O o) = Bl s 1y

1

x [/01 (B(n+1,a —n) — Bi(n+1,a —n)) |f (tz + (1 —t)b)|"dt} ’ }
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By using integrating by parts, we get
1
/ (B(n+1l,aa—n)—Bi(n+1,a—n))dt
0
2.1 1 !
(2.10) =(B(n+1l,a—n)—Bi(n+1,a— n))t‘ + / (1 —t)* " 1edt
0 0

=B(n+2,a—n).
Since | f’|? is s-convex in the second sense, we can write

(2.11)
/0 [B(n+ 1,00 —n) — By(n+ 1,a — n)]|f (tz + (1 — t)a)|?dt

IN

/0(B(n—|—1,a—n)—Bt(n—i—1,a—n))ts|f/(x)\th
—|—/O (B(n+1,a—n)—Bi(n+1,a—n))(1—1)°|f(a)|%dt

s+1 |1 1 1 ts+1
t"(1—-t)* " dt
+ /o ( ) s+1

(B(n+1,a—n)—Bi(n+1,a—n)) e}

0

=f' (@)
1—¢)s

—|—|f/(a)|q{(—B(n—|—1,a—n)—|—Bt(n—|—1,a—n))( P

1 _ s+1
0 s+1

_ @) oy @) o _
=i B(n+s+2,a —n)+ P} [B(n+1,a—n)—B:(n+1,a—n+s+1)]

0

and
(2.12)
[B(n+1,a—n) — By(n+ 1, — n)]|f (tz + (1 — t)b)|%dt

<

/0 [B(n+1,0—=n) = Bi(n+ 1, = n)] (t°|f"(2)|* + (1 = £)°|f(b)|") dt

t5+l 1 1 lts+1
B l,a—n)—B l,a— t"(1 -t dt
B Lo =) = Bint Lo ) 4 [t g

=f' (@)

1— t)s+1 1

+|f/(b)|q{[fB(n+1,0zfn)+Bt(n+1,ozfn)]( P

1 _ s+1
0 s+1

_ @) _ FRQIS ) — _
—HilB(n—i—s—&—Za n)—i—ﬁ[B(n—l—l,a n)—Bi(n+1l,a—n+s+1)].

Hence by combining (2.10), (2.11), and (2.12) with (2.8), we get the desired
U

0

result.
Remark 2.4. If we choose a« = n + 1, then Theorem 2.3 reduces to the Theo-

rem 1.6.
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