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RELATING THE ANNIHILATION NUMBER

AND THE ROMAN DOMINATION NUMBER

H. ARAM, R. KHOEILAR, S. M. SHEIKHOLESLAMI and L. VOLKMANN

Abstract. A Roman dominating function (RDF) on a graph G is a labeling f :

V (G) → {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2.
The weight of an RDF f is the value ω(f) =

∑
v∈V f(v). The Roman domination

number of a graph G, denoted by γR(G), equals the minimum weight of an RDF
on G. The annihilation number a(G) is the largest integer k such that the sum of

the first k terms of the non-decreasing degree sequence of G is at most the number

of edges in G. In this paper, we prove that for any tree T of order at least two,

γR(T ) ≤ 4a(T )+2
3

.

1. Introduction

In this paper, G is a simple graph with vertex set V = V (G) and edge set E =
E(G). The order |V | of G is denoted by n = n(G). For every vertex v ∈ V (G),
the open neighborhood NG(v) = N(v) is the set {u ∈ V (G) | uv ∈ E(G)} and the
closed neighborhood of v is the set NG[v] = N [v] = N(v) ∪ {v}. The degree of a
vertex v ∈ V is degG(v) = deg(v) = |N(v)|.

We write Pn for a path of order n. For a subset S ⊆ V (G), we define∑
(S,G) =

∑
v∈S

degG(v).

A leaf of a tree T is a vertex of degree 1, a support vertex is a vertex adjacent to
a leaf and a strong support vertex is a vertex adjacent to at least two leaves. For
r, s ≥ 1, a double star S(r, s) is a tree with exactly two vertices that are not leaves,
with one adjacent to r leaves and the other one to s leaves. For a vertex v in a
rooted tree T , let D(v) denote the set of descendants of v and D[v] = D(v)∪ {v}.
The maximal subtree at v is the subtree of T induced by D[v], and is denoted
by Tv.

A Roman dominating function (RDF) on a graph G = (V,E) is defined in
[16, 17] as a function f : V → {0, 1, 2} satisfying the condition that every vertex
v for which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2.
The weight of an RDF f is the value ω(f) =

∑
v∈V f(v). The Roman domination
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number of a graph G, denoted by γR(G), equals the minimum weight of an RDF
on G. A γR(G)-function is a Roman dominating function of G with weight γR(G).

The definition of the Roman dominating function was given implicitly by Stew-
art [17] and ReVelle and Rosing [16]. Cockayne, Dreyer Jr., Hedetniemi and
Hedetniemi [3] as well as Chambers, Kinnersley, Prince and West [2] gave a lot of
results on Roman domination. For more information on Roman domination, we
refer the reader to [4, 9, 10, 11, 12, 13].

Let d1, d2, . . . , dn be the degree sequence of a graph G arranged in non-decreas-
ing order, so d1 ≤ d2 ≤ . . . ≤ dn. Pepper [15] defined the annihilation number of
G, denoted a(G), to be the largest integer k such that the sum of the first k terms
of the degree sequence is at most half the sum of the degrees in the sequence.
Equivalently, the annihilation number is the largest integer k such that

k∑
i=1

di ≤
n∑

i=k+1

di.

We observe that if G has m edges and annihilation number k, then
∑k

i=1 di ≤ m.
The relation between annihilation number and domination parameters were

studied in [1, 5, 6, 7, 8, 14].
Our purpose in this paper is to establish an upper bound on Roman domination

number in term of annihilation number for trees.

Proposition A ([3]). For n ≥ 2,

γR(Pn) =

⌈
2n

3

⌉
.

Proposition B ([15]). For n ≥ 2,

a(Pn) =
⌈n

2

⌉
.

Corollary 1. For n ≥ 2,

γR(Pn) ≤ 4a(Pn) + 2

3

with equality if and only if n ≡ 2 (mod 6).

2. Main result

A subdivision of an edge uv is obtained by removing the edge uv, adding a new
vertex w, and adding edges uw and wv. The subdivision graph S(G) is the graph
obtained from G by subdividing each edge of G. The subdivision star S(K1,t) for
t ≥ 2, is called a healthy spider St. A wounded spider St is the graph formed by
subdividing at most t− 1 of the edges of a star K1,t for t ≥ 2. Note that stars are
wounded spiders. A spider is a healthy or wounded spider.

Lemma 2. If T is a spider, then γR(T ) < 4a(T )+2
3 .
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Proof. First let T = St be a healthy spider for some t ≥ 2. Then obviously

γR(T ) = 2 + t and a(T ) = t+ b t2c, and hence γR(T ) = 2 + t ≤ 4a(T )
3 < 4a(T )+2

3 .
Now let T be a wounded spider obtained from K1,t (t ≥ 2) by subdividing

0 ≤ s ≤ t − 1 edges. If s = 0, then T is a star, and we have γR(T ) = 2 and

a(T ) = t. Hence γR(T ) = 2 < 4a(T )+2
3 . Now assume that s > 0. If s = 1 and

t = 2, then T = P4 and the result follows from Corollary 1. Let s ≥ 2 or s = 1 and

t ≥ 3. Then γR(T ) = 2 + s and a(T ) = t+ b s2c. It follows that γR(T ) < 4a(T )+2
3 .

This completes the proof. �

Theorem 3. If T is a tree of order n ≥ 2, then γR(T ) ≤ 4a(T )+2
3 , and this

bound is sharp.

Proof. The proof is by induction on n. The statement holds for all trees of order
n = 2, 3, 4. For the the induction hypothesis, let n ≥ 5 and suppose that for every
nontrivial tree T of order less than n the result is true. Let T be a tree of order
n. We may assume that T is not a path otherwise the result follows by Corollary

1. If diam(T ) = 2, then T is a star, and we have γR(T ) < 4a(T )+2
3 by Lemma 2.

If diam(T ) = 3, then T is a double star S(r, s). In this case, a(T ) = r + s and

γR(T ) ≤ 4. If r + s = 3, then γR(T ) = 3 and so γR(T ) < 4a(T )+2
3 . If r + s ≥ 4,

then γR(T ) ≤ 4 and we have γR(T ) < 4a(T )+2
3 . Hence, we may assume that

diam(T ) ≥ 4.
In what follows, we consider trees T ′ formed from T by removing a set of

vertices. For such a tree T ′ of order n′, let d′1, d
′
2, . . . , d

′
n′ be the non-decreasing

degree sequence of T ′, and let S′ be a set of vertices corresponding to the first
a(T ′) terms in the degree sequence of T ′. In fact, if u1, u2, . . . , un′ are the vertices
of T ′ such that deg(ui) = d′i for each 1 ≤ i ≤ n′, then S′ = {u1, u2, . . . , ua(T ′)}.
We denote the size of T ′ by m′. We proceed further with a series of claims that
we may assume satisfied by the tree.

Claim 1. T has no strong support vertex such as u that the graph obtained
from T by removing u and the leaves adjacent to u is connected.

Proof. Let T have a strong support vertex u such that the graph obtained from
T by removing u and the leaves adjacent to u is connected. Suppose w is a vertex
in T with maximum distance from u. Root T at w and let v be the parent of u.
Assume T ′ = T − Tu. It is easy to see that γR(T ) ≤ γR(T ′) + 2.∑

(S′, T ) =

{ ∑
(S′, T ′) if v 6∈ S′,∑
(S′, T ′) + 1 if v ∈ S′.

Thus, ∑
(S′, T )− 1 ≤

∑
(S′, T ′) ≤ m′ ≤ m− 3.

and hence
∑

(S′, T ) ≤ m − 2. Let z1, z2 be two leaves adjacent to u and assume
S = S′ ∪ {z1, z2}. Then

∑
(S, T ) =

∑
(S′, T ) + 2 ≤ m, implying that a(T ) ≥

a(T ′) + 2.
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By the induction hypothesis, we obtain

γR(T ) ≤ γR(T ′) + 2 ≤ 4a(T ′) + 2

3
+ 2 ≤ 4(a(T )− 2) + 2

3
+ 2 <

4a(T ) + 2

3
,

as desired. �

Let v1v2 . . . vD be a diametral path in T and root T at vD (v1, respectively).
By Claim 1, we may assume any support vertex on a diametral path has degree 2.
In particular, degT (v2) = degT (vD−1) = 2. If diam(T ) = 4, then T is a spider and

so γR(T ) < 4a(T )+2
3 by Lemma 2. Assume diam(T ) ≥ 5. It follows from Claim 1

that Tv3 (TvD−2
, respectively) is a spider.

Claim 2. degT (v3) ≤ 3.

Proof. Let degT (v3) ≥ 4. Let T ′ = T − {v1, v2}. Then obviously there exists a
γR(T ′)-function that assigns 2 to v3 and hence can be extended to an RDF of T
by assigning 1 to v1 and 0 to v2. Thus γR(T ) ≤ γR(T ′) + 1.∑

(S′, T ) =

{ ∑
(S′, T ′) if v3 6∈ S′,∑
(S′, T ′) + 1 if v3 ∈ S′.

Thus, ∑
(S′, T ) ≤

∑
(S′, T ′) + 1 ≤ m′ + 1 = m− 1.

Let S = S′ ∪ {v1}. Then
∑

(S, T ) =
∑

(S′, T ) + degT (v1) ≤ m, and hence
a(T ) ≥ |S| = |S′|+ 1 = a(T ′) + 1. By the induction hypothesis, we obtain

γR(T ) ≤ γR(T ′) + 1 ≤ 4a(T ′) + 2

3
+ 1 ≤ 4(a(T )− 1) + 2

3
+ 1 <

4a(T ) + 2

3
,

as desired. �

Claim 3. degT (v3) = 2.

Proof. Assume that degT (v3) = 3. First let v3 be adjacent to a support vertex
z2 6∈ {v2, v4}. By Claim 1, we may assume degT (z2) = 2. Suppose z1 is the
leaf adjacent to z2 and let T ′ = T − Tv3 . Then every γR(T ′)-function can be
extended to an RDF of T by assigning 1 to v1, z1, 0 to v2, z2 and 2 to v3. Thus
γR(T ) ≤ γR(T ′)+4. As above, we have

∑
(S′, T ) ≤

∑
(S′, T ′)+1 ≤ m′+1 = m−4.

Let S = S′ ∪ {v1, v2, z1}. Then∑
(S, T ) =

∑
(S′, T ) + degT (v1) + degT (v2) + degT (z1) ≤ m,

implying that a(T ) ≥ |S| = |S′| + 3 = a(T ′) + 3. It follows from the induction
hypothesis that

γR(T ) ≤ γR(T ′) + 4 ≤ 4a(T ′) + 2

3
+ 4 ≤ 4(a(T )− 3) + 2

3
+ 4 =

4a(T ) + 2

3
.

Now let v3 be adjacent to a leaf w. Considering Claims 1, 2 and the first part of
Claim 3, we distinguish the following cases.
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Case 3.1. degT (v4) ≥ 4.
Let T ′ = T −Tv3 . Then every γR(T ′)-function can be extended to an RDF of T

by assigning 1 to v1, 0 to v2, w and 2 to v3. Hence, γR(T ) ≤ γR(T ′) + 3. Suppose
that v4 6∈ S′. In this case, let S = S′ ∪ {v1, v2, w}. Then∑

(S, T ) =
∑

(S′, T ) + degT (v1) + degT (v2) + degT (w)

=
∑

(S′, T ′) + 4 ≤ m′ + 4 = m,

implying that a(T ) ≥ a(T ′) + 3. By the induction hypothesis, we have

γR(T ) ≤ γR(T ′) + 3 ≤ 4a(T ′) + 2

3
+ 3 ≤ 4(a(T )− 3) + 2

3
+ 3 <

4a(T ) + 2

3
.

Now let v4 ∈ S′. In this case, let S = (S′ − {v4}) ∪ {v1, v2, v3, w}. Then∑
(S, T )=

∑
(S′, T ′)−degT ′(v4)+degT (v1)+degT (v2)+degT (v3)+degT (w) ≤ m,

which implies that a(T ) ≥ |S| = |S′| + 3 = a(T ′) + 3. As above, it follows from

the induction hypothesis that γR(T ) < 4a(T )+2
3 .

Case 3.2. degT (v4) = 2.
Assume T ′ = T −Tv4 . Then every γR(T ′)-function can be extended to an RDF of
T by assigning 1 to v1, 0 to v2, v4, w and 2 to v3. Hence, γR(T ) ≤ γR(T ′) + 3.∑

(S′, T ) =

{ ∑
(S′, T ′) if v5 6∈ S′,∑
(S′, T ′) + 1 if v5 ∈ S′.

Thus,
∑

(S′, T ) ≤
∑

(S′, T ′) + 1 ≤ m′ + 1 = m− 4.
Let S = S′ ∪ {v1, v2, w}. Then∑

(S, T ) =
∑

(S′, T ) + degT (v1) + degT (v2) + degT (w) ≤ m.

Therefore, a(T ) ≥ |S| = |S′| + 3 = a(T ′) + 3. As above, it follows from the

induction hypothesis that γR(T ) < 4a(T )+2
3 .

Case 3.3. degT (v4) = 3 and v4 is adjacent to a leaf, say w′.
Let T ′ = T − Tv4 . Then every γR(T ′)-function can be extended to an RDF of T
by assigning 1 to v1, w

′, 0 to v2, v4, w and 2 to v3. Hence, γR(T ) ≤ γR(T ′) + 4.
Clearly, we have

∑
(S′, T ) ≤

∑
(S′, T ′) + 1 ≤ m′ + 1 = m− 5.

Let S = S′ ∪ {v1, v2, w, w′}. Then∑
(S, T ) =

∑
(S′, T ) + degT (v1) + degT (v2) + degT (w) + degT (w′) ≤ m,

implying that a(T ) ≥ |S| = |S′| + 4 = a(T ′) + 4. It follows from the induction
hypothesis that

γR(T ) ≤ γR(T ′) + 4 ≤ 4a(T ′) + 2

3
+ 4 ≤ 4(a(T )− 4) + 2

3
+ 4 <

4a(T ) + 2

3
.

Case 3.4. degT (v4) = 3 and v4 is adjacent to a support vertex other than v5,
say w2.
By Claim 1, we may assume degT (w2) = 2. Let w1 be the leaf adjacent to w2 and
let T ′ = T −Tv4 . Then every γR(T ′)-function can be extended to an RDF of T by
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assigning 1 to v1, w1, w2, 0 to v2, v4, w and 2 to v3. Hence, γR(T ) ≤ γR(T ′) + 5.
Obviously,

∑
(S′, T ) ≤

∑
(S′, T ′)+1 ≤ m′+1 = m−6. Let S = S′∪{v1, v2, w, w1}.

Then∑
(S, T ) =

∑
(S′, T ) + degT (v1) + degT (v2) + degT (w) + degT (w1) ≤ m,

which implies that a(T ) ≥ |S| = |S′|+4 = a(T ′)+4. It follows from the induction
hypothesis that

γR(T ) ≤ γR(T ′) + 5 ≤ 4a(T ′) + 2

3
+ 5 ≤ 4(a(T )− 4) + 2

3
+ 5 <

4a(T ) + 2

3
.

Case 3.5. degT (v4) = 3 and there is a path v4w3w2w1 in T such that degT (w3) =
degT (w2) = 2, degT (w1) = 1 and w3 6= v5.
Let T ′ = T − Tv4 . Then every γR(T ′)-function can be extended to an RDF
of T by assigning 1 to v1, 0 to v2, v4, w, w3, w1 and 2 to v3, w2. Hence, γR(T ) ≤
γR(T ′)+5. If v5 6∈ S′, then

∑
(S′, T ) =

∑
(S′, T ′), and if v5 ∈ S′, then

∑
(S′, T ) =∑

(S′, T ′) + 1. Thus,
∑

(S′, T ) ≤
∑

(S′, T ′) + 1 ≤ m′ + 1 = m − 7. Let S =
S′ ∪ {v1, v2, w, w1, w2}. Then∑

(S, T ) =
∑

(S′, T )+degT (v1)+degT (v2)+degT (w)+degT (w1)+degT (w2) ≤ m,

implying that a(T ) ≥ |S| = |S′|+ 5 = a(T ′) + 5. By the induction hypothesis, we
have

γR(T ) ≤ γR(T ′) + 5 ≤ 4a(T ′) + 2

3
+ 5 ≤ 4(a(T )− 5) + 2

3
+ 5 <

4a(T ) + 2

3
.

Case 3.6. degT (v4) = 3 and there is a path w4w3w2w1 in T such that v4w3 ∈
E(T ), degT (w3) = 3,degT (w2) = 2, degT (w1) = degT (w4) = 1 and w3 6= v5.
Assume T ′ = T −Tv4 . Then every γR(T ′)-function can be extended to an RDF of
T by assigning 1 to v1, w1, 0 to v2, v4, w, w2, w4 and 2 to v3, w3. Hence, γR(T ) ≤
γR(T ′) + 6. As above, we have

∑
(S′, T ) ≤

∑
(S′, T ′) + 1 ≤ m′ + 1 = m − 8.

Suppose S = S′ ∪ {v1, v2, w, w1, w2, w4}. Then∑
(S, T ) =

∑
(S′, T ) + 8 ≤ m,

implying that a(T ) ≥ |S| = |S′|+ 6 = a(T ′) + 6. By the induction hypothesis,

γR(T ) ≤ γR(T ′) + 6 ≤ 4a(T ′) + 2

3
+ 6 ≤ 4(a(T )− 6) + 2

3
+ 6 <

4a(T ) + 2

3
.

�

So far, we have proved that we can assume deg(v2) = deg(v3) = 2. Similarly,
we can assume that deg(vD−1) = deg(vD−2) = 2. Since T is not a path, we must
have diam(T ) ≥ 6.

Claim 4. degT (v4) = 2.

Proof. Assume degT (v4) ≥ 3 and let T ′ = T −Tv3 . Then every γR(T ′)-function
can be extended to an RDF of T by assigning 0 to v1, v3 and 2 to v2. Thus
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γR(T ) ≤ γR(T ′) + 2. Suppose that v4 6∈ S′. Then
∑

(S′, T ) =
∑

(S′, T ′). In this
case, let S = S′ ∪ {v1, v2}. Then∑

(S, T ) =
∑

(S′, T ) + degT (v1) + degT (v2) ≤ m′ + 3 = m,

implying that a(T ) ≥ |S| = |S′|+2 = a(T ′)+2. Applying the induction hypothesis,
we obtain

γR(T ) ≤ γR(T ′) + 2 ≤ 4a(T ′) + 2

3
+ 2 ≤ 4(a(T )− 2) + 2

3
+ 2 <

4a(T ) + 2

3
,

as desired.
Now we assume v4 ∈ S′. In this case, let S = (S′ − {v4}) ∪ {v1, v2, v3}. Since

degT (v3) = 2 ≤ degT ′(v4), we have∑
(S, T ) =

∑
(S′, T )− degT ′(v4) + degT (v1) + degT (v2) + degT (v3) ≤ m.

Therefore, a(T ) ≥ |S| = |S′| + 2 = a(T ′) + 2. As above, it follows from the the
induction hypothesis that

γR(T ) <
4a(T ) + 2

3
,

as desired. �

Similarly, we may assume that degT (vD−3) = 2. Since T is not a path, we have
diam(T ) ≥ 8.

Claim 5. degT (v5) = 2.

Proof. Assume that degT (v5) ≥ 3. By Claims 1, 2, 3 and 4, we distinguish the
following cases.
Case 5.1 degT (v5) ≥ 4.
Assume that T ′ = T − (Tv4 ∪ TvD−2

), where TvD−2
is the maximal subtree at

vD−2 when T is rooted at v1. Then every γR(T ′)-function can be extended to
an RDF of T by assigning 1 to v1, 0 to v2, v4, vD, vD−2 and 2 to v3, vD−1. Thus
γR(T ) ≤ γR(T ′)+5. If v5 6∈ S′, then obviously

∑
(S′, T ) ≤

∑
(S′, T ′)+1 ≤ m−6.

In this case, let S = S′ ∪ {v1, v2, v3, vD}. Then∑
(S, T ) =

∑
(S′, T ) + degT (v1) + degT (v2) + degT (v3) + degT (vD) ≤ m,

implying that a(T ) ≥ |S| = |S′| + 4 = a(T ′) + 4. It follows from the induction
hypothesis that

γR(T ) ≤ γR(T ′) + 5 ≤ 4a(T ′) + 2

3
+ 5 ≤ 4(a(T )− 4) + 2

3
+ 5 <

4a(T ) + 2

3
.

Let v5 ∈ S′. Then
∑

(S′, T ) ≤
∑

(S′, T ′) + 2. Suppose S = (S′ − {v5}) ∪
{v1, v2, v3, v4, vD}. Then∑

(S, T ) ≤
∑

(S′, T )− degT ′(v5) + degT (v1) + degT (v2)

+ degT (v3) + degT (v4) + degT (vD) ≤ m,
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which implies that a(T ) ≥ |S| = |S′|+4 = a(T ′)+4. By the induction hypothesis,

γR(T ) <
4a(T ) + 2

3

as above.

Case 5.2. degT (v5) = 3 and v5 is adjacent to a support vertex w2 6= v6.
By Claim 1, we may assume degT (w2) = 2. Suppose w1 is the leaf adjacent to w2

and let T ′ = T−Tv5 . Then every γR(T ′)-function can be extended to an RDF of T
by assigning 1 to v1, 0 to v2, v4, v5, w1 and 2 to v3, w2. Thus γR(T ) ≤ γR(T ′) + 5.
Clearly,

∑
(S′, T ) ≤

∑
(S′, T ′) + 1. Let S = S′ ∪ {v1, v2, v3, w1}. Then∑

(S, T ) =
∑

(S′, T ) + degT (v1) + degT (v2) + degT (v3) + degT (w1)

=
∑

(S′, T ′) + 7 ≤ m′ + 7 = m,

implying that a(T ) ≥ a(T ′) + 4. It follows from the induction hypothesis that

γR(T ) ≤ γR(T ′) + 5 ≤ 4a(T ′) + 2

3
+ 5 ≤ 4(a(T )− 4) + 2

3
+ 5 <

4a(T ) + 2

3
.

Case 5.3 degT (v5) = 3 and there is a path w4w3w2w1 in T such that v5w3 ∈
E(T ), degT (w3) ≥ 3,degT (w2) = 2, degT (w1) = degT (w4) = 1 and w3 6= v6.
Using an argument similar to that described in Claims 2 and 3, we may assume
that degT (w3) = 3. Let T ′ = T − (Tv4 ∪ Tw3

). Then every γR(T ′)-function can be
extended to an RDF of T by assigning 1 to v1, w1, 0 to v2, v4, w2, w4 and 2 to v3, w3.
Thus γR(T ) ≤ γR(T ′) + 6. Suppose that v5 6∈ S′. Then

∑
(S′, T ) =

∑
(S′, T ′). In

this case, let S = S′ ∪ {w1, w4, v1, v2, v3}. Then∑
(S, T )=

∑
(S′, T )+degT (v1)+degT (v2)+degT (v3)+degT (w1)+degT (w4) ≤ m,

implying that a(T ) ≥ |S| = |S′| + 5 = a(T ′) + 5. It follows from the induction
hypothesis that

γR(T ) ≤ γR(T ′) + 6 ≤ 4a(T ′) + 2

3
+ 6 ≤ 4(a(T )− 5) + 2

3
+ 6 <

4a(T ) + 2

3
.

Assume now that v5 ∈ S′. Then
∑

(S′, T ) =
∑

(S′, T ′) + 1. Suppose S =
(S′ − {v5}) ∪ {v1, v2, v3, w1, w2, w4}. Then∑

(S, T ) =
∑

(S′, T )− degT ′(v5) + degT (v1) + degT (v2) + degT (v3)

+ degT (w1) + degT (w2) + degT (w4) ≤ m.

Therefore, a(T ) ≥ |S| = |S′|+ 5 = a(T ′) + 5 and the result follows as above.

Case 5.4 degT (v5) = 3 and there is a path v5w3w2w1 in T such that degT (w3) =
degT (w2) = 2, degT (w1) = 1 and w3 6= v6.
Suppose T ′ = T − (Tv4 ∪ Tw3

). Then every γR(T ′)-function can be extended
to an RDF of T by assigning 1 to v1, 0 to v2, v4, w1, w3 and 2 to v3, w2. Thus
γR(T ) ≤ γR(T ′) + 5. If v5 6∈ S′, then let S = S′ ∪ {w1, v1, v2, v3}, and if v5 ∈ S′,
then let S = (S′ − {v5}) ∪ {v1, v2, v3, w1, w2}. In both cases, it is easy to see that
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(S, T ) ≤ m, which implies that a(T ) ≥ |S| = |S′| + 4 = a(T ′) + 4. It follows

from the induction hypothesis that

γR(T ) ≤ γR(T ′) + 5 ≤ 4a(T ′) + 2

3
+ 5 ≤ 4(a(T )− 4) + 2

3
+ 5 <

4a(T ) + 2

3
.

Case 5.5 degT (v5)=3 and there is a path v5w4w3w2w1 in T such that degT (w4)=
degT (w3) = degT (w2) = 2, degT (w1) = 1 and w4 6= v6.
Let T ′ = T −Tv5 . Then every γR(T ′)-function can be extended to an RDF of T by
assigning 0 to v1, v3, v4, w1, w3, w4 and 2 to v2, v5, w2. Thus γR(T ) ≤ γR(T ′) + 6.
Obviously,

∑
(S′, T ) ≤

∑
(S′, T ′) + 1. Let S = S′ ∪ {w1, v1, v2, v3, v4}. Then∑

(S, T )=
∑

(S′, T )+degT (v1)+degT (v2)+degT (v3)+degT (v4)+degT (w1)≤m,

implying that a(T ) ≥ |S| = |S′| + 5 = a(T ′) + 5. It follows from the induction
hypothesis that

γR(T ) ≤ γR(T ′) + 6 ≤ 4a(T ′) + 2

3
+ 6 ≤ 4(a(T )− 5) + 2

3
+ 6 <

4a(T ) + 2

3
.

Case 5.6. degT (v5) = 3 and v5 is adjacent to a leaf w.
If diam(T ) = 8, then T is the tree obtained from a path P9 by adding a pendant
edge to its center. In this case, we have γR(T ) = a(T ) = 6, and hence γR(T ) <
4a(T )+2

3 . Let diam(T ) ≥ 9 and let T ′ = T − (Tv5 ∪ TvD−2
), where TvD−2

is the
maximal subtree at vD−2 when T is rooted at v1. Then every γR(T ′)-function
can be extended to an RDF of T by assigning 0 to w, v1, v3, v4, vD, vD−2 and 2 to
v2, v5, vD−1. Thus γR(T ) ≤ γR(T ′) + 6. Clearly,

∑
(S′, T ) ≤

∑
(S′, T ′) + 2. Let

S = S′ ∪ {vD, v1, v2, v3, w}. Then∑
(S, T ) =

∑
(S′, T )+degT (vD)+degT (v1)+degT (v2)+degT (v3)+degT (w) ≤ m,

implying that a(T ) ≥ a(T ′) + 5. It follows from the induction hypothesis that

γR(T ) ≤ γR(T ′) + 6 ≤ 4a(T ′) + 2

3
+ 6 ≤ 4(a(T )− 5) + 2

3
+ 6 ≤ 4a(T ) + 2

3
.

�

Claim 6. degT (v6) = 2.

Proof. Assume that degT (v6) ≥ 3 and let T ′ = T − Tv5 . Then every γR(T ′)-
function can be extended to an RDF of T by assigning 0 to v1, v3, v4 and 2 to v2, v5.
Thus γR(T ) ≤ γR(T ′) + 4. Suppose that v6 6∈ S′. Then

∑
(S′, T ) =

∑
(S′, T ′). In

this case, let S = S′ ∪ {v1, v2, v3}. Then∑
(S, T ) =

∑
(S′, T ) + degT (v1) + degT (v2) + degT (v3) ≤ m′ + 5 = m,

implying that a(T ) ≥ |S| = |S′|+3 = a(T ′)+3. Applying the induction hypothesis,

γR(T ) ≤ γR(T ′) + 4 ≤ 4a(T ′) + 2

3
+ 4 ≤ 4(a(T )− 3) + 2

3
+ 4 =

4a(T ) + 2

3
,

as desired.
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Now assume v6 ∈ S′. In this case, let S = (S′ − {v6}) ∪ {v1, v2, v3, v4}. Then∑
(S, T )=

∑
(S′, T ′)−degT ′(v6)+degT (v1)+degT (v2)+degT (v3)+degT (v4)≤m.

Therefore, a(T ) ≥ |S| = |S′|+ 3 = a(T ′) + 3. Again we obtain

γR(T ) ≤ 4a(T ) + 2

3
,

as desired. �

We now return to the proof of Theorem. Let T ′ = T − Tv6 , hence m′ =
m− 6. Every γR(T ′)-function can be extended to an RDF of T by assigning 0 to
v1, v3, v4, v6 and 2 to v2, v5. Thus γR(T ) ≤ γR(T ′) + 4. Let S = S′ ∪ {v1, v2, v3}.
Then∑

(S, T ) ≤
∑

(S′, T ′) + 1 + degT (v1) + degT (v2) + degT (v3) ≤ m′ + 6 = m,

implying that a(T ) ≥ |S| = |S′|+3 = a(T ′)+3. Applying the induction hypothesis,

γR(T ) ≤ γR(T ′) + 4 ≤ 4a(T ′) + 2

3
+ 4 ≤ 4(a(T )− 3) + 2

3
+ 4 =

4a(T ) + 2

3
,

as desired. This completes the proof. �

For the rest of this section, we prove that for a tree T of order n ≥ 2, if

γR(T ) = 4a(T )+2
3 , then T = P2 or both ends of each diametral path in T are paths

of length at least four.

Proposition 4. Let T be a tree of order n ≥ 2. If γR(T ) = 4a(T )+2
3 , then

T = P2 or diam(T ) ≥ 5.

Proof. If T = P2, then γR(T ) = 2 = 4a(T )+2
3 . Assume next that n ≥ 3 and

γR(T ) = 4a(T )+2
3 . By the proof of Claim 1 in Theorem 3, we may assume that the

degree of each support vertex on a diametral path of T is two. If diam(T ) ≤ 4,
then clearly T is a spider, which leads to a contradiction to Lemma 2. �

Proposition 5. If T is a tree of order n with diam(T ) = 5, then

γR(T ) <
4a(T ) + 2

3
.

Proof. If T is a path, then the result follows by Corollary 1. Suppose that T is
not a path and let v1v2 . . . v6 be a diametral path in T and root T at v6 (at v1,
respectively). By a closer look at the proof of Theorem 3, we may assume that Tv3
(if T is rooted at v6) and Tv4 (if T is rooted at v1) are paths P5. It is easy to see

that γR(T ) = 8 and a(T ) = 6 yielding γR(T ) = 4a(T )
3 < 4a(T )+2

3 , as desired. �

Proposition 6. If T is a tree of order n with diam(T ) = 6, 7, then

γR(T ) <
4a(T ) + 2

3
.
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Proof. As in Proposition 5, we assume T is not a path. Let v1v2 . . . vD be
a diametral path in T and root T at vD (at v1, respectively). By the proof
of Theorem 3, we may assume that Tv3 and TvD−2

are P5 and deg(v4) = 2 if
diam(T ) = 6 and deg(v4) = deg(v5) = 2 when diam(T ) = 7. Then obviously

γR(T ) = 8 and a(T ) = 7, implying that γR(T ) < 4a(T )+2
3 . �

Proposition 7. If T is a tree of order n with diam(T ) ≥ 8, then

γR(T ) <
4a(T ) + 2

3

unless both ends of each diametral path in T are paths of length at least four.

Proof. Let v1v2 . . . vD be a diametral path in T and root T at vD (at v1, re-
spectively). By a closer look at the proof of Theorem 3, we need to consider three
Cases.

Case 1. Tv3 is P5 = v1v2v3w2w1.
First let degT (v4) = 2. If degT (v5) = 2, then let T ′ = T − Tv5 . It is easy to
see that γR(T ) ≤ γR(T ′) + 5 and a(T ) ≥ a(T ′) + 4. Hence, the result follows by
Theorem 3. Let degT (v5) ≥ 3 and let T ′ = T − Tv4 . Then obviously γR(T ) ≤
γR(T ′) + 4. If v5 6∈ S′, then let S = S′ ∪ {v1, v2, w1, w2}, and if v5 ∈ S′, then let
S = (S′ − {v5}) ∪ {v1, v2, v4, w1, w2}. In both cases, we have

∑
(S, T ) ≤ m, and

hence a(T ) ≥ a(T ′) + 4. It follows from Theorem 3 that γR(T ) ≤ γR(T ′) + 5 ≤
4a(T ′)+2

3 + 5 ≤ 4(a(T )−4)+2
3 + 5 < 4a(T )+2

3 .
Now let degT (v4) ≥ 3. We consider the following subcases.

Subcase 1.1. degT (v4) = 3 and there is a path z1z2z3z4z5 in T such that v4z3 ∈
E(T ), degT (z3) = 3,degT (z2) = degT (z4) = 2 and degT (z1) = degT (z5) = 1.
Let T ′ = T −Tv4 . It is easy to see that γR(T ) ≤ γR(T ′) + 8 and a(T ) ≥ a(T ′) + 7,

implying that γR(T ) < 4a(T )+2
3 by Theorem 3.

Subcase 1.2. degT (v4) ≥ 4 and there is a path z1z2z3z4z5 in T such that v4z3 ∈
E(T ), degT (z3) = 3,degT (z2) = degT (z4) = 2 and degT (z1) = degT (z5) = 1.
Assume T ′ = T − (Tv3 ∪ Tz3). As above, we have γR(T ) ≤ γR(T ′) + 8. If v4 6∈ S′,
then let S = S′ ∪ {v1, v2, w1, w2, z1, z2, z5}, and if v4 ∈ S′, then let S = (S′ −
{v4}) ∪ {v1, v2, w1, w2, z1, z2, z4, z5}. Then clearly

∑
(S, T ) ≤ m, implying that

a(T ) ≥ a(T ′) + 7. Now the result follows by Theorem 3.

Subcase 1.3. degT (v4)≥3 and there is a path z1z2z3v4 in T such that degT (z3)=
degT (z2) = 2 and degT (z1) = 1.
Using Theorem 3 and an argument similar to that described in the proof of Claim

4, show that γR(T ) < 4a(T )+2
3 .

Subcase 1.4. degT (v4) = 3 and there is a path v4z2z1 in T such that degT (z2) =
2 and degT (z1) = 1.
Let T ′ = T−Tv4 . It is easy to check that γR(T ) ≤ γR(T ′)+6 and a(T ) ≥ a(T ′)+5,

implying that γR(T ) < 4a(T )+2
3 by Theorem 3.

Subcase 1.5. degT (v4) ≥ 4 and there is a path v4z2z1 in T such that degT (z2) =
2 and degT (z1) = 1.
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Let T ′ = T−(Tv3∪Tz2). Clearly, γR(T ) ≤ γR(T ′)+6. If v4 6∈ S′, then let S = S′∪
{v1, v2, w1, w2, z1}, and if v4 ∈ S′, then let S = (S′−{v4})∪{v1, v2, w1, w2, z1, z2}.
Obviously,

∑
(S, T ) ≤ m and so a(T ) ≥ a(T ′) + 5. It follows from Theorem 3 that

γR(T ) < 4a(T )+2
3 .

Subcase 1.6. degT (v4) ≥ 4 and all neighbors of v4, except v3, v5, are leaves.
Suppose T ′ = T − Tv4 . It is easy to see that γR(T ) ≤ γR(T ′) + 6 and a(T ) ≥
a(T ′) + 5. Now the result follows as above.

Subcase 1.7. degT (v4) = 3, v4 is adjacent to a leaf, say w, and degT (v5) = 2.
Let T ′ = T−Tv5 . It is easy to check that γR(T ) ≤ γR(T ′)+6 and a(T ) ≥ a(T ′)+5,

implying that γR(T ) < 4a(T )+2
3 by Theorem 3.

Subcase 1.8. degT (v4) = 3, v4 is adjacent to a leaf, say w, and degT (v5) ≥ 3.
Let T ′ = T − (Tv4 ∪ TvD−2

), where TvD−2
is the maximal subtree at vD−2 when T

is rooted at v1. First let TvD−2
= P3. It is easy to see that γR(T ) ≤ γR(T ′) + 7

and a(T ) ≥ a(T ′) + 6, implying that γR(T ) < 4a(T )+2
3 by Theorem 3. Now let

TvD−2
= P5 = vDvD−1vD−2u2u1. Clearly, γR(T ) ≤ γR(T ′) + 9. If v5 6∈ S′,

then let S = S′ ∪ {v1, v2, w1, w2, w, u1, vD, vD−1}, and if v5 ∈ S′, then let S =
(S′ − {v5}) ∪ {v1, v2, w1, w2, w, u1, u2, vD, vD−1}. Then

∑
(S, T ) ≤ m and hence

a(T ) ≥ a(T ′) + 8. Now the result follows by Theorem 3.

Case 2. Tv4 is a path and v5 is adjacent to a leaf, say w.
Considering Case 1, we may assume that TvD−2

is a path P3 in the rooted tree T
at v1. Let T ′ = T − (Tv4 ∪ TvD−2

). It is easy to see that γR(T ) ≤ γR(T ′) + 5. If
v5 6∈ S′, then let S = S′∪{v1, v2, v3, vD} and if v5 ∈ S′, then let S = (S′−{v5})∪
{v1, v2, v3, v4, vD}. Then

∑
(S, T ) ≤ m and so a(T ) ≥ a(T ′) + 4. It follows from

Theorem 3 that γR(T ) < 4a(T )+2
3 .

Hence, Tv5 is a path when T is rooted at vD. In a similar fashion, we can prove
TvD−4

is a path when T is rooted at v1. This completes the proof. �

We conclude this paper with an open problem.

Problem. Characterize all trees achieving the bound in Theorem 3.
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