RELATING THE ANNIHILATION NUMBER AND THE ROMAN DOMINATION NUMBER

H. ARAM, R. KHOEILAR, S. M. SHEIKHOLESLAMI AND L. VOLKMANN

ABSTRACT. A Roman dominating function (RDF) on a graph G is a labeling $f: V(G) \to \{0, 1, 2\}$ such that every vertex with label 0 has a neighbor with label 2. The weight of an RDF f is the value $\omega(f) = \sum_{v \in V} f(v)$. The Roman domination number of a graph G, denoted by $\gamma_R(G)$, equals the minimum weight of an RDF on G. The annihilation number a(G) is the largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most the number of edges in G. In this paper, we prove that for any tree T of order at least two, $\gamma_R(T) \leq \frac{4a(T)+2}{3}$.

1. INTRODUCTION

In this paper, G is a simple graph with vertex set V = V(G) and edge set E = E(G). The order |V| of G is denoted by n = n(G). For every vertex $v \in V(G)$, the open neighborhood $N_G(v) = N(v)$ is the set $\{u \in V(G) \mid uv \in E(G)\}$ and the closed neighborhood of v is the set $N_G[v] = N[v] = N(v) \cup \{v\}$. The degree of a vertex $v \in V$ is $\deg_G(v) = \deg(v) = |N(v)|$.

We write P_n for a path of order n. For a subset $S \subseteq V(G)$, we define

$$\sum(S,G) = \sum_{v \in S} \deg_G(v).$$

A leaf of a tree T is a vertex of degree 1, a support vertex is a vertex adjacent to a leaf and a strong support vertex is a vertex adjacent to at least two leaves. For $r, s \ge 1$, a double star S(r, s) is a tree with exactly two vertices that are not leaves, with one adjacent to r leaves and the other one to s leaves. For a vertex v in a rooted tree T, let D(v) denote the set of descendants of v and $D[v] = D(v) \cup \{v\}$. The maximal subtree at v is the subtree of T induced by D[v], and is denoted by T_v .

A Roman dominating function (RDF) on a graph G = (V, E) is defined in [16, 17] as a function $f: V \to \{0, 1, 2\}$ satisfying the condition that every vertex v for which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2. The weight of an RDF f is the value $\omega(f) = \sum_{v \in V} f(v)$. The Roman domination

Received June 15, 2016; revised December 21, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 05C69.

Key words and phrases. Annihilation number; Roman dominating function; Roman domination number.

number of a graph G, denoted by $\gamma_R(G)$, equals the minimum weight of an RDF on G. A $\gamma_R(G)$ -function is a Roman dominating function of G with weight $\gamma_R(G)$.

The definition of the Roman dominating function was given implicitly by Stewart [17] and ReVelle and Rosing [16]. Cockayne, Dreyer Jr., Hedetniemi and Hedetniemi [3] as well as Chambers, Kinnersley, Prince and West [2] gave a lot of results on Roman domination. For more information on Roman domination, we refer the reader to [4, 9, 10, 11, 12, 13].

Let d_1, d_2, \ldots, d_n be the degree sequence of a graph G arranged in non-decreasing order, so $d_1 \leq d_2 \leq \ldots \leq d_n$. Pepper [15] defined the annihilation number of G, denoted a(G), to be the largest integer k such that the sum of the first k terms of the degree sequence is at most half the sum of the degrees in the sequence. Equivalently, the annihilation number is the largest integer k such that

$$\sum_{i=1}^k d_i \le \sum_{i=k+1}^n d_i.$$

We observe that if G has m edges and annihilation number k, then $\sum_{i=1}^{k} d_i \leq m$.

The relation between annihilation number and domination parameters were studied in [1, 5, 6, 7, 8, 14].

Our purpose in this paper is to establish an upper bound on Roman domination number in term of annihilation number for trees.

Proposition A ([3]). For $n \ge 2$,

$$\gamma_R(P_n) = \left\lceil \frac{2n}{3} \right\rceil.$$

Proposition B ([15]). For $n \ge 2$,

$$a(P_n) = \left\lceil \frac{n}{2} \right\rceil.$$

Corollary 1. For $n \geq 2$,

$$\gamma_R(P_n) \le \frac{4a(P_n) + 2}{3}$$

with equality if and only if $n \equiv 2 \pmod{6}$.

2. Main result

A subdivision of an edge uv is obtained by removing the edge uv, adding a new vertex w, and adding edges uw and wv. The subdivision graph S(G) is the graph obtained from G by subdividing each edge of G. The subdivision star $S(K_{1,t})$ for $t \geq 2$, is called a *healthy spider* S_t . A wounded spider S_t is the graph formed by subdividing at most t-1 of the edges of a star $K_{1,t}$ for $t \geq 2$. Note that stars are wounded spiders. A spider is a healthy or wounded spider.

Lemma 2. If T is a spider, then $\gamma_R(T) < \frac{4a(T)+2}{3}$.

Proof. First let $T = S_t$ be a healthy spider for some $t \ge 2$. Then obviously $\gamma_R(T) = 2 + t$ and $a(T) = t + \lfloor \frac{t}{2} \rfloor$, and hence $\gamma_R(T) = 2 + t \le \frac{4a(T)}{3} < \frac{4a(T)+2}{3}$. Now let T be a wounded spider obtained from $K_{1,t}$ ($t \ge 2$) by subdividing

Now let T be a wounded spider obtained from $K_{1,t}$ $(t \ge 2)$ by subdividing $0 \le s \le t-1$ edges. If s = 0, then T is a star, and we have $\gamma_R(T) = 2$ and a(T) = t. Hence $\gamma_R(T) = 2 < \frac{4a(T)+2}{3}$. Now assume that s > 0. If s = 1 and t = 2, then $T = P_4$ and the result follows from Corollary 1. Let $s \ge 2$ or s = 1 and $t \ge 3$. Then $\gamma_R(T) = 2 + s$ and $a(T) = t + \lfloor \frac{s}{2} \rfloor$. It follows that $\gamma_R(T) < \frac{4a(T)+2}{3}$. This completes the proof.

Theorem 3. If T is a tree of order $n \ge 2$, then $\gamma_R(T) \le \frac{4a(T)+2}{3}$, and this bound is sharp.

Proof. The proof is by induction on n. The statement holds for all trees of order n = 2, 3, 4. For the the induction hypothesis, let $n \ge 5$ and suppose that for every nontrivial tree T of order less than n the result is true. Let T be a tree of order n. We may assume that T is not a path otherwise the result follows by Corollary 1. If diam(T) = 2, then T is a star, and we have $\gamma_R(T) < \frac{4a(T)+2}{3}$ by Lemma 2. If diam(T) = 3, then T is a double star S(r, s). In this case, a(T) = r + s and $\gamma_R(T) \le 4$. If r + s = 3, then $\gamma_R(T) < \frac{4a(T)+2}{3}$. If $r + s \ge 4$, then $\gamma_R(T) \le 4$ and we have $\gamma_R(T) < \frac{4a(T)+2}{3}$. Hence, we may assume that diam $(T) \ge 4$.

In what follows, we consider trees T' formed from T by removing a set of vertices. For such a tree T' of order n', let $d'_1, d'_2, \ldots, d'_{n'}$ be the non-decreasing degree sequence of T', and let S' be a set of vertices corresponding to the first a(T') terms in the degree sequence of T'. In fact, if $u_1, u_2, \ldots, u_{n'}$ are the vertices of T' such that $\deg(u_i) = d'_i$ for each $1 \leq i \leq n'$, then $S' = \{u_1, u_2, \ldots, u_{a(T')}\}$. We denote the size of T' by m'. We proceed further with a series of claims that we may assume satisfied by the tree.

Claim 1. T has no strong support vertex such as u that the graph obtained from T by removing u and the leaves adjacent to u is connected.

Proof. Let T have a strong support vertex u such that the graph obtained from T by removing u and the leaves adjacent to u is connected. Suppose w is a vertex in T with maximum distance from u. Root T at w and let v be the parent of u. Assume $T' = T - T_u$. It is easy to see that $\gamma_R(T) \leq \gamma_R(T') + 2$.

$$\sum(S',T) = \begin{cases} \sum(S',T') & \text{if } v \notin S', \\ \sum(S',T') + 1 & \text{if } v \in S'. \end{cases}$$

Thus,

$$\sum (S', T) - 1 \le \sum (S', T') \le m' \le m - 3.$$

and hence $\sum(S',T) \leq m-2$. Let z_1, z_2 be two leaves adjacent to u and assume $S = S' \cup \{z_1, z_2\}$. Then $\sum(S,T) = \sum(S',T) + 2 \leq m$, implying that $a(T) \geq a(T') + 2$.

By the induction hypothesis, we obtain

$$\gamma_R(T) \le \gamma_R(T') + 2 \le \frac{4a(T') + 2}{3} + 2 \le \frac{4(a(T) - 2) + 2}{3} + 2 < \frac{4a(T) + 2}{3},$$

desired.

as

Let $v_1v_2...v_D$ be a diametral path in T and root T at v_D (v_1 , respectively). By Claim 1, we may assume any support vertex on a diametral path has degree 2. In particular, $\deg_T(v_2) = \deg_T(v_{D-1}) = 2$. If $\operatorname{diam}(T) = 4$, then T is a spider and so $\gamma_R(T) < \frac{4a(T)+2}{3}$ by Lemma 2. Assume diam $(T) \ge 5$. It follows from Claim 1 that T_{v_3} $(T_{v_{D-2}}, \text{ respectively})$ is a spider.

Claim 2. $\deg_T(v_3) < 3$.

Proof. Let $\deg_T(v_3) \ge 4$. Let $T' = T - \{v_1, v_2\}$. Then obviously there exists a $\gamma_R(T')$ -function that assigns 2 to v_3 and hence can be extended to an RDF of T by assigning 1 to v_1 and 0 to v_2 . Thus $\gamma_R(T) \leq \gamma_R(T') + 1$.

$$\sum(S',T) = \begin{cases} \sum(S',T') & \text{if } v_3 \notin S', \\ \sum(S',T') + 1 & \text{if } v_3 \in S'. \end{cases}$$

Thus,

$$\sum (S', T) \le \sum (S', T') + 1 \le m' + 1 = m - 1.$$

Let $S = S' \cup \{v_1\}$. Then $\sum(S,T) = \sum(S',T) + \deg_T(v_1) \leq m$, and hence $a(T) \geq |S| = |S'| + 1 = a(T') + 1$. By the induction hypothesis, we obtain

$$\gamma_R(T) \le \gamma_R(T') + 1 \le \frac{4a(T') + 2}{3} + 1 \le \frac{4(a(T) - 1) + 2}{3} + 1 < \frac{4a(T) + 2}{3},$$

desired.

as desired.

Claim 3. $\deg_T(v_3) = 2$.

Proof. Assume that $\deg_T(v_3) = 3$. First let v_3 be adjacent to a support vertex $z_2 \notin \{v_2, v_4\}$. By Claim 1, we may assume $\deg_T(z_2) = 2$. Suppose z_1 is the leaf adjacent to z_2 and let $T' = T - T_{v_3}$. Then every $\gamma_R(T')$ -function can be extended to an RDF of T by assigning 1 to $v_1, z_1, 0$ to v_2, z_2 and 2 to v_3 . Thus $\gamma_R(T) \leq \gamma_R(T') + 4$. As above, we have $\sum (S', T) \leq \sum (S', T') + 1 \leq m' + 1 = m - 4$. Let $S = S' \cup \{v_1, v_2, z_1\}$. Then

$$\sum(S,T) = \sum(S',T) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(z_1) \le m,$$

implying that $a(T) \ge |S| = |S'| + 3 = a(T') + 3$. It follows from the induction hypothesis that

$$\gamma_R(T) \le \gamma_R(T') + 4 \le \frac{4a(T') + 2}{3} + 4 \le \frac{4(a(T) - 3) + 2}{3} + 4 = \frac{4a(T) + 2}{3}$$

Now let v_3 be adjacent to a leaf w. Considering Claims 1, 2 and the first part of Claim 3, we distinguish the following cases.

<u>Case 3.1.</u> $\deg_T(v_4) \ge 4.$

Let $T' = T - T_{v_3}$. Then every $\gamma_R(T')$ -function can be extended to an RDF of T by assigning 1 to v_1 , 0 to v_2 , w and 2 to v_3 . Hence, $\gamma_R(T) \leq \gamma_R(T') + 3$. Suppose that $v_4 \notin S'$. In this case, let $S = S' \cup \{v_1, v_2, w\}$. Then

$$\sum(S,T) = \sum(S',T) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(w)$$

= $\sum(S',T') + 4 \le m' + 4 = m,$

implying that $a(T) \ge a(T') + 3$. By the induction hypothesis, we have

$$\gamma_R(T) \le \gamma_R(T') + 3 \le \frac{4a(T') + 2}{3} + 3 \le \frac{4(a(T) - 3) + 2}{3} + 3 < \frac{4a(T) + 2}{3}.$$

Now let $v_4 \in S'$. In this case, let $S = (S' - \{v_4\}) \cup \{v_1, v_2, v_3, w\}$. Then

$$\sum(S,T) = \sum(S',T') - \deg_{T'}(v_4) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(v_3) + \deg_T(w) \le m,$$

which implies that $a(T) \ge |S| = |S'| + 3 = a(T') + 3$. As above, it follows from

which implies that $a(T) \ge |S| = |S'| + 3 = a(T') + 3$. As above, it follows from the induction hypothesis that $\gamma_R(T) < \frac{4a(T)+2}{3}$.

Case 3.2.
$$\deg_T(v_4) = 2$$

Assume $T' = T - T_{v_4}$. Then every $\gamma_R(T')$ -function can be extended to an RDF of T by assigning 1 to v_1 , 0 to v_2 , v_4 , w and 2 to v_3 . Hence, $\gamma_R(T) \leq \gamma_R(T') + 3$.

$$\sum(S', T) = \begin{cases} \sum(S', T') & \text{if } v_5 \notin S', \\ \sum(S', T') + 1 & \text{if } v_5 \in S'. \end{cases}$$

Thus, $\sum (S', T) \le \sum (S', T') + 1 \le m' + 1 = m - 4$. Let $S = S' \cup \{v_1, v_2, w\}$. Then

$$\sum(S,T) = \sum(S',T) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(w) \le m.$$

Therefore, $a(T) \ge |S| = |S'| + 3 = a(T') + 3$. As above, it follows from the induction hypothesis that $\gamma_R(T) < \frac{4a(T)+2}{3}$.

<u>Case 3.3.</u> deg_T(v_4) = 3 and v_4 is adjacent to a leaf, say w'.

Let $T' = T - T_{v_4}$. Then every $\gamma_R(T')$ -function can be extended to an RDF of T by assigning 1 to $v_1, w', 0$ to v_2, v_4, w and 2 to v_3 . Hence, $\gamma_R(T) \leq \gamma_R(T') + 4$. Clearly, we have $\sum (S', T) \leq \sum (S', T') + 1 \leq m' + 1 = m - 5$. Let $S = S' \cup \{v_1, v_2, w, w'\}$. Then

$$\sum(S,T) = \sum(S',T) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(w) + \deg_T(w') \le m,$$

implying that $a(T) \ge |S| = |S'| + 4 = a(T') + 4$. It follows from the induction hypothesis that

$$\gamma_R(T) \le \gamma_R(T') + 4 \le \frac{4a(T') + 2}{3} + 4 \le \frac{4(a(T) - 4) + 2}{3} + 4 < \frac{4a(T) + 2}{3}.$$

<u>Case 3.4.</u> deg_T(v_4) = 3 and v_4 is adjacent to a support vertex other than v_5 , say w_2 .

By Claim 1, we may assume $\deg_T(w_2) = 2$. Let w_1 be the leaf adjacent to w_2 and let $T' = T - T_{v_4}$. Then every $\gamma_R(T')$ -function can be extended to an RDF of T by

assigning 1 to $v_1, w_1, w_2, 0$ to v_2, v_4, w and 2 to v_3 . Hence, $\gamma_R(T) \leq \gamma_R(T') + 5$. Obviously, $\sum (S', T) \leq \sum (S', T') + 1 \leq m' + 1 = m - 6$. Let $S = S' \cup \{v_1, v_2, w, w_1\}$. Then

$$\sum(S,T) = \sum(S',T) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(w) + \deg_T(w_1) \le m,$$

which implies that $a(T) \ge |S| = |S'| + 4 = a(T') + 4$. It follows from the induction hypothesis that

$$\gamma_R(T) \le \gamma_R(T') + 5 \le \frac{4a(T') + 2}{3} + 5 \le \frac{4(a(T) - 4) + 2}{3} + 5 < \frac{4a(T) + 2}{3}.$$

<u>Case 3.5.</u> deg_T(v_4) = 3 and there is a path $v_4w_3w_2w_1$ in T such that deg_T(w_3) = deg_T(w_2) = 2, deg_T(w_1) = 1 and $w_3 \neq v_5$.

Let $T' = T - T_{v_4}$. Then every $\gamma_R(T')$ -function can be extended to an RDF of T by assigning 1 to v_1 , 0 to v_2, v_4, w, w_3, w_1 and 2 to v_3, w_2 . Hence, $\gamma_R(T) \leq \gamma_R(T') + 5$. If $v_5 \notin S'$, then $\sum (S', T) = \sum (S', T')$, and if $v_5 \in S'$, then $\sum (S', T) = \sum (S', T') + 1$. Thus, $\sum (S', T) \leq \sum (S', T') + 1 \leq m' + 1 = m - 7$. Let $S = S' \cup \{v_1, v_2, w, w_1, w_2\}$. Then

$$\sum(S,T) = \sum(S',T) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(w) + \deg_T(w_1) + \deg_T(w_2) \le m,$$
 implying that $a(T) \ge |S| = |S'| + 5 = a(T') + 5$. By the induction hypothesis, we have

$$\gamma_R(T) \le \gamma_R(T') + 5 \le \frac{4a(T') + 2}{3} + 5 \le \frac{4(a(T) - 5) + 2}{3} + 5 < \frac{4a(T) + 2}{3}.$$

<u>Case 3.6.</u> deg_T(v_4) = 3 and there is a path $w_4w_3w_2w_1$ in T such that $v_4w_3 \in E(T)$, deg_T(w_3) = 3, deg_T(w_2) = 2, deg_T(w_1) = deg_T(w_4) = 1 and $w_3 \neq v_5$. Assume $T' = T - T_{v_4}$. Then every $\gamma_R(T')$ -function can be extended to an RDF of T by assigning 1 to $v_1, w_1, 0$ to v_2, v_4, w, w_2, w_4 and 2 to v_3, w_3 . Hence, $\gamma_R(T) \leq \gamma_R(T') + 6$. As above, we have $\sum (S', T) \leq \sum (S', T') + 1 \leq m' + 1 = m - 8$. Suppose $S = S' \cup \{v_1, v_2, w, w_1, w_2, w_4\}$. Then

$$\sum(S,T) = \sum(S',T) + 8 \le m_s$$

implying that $a(T) \ge |S| = |S'| + 6 = a(T') + 6$. By the induction hypothesis,

$$\gamma_R(T) \le \gamma_R(T') + 6 \le \frac{4a(T') + 2}{3} + 6 \le \frac{4(a(T) - 6) + 2}{3} + 6 < \frac{4a(T) + 2}{3}.$$

So far, we have proved that we can assume $\deg(v_2) = \deg(v_3) = 2$. Similarly, we can assume that $\deg(v_{D-1}) = \deg(v_{D-2}) = 2$. Since T is not a path, we must have $\operatorname{diam}(T) \ge 6$.

Claim 4. $\deg_T(v_4) = 2.$

Proof. Assume deg_T(v_4) ≥ 3 and let $T' = T - T_{v_3}$. Then every $\gamma_R(T')$ -function can be extended to an RDF of T by assigning 0 to v_1, v_3 and 2 to v_2 . Thus

 $\gamma_R(T) \leq \gamma_R(T') + 2$. Suppose that $v_4 \notin S'$. Then $\sum(S', T) = \sum(S', T')$. In this case, let $S = S' \cup \{v_1, v_2\}$. Then

$$\sum(S,T) = \sum(S',T) + \deg_T(v_1) + \deg_T(v_2) \le m' + 3 = m,$$

implying that $a(T) \ge |S| = |S'| + 2 = a(T') + 2$. Applying the induction hypothesis, we obtain

$$\gamma_R(T) \le \gamma_R(T') + 2 \le \frac{4a(T') + 2}{3} + 2 \le \frac{4(a(T) - 2) + 2}{3} + 2 < \frac{4a(T) + 2}{3}$$

as desired.

Now we assume $v_4 \in S'$. In this case, let $S = (S' - \{v_4\}) \cup \{v_1, v_2, v_3\}$. Since $\deg_T(v_3) = 2 \leq \deg_{T'}(v_4)$, we have

$$\sum(S,T) = \sum(S',T) - \deg_{T'}(v_4) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(v_3) \le m.$$

Therefore, $a(T) \ge |S| = |S'| + 2 = a(T') + 2$. As above, it follows from the the induction hypothesis that

$$\gamma_R(T) < \frac{4a(T)+2}{3},$$

as desired.

Similarly, we may assume that $\deg_T(v_{D-3}) = 2$. Since T is not a path, we have $\operatorname{diam}(T) \geq 8$.

Claim 5. $\deg_T(v_5) = 2$.

Proof. Assume that $\deg_T(v_5) \ge 3$. By Claims 1, 2, 3 and 4, we distinguish the following cases.

<u>Case 5.1</u> $\deg_T(v_5) \ge 4.$

Assume that $T' = T - (T_{v_4} \cup T_{v_{D-2}})$, where $T_{v_{D-2}}$ is the maximal subtree at v_{D-2} when T is rooted at v_1 . Then every $\gamma_R(T')$ -function can be extended to an RDF of T by assigning 1 to v_1 , 0 to v_2, v_4, v_D, v_{D-2} and 2 to v_3, v_{D-1} . Thus $\gamma_R(T) \leq \gamma_R(T') + 5$. If $v_5 \notin S'$, then obviously $\sum (S', T) \leq \sum (S', T') + 1 \leq m - 6$. In this case, let $S = S' \cup \{v_1, v_2, v_3, v_D\}$. Then

$$\sum(S,T) = \sum(S',T) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(v_3) + \deg_T(v_D) \le m,$$

implying that $a(T) \ge |S| = |S'| + 4 = a(T') + 4$. It follows from the induction hypothesis that

$$\gamma_R(T) \le \gamma_R(T') + 5 \le \frac{4a(T') + 2}{3} + 5 \le \frac{4(a(T) - 4) + 2}{3} + 5 < \frac{4a(T) + 2}{3}.$$

Let $v_5 \in S'$. Then $\sum (S', T) \leq \sum (S', T') + 2$. Suppose $S = (S' - \{v_5\}) \cup \{v_1, v_2, v_3, v_4, v_D\}$. Then

$$\sum(S,T) \le \sum(S',T) - \deg_{T'}(v_5) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(v_3) + \deg_T(v_4) + \deg_T(v_D) \le m,$$

which implies that $a(T) \ge |S| = |S'| + 4 = a(T') + 4$. By the induction hypothesis,

$$\gamma_R(T) < \frac{4a(T) + 2}{3}$$

as above.

<u>Case 5.2.</u> $\deg_T(v_5) = 3$ and v_5 is adjacent to a support vertex $w_2 \neq v_6$. By Claim 1, we may assume $\deg_T(w_2) = 2$. Suppose w_1 is the leaf adjacent to w_2 and let $T' = T - T_{v_5}$. Then every $\gamma_R(T')$ -function can be extended to an RDF of T by assigning 1 to v_1 , 0 to v_2, v_4, v_5, w_1 and 2 to v_3, w_2 . Thus $\gamma_R(T) \leq \gamma_R(T') + 5$. Clearly, $\sum(S', T) \leq \sum(S', T') + 1$. Let $S = S' \cup \{v_1, v_2, v_3, w_1\}$. Then

$$\sum(S,T) = \sum(S',T) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(v_3) + \deg_T(w_1)$$
$$= \sum(S',T') + 7 \le m' + 7 = m,$$

implying that $a(T) \ge a(T') + 4$. It follows from the induction hypothesis that

$$\gamma_R(T) \le \gamma_R(T') + 5 \le \frac{4a(T') + 2}{3} + 5 \le \frac{4(a(T) - 4) + 2}{3} + 5 < \frac{4a(T) + 2}{3}$$

<u>Case 5.3</u> deg_T(v_5) = 3 and there is a path $w_4w_3w_2w_1$ in T such that $v_5w_3 \in E(T)$, deg_T(w_3) \geq 3, deg_T(w_2) = 2, deg_T(w_1) = deg_T(w_4) = 1 and $w_3 \neq v_6$. Using an argument similar to that described in Claims 2 and 3, we may assume that deg_T(w_3) = 3. Let $T' = T - (T_{v_4} \cup T_{w_3})$. Then every $\gamma_R(T')$ -function can be extended to an RDF of T by assigning 1 to $v_1, w_1, 0$ to v_2, v_4, w_2, w_4 and 2 to v_3, w_3 . Thus $\gamma_R(T) \leq \gamma_R(T') + 6$. Suppose that $v_5 \notin S'$. Then $\sum (S', T) = \sum (S', T')$. In this case, let $S = S' \cup \{w_1, w_4, v_1, v_2, v_3\}$.

$$\sum(S,T) = \sum(S',T) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(v_3) + \deg_T(w_1) + \deg_T(w_4) \le m_2$$

implying that $a(T) \ge |S| = |S'| + 5 = a(T') + 5$. It follows from the induction hypothesis that

$$\gamma_R(T) \le \gamma_R(T') + 6 \le \frac{4a(T') + 2}{3} + 6 \le \frac{4(a(T) - 5) + 2}{3} + 6 < \frac{4a(T) + 2}{3}.$$

Assume now that $v_5 \in S'$. Then $\sum (S', T) = \sum (S', T') + 1$. Suppose $S = (S' - \{v_5\}) \cup \{v_1, v_2, v_3, w_1, w_2, w_4\}$. Then

$$\sum(S,T) = \sum(S',T) - \deg_{T'}(v_5) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(v_3) + \deg_T(w_1) + \deg_T(w_2) + \deg_T(w_4) \le m.$$

Therefore, $a(T) \ge |S| = |S'| + 5 = a(T') + 5$ and the result follows as above. <u>Case 5.4</u> deg_T(v₅) = 3 and there is a path $v_5w_3w_2w_1$ in T such that deg_T(w₃) = deg_T(w₂) = 2, deg_T(w₁) = 1 and $w_3 \ne v_6$.

Suppose $T' = T - (T_{v_4} \cup T_{w_3})$. Then every $\gamma_R(T')$ -function can be extended to an RDF of T by assigning 1 to v_1 , 0 to v_2, v_4, w_1, w_3 and 2 to v_3, w_2 . Thus $\gamma_R(T) \leq \gamma_R(T') + 5$. If $v_5 \notin S'$, then let $S = S' \cup \{w_1, v_1, v_2, v_3\}$, and if $v_5 \in S'$, then let $S = (S' - \{v_5\}) \cup \{v_1, v_2, v_3, w_1, w_2\}$. In both cases, it is easy to see that $\sum(S,T) \leq m$, which implies that $a(T) \geq |S| = |S'| + 4 = a(T') + 4$. It follows from the induction hypothesis that

$$\gamma_R(T) \le \gamma_R(T') + 5 \le \frac{4a(T') + 2}{3} + 5 \le \frac{4(a(T) - 4) + 2}{3} + 5 < \frac{4a(T) + 2}{3}.$$

<u>Case 5.5</u> deg_T(v_5) = 3 and there is a path $v_5w_4w_3w_2w_1$ in T such that deg_T(w_4) = deg_T(w_3) = deg_T(w_2) = 2, deg_T(w_1) = 1 and $w_4 \neq v_6$.

Let $T' = T - T_{v_5}$. Then every $\gamma_R(T')$ -function can be extended to an RDF of T by assigning 0 to $v_1, v_3, v_4, w_1, w_3, w_4$ and 2 to v_2, v_5, w_2 . Thus $\gamma_R(T) \leq \gamma_R(T') + 6$. Obviously, $\sum(S', T) \leq \sum(S', T') + 1$. Let $S = S' \cup \{w_1, v_1, v_2, v_3, v_4\}$. Then

 $\sum(S,T) = \sum(S',T) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(v_3) + \deg_T(v_4) + \deg_T(w_1) \le m,$ implying that $a(T) \ge |S| = |S'| + 5 = a(T') + 5$. It follows from the induction hypothesis that

$$\gamma_R(T) \le \gamma_R(T') + 6 \le \frac{4a(T') + 2}{3} + 6 \le \frac{4(a(T) - 5) + 2}{3} + 6 < \frac{4a(T) + 2}{3}.$$

<u>Case 5.6.</u> $\deg_T(v_5) = 3$ and v_5 is adjacent to a leaf w.

If diam(T) = 8, then T is the tree obtained from a path P_9 by adding a pendant edge to its center. In this case, we have $\gamma_R(T) = a(T) = 6$, and hence $\gamma_R(T) < \frac{4a(T)+2}{3}$. Let diam $(T) \ge 9$ and let $T' = T - (T_{v_5} \cup T_{v_{D-2}})$, where $T_{v_{D-2}}$ is the maximal subtree at v_{D-2} when T is rooted at v_1 . Then every $\gamma_R(T')$ -function can be extended to an RDF of T by assigning 0 to $w, v_1, v_3, v_4, v_D, v_{D-2}$ and 2 to v_2, v_5, v_{D-1} . Thus $\gamma_R(T) \le \gamma_R(T') + 6$. Clearly, $\sum(S', T) \le \sum(S', T') + 2$. Let $S = S' \cup \{v_D, v_1, v_2, v_3, w\}$. Then

$$\sum_{i=1}^{\infty} (S,T) = \sum_{i=1}^{\infty} (S',T) + \deg_T(v_D) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(v_3) + \deg_T(w) \le m,$$

implying that $a(T) \ge a(T') + 5$. It follows from the induction hypothesis that

$$\gamma_R(T) \le \gamma_R(T') + 6 \le \frac{4a(T') + 2}{3} + 6 \le \frac{4(a(T) - 5) + 2}{3} + 6 \le \frac{4a(T) + 2}{3}.$$

Claim 6. $\deg_T(v_6) = 2.$

Proof. Assume that $\deg_T(v_6) \geq 3$ and let $T' = T - T_{v_5}$. Then every $\gamma_R(T')$ -function can be extended to an RDF of T by assigning 0 to v_1, v_3, v_4 and 2 to v_2, v_5 . Thus $\gamma_R(T) \leq \gamma_R(T') + 4$. Suppose that $v_6 \notin S'$. Then $\sum(S', T) = \sum(S', T')$. In this case, let $S = S' \cup \{v_1, v_2, v_3\}$. Then

$$\sum(S,T) = \sum(S',T) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(v_3) \le m' + 5 = m,$$

implying that $a(T) \ge |S| = |S'| + 3 = a(T') + 3$. Applying the induction hypothesis,

$$\gamma_R(T) \le \gamma_R(T') + 4 \le \frac{4a(T') + 2}{3} + 4 \le \frac{4(a(T) - 3) + 2}{3} + 4 = \frac{4a(T) + 2}{3}$$

as desired.

Now assume $v_6 \in S'$. In this case, let $S = (S' - \{v_6\}) \cup \{v_1, v_2, v_3, v_4\}$. Then $\sum(S,T) = \sum(S',T') - \deg_{T'}(v_6) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(v_3) + \deg_T(v_4) \le m.$ Therefore, $a(T) \ge |S| = |S'| + 3 = a(T') + 3$. Again we obtain

$$\gamma_R(T) \le \frac{4a(T)+2}{3},$$

as desired.

We now return to the proof of Theorem. Let $T' = T - T_{v_6}$, hence m' =m-6. Every $\gamma_R(T')$ -function can be extended to an RDF of T by assigning 0 to v_1, v_3, v_4, v_6 and 2 to v_2, v_5 . Thus $\gamma_R(T) \leq \gamma_R(T') + 4$. Let $S = S' \cup \{v_1, v_2, v_3\}$. Then

$$\sum(S,T) \le \sum(S',T') + 1 + \deg_T(v_1) + \deg_T(v_2) + \deg_T(v_3) \le m' + 6 = m,$$

implying that $a(T) \ge |S| = |S'| + 3 = a(T') + 3$. Applying the induction hypothesis,

$$\gamma_R(T) \le \gamma_R(T') + 4 \le \frac{4a(T') + 2}{3} + 4 \le \frac{4(a(T) - 3) + 2}{3} + 4 = \frac{4a(T) + 2}{3},$$

desired. This completes the proof.

as desired. This completes the proof.

For the rest of this section, we prove that for a tree T of order $n \ge 2$, if $\gamma_R(T) = \frac{4a(T)+2}{2}$, then $T = P_2$ or both ends of each diametral path in T are paths of length at least four.

Proposition 4. Let T be a tree of order $n \geq 2$. If $\gamma_R(T) = \frac{4a(T)+2}{3}$, then $T = P_2 \text{ or } \operatorname{diam}(T) \ge 5.$

Proof. If $T = P_2$, then $\gamma_R(T) = 2 = \frac{4a(T)+2}{3}$. Assume next that $n \ge 3$ and $\gamma_R(T) = \frac{4a(T)+2}{3}$. By the proof of Claim 1 in Theorem 3, we may assume that the degree of each support vertex on a diametral path of T is two. If $diam(T) \leq 4$, then clearly T is a spider, which leads to a contradiction to Lemma 2. \square

Proposition 5. If T is a tree of order n with diam(T) = 5, then

$$\gamma_R(T) < \frac{4a(T)+2}{3}$$

Proof. If T is a path, then the result follows by Corollary 1. Suppose that T is not a path and let $v_1v_2...v_6$ be a diametral path in T and root T at v_6 (at v_1 , respectively). By a closer look at the proof of Theorem 3, we may assume that T_{v_3} (if T is rooted at v_6) and T_{v_4} (if T is rooted at v_1) are paths P_5 . It is easy to see that $\gamma_R(T) = 8$ and a(T) = 6 yielding $\gamma_R(T) = \frac{4a(T)}{3} < \frac{4a(T)+2}{3}$, as desired. \Box

Proposition 6. If T is a tree of order n with diam(T) = 6, 7, then

$$\gamma_R(T) < \frac{4a(T)+2}{3}$$

Proof. As in Proposition 5, we assume T is not a path. Let $v_1v_2...v_D$ be a diametral path in T and root T at v_D (at v_1 , respectively). By the proof of Theorem 3, we may assume that T_{v_3} and $T_{v_{D-2}}$ are P_5 and $\deg(v_4) = 2$ if $\operatorname{diam}(T) = 6$ and $\operatorname{deg}(v_4) = \operatorname{deg}(v_5) = 2$ when $\operatorname{diam}(T) = 7$. Then obviously $\gamma_R(T) = 8$ and a(T) = 7, implying that $\gamma_R(T) < \frac{4a(T)+2}{3}$. \square

Proposition 7. If T is a tree of order n with $\operatorname{diam}(T) \geq 8$, then

$$\gamma_R(T) < \frac{4a(T) + 2}{3}$$

unless both ends of each diametral path in T are paths of length at least four.

Proof. Let $v_1v_2\ldots v_D$ be a diametral path in T and root T at v_D (at v_1 , respectively). By a closer look at the proof of Theorem 3, we need to consider three Cases.

<u>Case 1.</u> T_{v_3} is $P_5 = v_1 v_2 v_3 w_2 w_1$.

First let $\deg_T(v_4) = 2$. If $\deg_T(v_5) = 2$, then let $T' = T - T_{v_5}$. It is easy to see that $\gamma_R(T) \leq \gamma_R(T') + 5$ and $a(T) \geq a(T') + 4$. Hence, the result follows by Theorem 3. Let $\deg_T(v_5) \geq 3$ and let $T' = T - T_{v_4}$. Then obviously $\gamma_R(T) \leq 1$ $\gamma_R(T') + 4$. If $v_5 \notin S'$, then let $S = S' \cup \{v_1, v_2, w_1, w_2\}$, and if $v_5 \in S'$, then let $S = (S' - \{v_5\}) \cup \{v_1, v_2, v_4, w_1, w_2\}$. In both cases, we have $\sum (S, T) \le m$, and hence $a(T) \ge a(T') + 4$. It follows from Theorem 3 that $\gamma_R(T) \le \gamma_R(T') + 5 \le \frac{4a(T')+2}{3} + 5 \le \frac{4(a(T)-4)+2}{3} + 5 < \frac{4a(T)+2}{3}$. Now let $\deg_T(v_4) \ge 3$. We consider the following subcases.

Subcase 1.1. $\deg_T(v_4) = 3$ and there is a path $z_1 z_2 z_3 z_4 z_5$ in T such that $v_4 z_3 \in$ E(T), $\deg_T(z_3) = 3$, $\deg_T(z_2) = \deg_T(z_4) = 2$ and $\deg_T(z_1) = \deg_T(z_5) = 1$. Let $T' = T - T_{v_4}$. It is easy to see that $\gamma_R(T) \leq \gamma_R(T') + 8$ and $a(T) \geq a(T') + 7$, implying that $\gamma_R(T) < \frac{4a(T)+2}{3}$ by Theorem 3.

Subcase 1.2. $\deg_T(v_4) \ge 4$ and there is a path $z_1 z_2 z_3 z_4 z_5$ in T such that $v_4 z_3 \in$ $E(T), \deg_T(z_3) = 3, \deg_T(z_2) = \deg_T(z_4) = 2$ and $\deg_T(z_1) = \deg_T(z_5) = 1$. Assume $T' = T - (T_{v_3} \cup T_{z_3})$. As above, we have $\gamma_R(T) \leq \gamma_R(T') + 8$. If $v_4 \notin S'$, then let $S = S' \cup \{v_1, v_2, w_1, w_2, z_1, z_2, z_5\}$, and if $v_4 \in S'$, then let S = (S' - S') $\{v_4\} \cup \{v_1, v_2, w_1, w_2, z_1, z_2, z_4, z_5\}$. Then clearly $\sum (S, T) \leq m$, implying that $a(T) \ge a(T') + 7$. Now the result follows by Theorem 3.

Subcase 1.3. $\deg_T(v_4) \ge 3$ and there is a path $z_1 z_2 z_3 v_4$ in T such that $\deg_T(z_3) =$ $\deg_T(z_2) = 2$ and $\deg_T(z_1) = 1$.

Using Theorem 3 and an argument similar to that described in the proof of Claim 4, show that $\gamma_R(T) < \frac{4a(T)+2}{3}$.

Subcase 1.4. $\deg_T(v_4) = 3$ and there is a path $v_4 z_2 z_1$ in T such that $\deg_T(z_2) =$ 2 and $\deg_T(z_1) = 1$.

Let $T' = T - T_{v_4}$. It is easy to check that $\gamma_R(T) \leq \gamma_R(T') + 6$ and $a(T) \geq a(T') + 5$, implying that $\gamma_R(T) < \frac{4a(T)+2}{3}$ by Theorem 3.

Subcase 1.5. $\deg_T(v_4) \ge 4$ and there is a path $v_4 z_2 z_1$ in T such that $\deg_T(z_2) =$ 2 and $\deg_T(z_1) = 1$.

Let $T' = T - (T_{v_3} \cup T_{z_2})$. Clearly, $\gamma_R(T) \leq \gamma_R(T') + 6$. If $v_4 \notin S'$, then let $S = S' \cup \{v_1, v_2, w_1, w_2, z_1\}$, and if $v_4 \in S'$, then let $S = (S' - \{v_4\}) \cup \{v_1, v_2, w_1, w_2, z_1, z_2\}$. Obviously, $\sum_{i=1}^{n} (S, T) \leq m$ and so $a(T) \geq a(T') + 5$. It follows from Theorem 3 that $\gamma_R(T) < \frac{4a(T)+2}{3}$.

Subcase 1.6. $\deg_T(v_4) \ge 4$ and all neighbors of v_4 , except v_3, v_5 , are leaves. Suppose $T' = T - T_{v_4}$. It is easy to see that $\gamma_R(T) \le \gamma_R(T') + 6$ and $a(T) \ge a(T') + 5$. Now the result follows as above.

Subcase 1.7. $\deg_T(v_4) = 3$, v_4 is adjacent to a leaf, say w, and $\deg_T(v_5) = 2$. Let $T' = T - T_{v_5}$. It is easy to check that $\gamma_R(T) \leq \gamma_R(T') + 6$ and $a(T) \geq a(T') + 5$, implying that $\gamma_R(T) < \frac{4a(T)+2}{3}$ by Theorem 3.

Subcase 1.8. $\deg_T(v_4) = 3$, v_4 is adjacent to a leaf, say w, and $\deg_T(v_5) \geq 3$. Let $T' = T - (T_{v_4} \cup T_{v_{D-2}})$, where $T_{v_{D-2}}$ is the maximal subtree at v_{D-2} when T is rooted at v_1 . First let $T_{v_{D-2}} = P_3$. It is easy to see that $\gamma_R(T) \leq \gamma_R(T') + 7$ and $a(T) \geq a(T') + 6$, implying that $\gamma_R(T) < \frac{4a(T)+2}{3}$ by Theorem 3. Now let $T_{v_{D-2}} = P_5 = v_D v_{D-1} v_{D-2} u_2 u_1$. Clearly, $\gamma_R(T) \leq \gamma_R(T') + 9$. If $v_5 \notin S'$, then let $S = S' \cup \{v_1, v_2, w_1, w_2, w, u_1, v_D, v_{D-1}\}$, and if $v_5 \in S'$, then let $S = (S' - \{v_5\}) \cup \{v_1, v_2, w_1, w_2, w, u_1, u_2, v_D, v_{D-1}\}$. Then $\sum(S, T) \leq m$ and hence $a(T) \geq a(T') + 8$. Now the result follows by Theorem 3.

<u>Case 2.</u> T_{v_4} is a path and v_5 is adjacent to a leaf, say w.

Considering Case 1, we may assume that $T_{v_{D-2}}$ is a path P_3 in the rooted tree T at v_1 . Let $T' = T - (T_{v_4} \cup T_{v_{D-2}})$. It is easy to see that $\gamma_R(T) \leq \gamma_R(T') + 5$. If $v_5 \notin S'$, then let $S = S' \cup \{v_1, v_2, v_3, v_D\}$ and if $v_5 \in S'$, then let $S = (S' - \{v_5\}) \cup \{v_1, v_2, v_3, v_4, v_D\}$. Then $\sum_{i=1}^{n} (S, T) \leq m$ and so $a(T) \geq a(T') + 4$. It follows from Theorem 3 that $\gamma_R(T) < \frac{4a(T)+2}{3}$.

Hence, T_{v_5} is a path when T is rooted at v_D . In a similar fashion, we can prove $T_{v_{D-4}}$ is a path when T is rooted at v_1 . This completes the proof.

We conclude this paper with an open problem.

Problem. Characterize all trees achieving the bound in Theorem 3.

References

- Amjadi J., An upper bound on the double domination number of trees, Kragujevac J. Math. 39 (2015), 133–139.
- Chambers E. W., Kinnersley B., Prince N. and West D. B., *Extremal problems for Roman domination*, SIAM J. Discrete Math. 23 (2009), 1575–1586.
- Cockayne E. J., Dreyer Jr. P. M., Hedetniemi S. M. and Hedetniemi S. T., On Roman domination in graphs, Discrete Math. 278 (2004), 11–22.
- Cockayne E. J., Favaron O. and Mynhardt C. M., Secure domination, weak Roman domination and forbidden subgraphs, Bull. Inst. Combin. Appl. 39 (2003), 87–100.
- Dehgardi N., Khodkar A. and Sheikholeslami S. M., Bounding the rainbow domination number of a tree in terms of its annihilation number, Trans. Comb. 2 (2013), 21–32.
- Dehgardi N., Khodkar A. and Sheikholeslami S. M., Bounding the paired-domination number of a tree in terms of its annihilation number, Filomat 28 (2014), 523–529.
- Dehgardi N., Norouzian S. and Sheikholeslami S. M., Bounding the domination number of a tree in terms of its annihilation number, Trans. Comb. 2 (2013), 9–16.

- Desormeaux W. J., Haynes T. W. and Henning M. A., Relating the annihilation number and the total domination number of a tree, Discrete Appl. Math. 161 (2013) 349–354.
- Favaron O., Karami H. and Sheikholeslami S. M., On the Roman domination number in graphs, Discrete Math. 309 (2009), 3447–3451.
- Hansberg A. and Volkmann L., Upper bounds on the k-domination number and the k-Roman domination number, Discrete Appl. Math. 157 (2009), 1634–1639.
- Henning M. A., A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002), 225–234.
- Henning M. A., Defending the Roman Empire from multiple attacks, Discrete Math. 271 (2003), 101–115.
- Henning M. A. and Hedetniemi S. T., Defending the Roman Empire A new strategy, Discrete Math. 266 (2003), 239–251.
- 14. Larson C. E. and Pepper R., Graphs with equal independence and annihilation numbers, the electronic journal of combinatorics 18 (2011), #P180.
- Pepper R., On the annihilation number of a graph, Recent Advances In Electrical Engineering: Proceedings of the 15th American Conference on Applied Mathematics (2009) 217–220.
- ReVelle C. S. and Rosing K. E., Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000), 585–594.
- 17. Stewart I., Defend the Roman Empire, Sci. Amer. 281 (6) (1999), 136–139.

H. Aram, Department of Mathematics, Gareziaeddin Center, Khoy Branch, Islamic Azad University, Khoy, Iran, *e-mail*: hamideh.aram@gmail.com

R. Khoeilar, Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran, e-mail: khoeilar@azaruniv.edu

S. M. Sheikholeslami, Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran, *e-mail*: s.m.sheikholeslami@azaruniv.edu

L. Volkmann, Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany, *e-mail*: volkm@math2.rwth-aachen.de