SYMMETRIC *m*-CONVEX ALGEBRAS WITHOUT ALGEBRAIC ZERO DIVISORS AND RESULTS OF GELFAND-MAZUR TYPE

M. A. NEJJARI

ABSTRACT. We show that in a symmetric *m*-convex algebra without algebraic zero divisors, any self-adjoint and invertible element is either positive or negative. As a consequence we obtain that a symmetric m-convex algebra containing no algebraic zero divisors and for which every positive element has a positive square root is isomorphic to $\mathbb{C} + \operatorname{Rad}(A)$.

1. INTRODUCTION

In [5, Proposition 11.12], it is shown that every complete Q-m-convex algebra which does not contain topological zero-divisors is isomorphic to the algebra of complex numbers. The result is not true when considering only algebraic zero divisors [4]. Here, in the context of symmetric m-convex algebras and with just algebraic zero divisors, we give a characterization of the spectrum of self-adjoint elements. Let A be a symmetric m-convex algebra, the subset $A_{+} = \{x \in A :$ $x = x^*$ and $\operatorname{Sp}(x) \subset \mathbb{R}^+$ be its cone of positive elements and $A^0_+ = A_+ \cap G$ (G is the subgroup of invertible elements). We show that if A_+ does not contain algebraic zero divisors, then $Sym(A) \cap G$ is the disjoint union of A^0_+ and $-A^0_+$ (Theorem 2). In other words, the spectrum of a self-adjoint element cannot contain both positive and negative real numbers unless it contains zero. As a consequence, we obtain that in this case, the spectrum of any self-adjoint element is an interval (Theorem 6). These two results, in fact, give us a method to check the existence of algebraic zero divisors in symmetric m-convex algebras. Finally, we show that a symmetric m-convex algebra containing no algebraic zero divisors and for which every positive element has a positive square root is isomorphic to $\mathbb{C} + \operatorname{Rad}(A)$ (Theorem 3). If the second condition is satisfied for every locally C^* -algebra, we get that the algebra of complex numbers is the unique locally C^* -algebra without algebraic zero divisors [2, Theorem 4.4].

Received July 8, 20016; revised November 28, 20016.

²⁰¹⁰ Mathematics Subject Classification. Primary 46H05, 46K05.

Key words and phrases. m-convex algebras, positive elements, algebraic zero-divisors.

M. A. NEJJARI

2. Preliminaries

An *m*-convex algebra $(A, (|\cdot|_{\lambda})_{\lambda})$ is a locally convex algebra, the topology of which is defined by a family $(|\cdot|_{\lambda})_{\lambda}$ of sub-multiplicative semi-norms, i.e., $|xy|_{\lambda} \leq |x|_{\lambda} |y|_{\lambda}$, for every x, y in A and every λ . A unital symmetric *m*-convex algebra is a *m*-convex algebra endowed with an involution $*: x \mapsto x^*$ such that $e + xx^*$ is invertible in A for every x where e is the unit element. We denote by Sym(A), A_+, A_+^0 and G, respectively, the subset of self-adjoint elements, positive elements, strictly positive elements and the open subgroup of invertible elements:

Sym(A) = {
$$x \in A : x = x^*$$
},
 $A_+ = \{x \in A : x = x^* \text{ and } \operatorname{Sp}(x) \subset \mathbb{R}^+$ },
 $A_+^0 = \{x \in A : x = x^* \text{ and } \operatorname{Sp}(x) \subset \mathbb{R}^+ \smallsetminus \{0\}$ }

and

$$G = G_A = \{a \in A : a \text{ is invertible in } A\}.$$

A locally C^* -algebra is a complete *m*-convex algebra $(A, (|\cdot|_{\lambda})_{\lambda})$ endowed with an involution $*: x \mapsto x^*$ such that, $|xx^*| = |x|_{\lambda}^2$, for every x in A and every λ . We denote by $\operatorname{Sp}(x)$ and $\rho(x)$ the spectrum and the spectral radius of x. Two elements a, b in A are called algebraic zero divisors if $a \neq 0, b \neq 0$ and ab = 0. Throughout the next, the algebra A will be supposed to be complete and unital.

3. Symmetric *m*-convex algebras without algebraic zero divisors

Let $(A, (|\cdot|_{\lambda})_{\lambda})$ be a symmetric *m*-convex algebra. The convex cone A^0_+ does not contain algebraic zero divisors, indeed, $a^{-1} \in A^0_+$, for every $a \in A^0_+$. The convex cone A_+ contains in general, for example, the Banach algebra of square matrices with usual operations and involution. Let $K_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $K_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $K_1 \neq 0, K_2 \neq 0$ and $K_1K_2 = 0$.

In the following, we show that if A_+ contains no algebraic zero divisors, then each element of $\text{Sym}(A) \cap G$ is either positive or negative with respect to the order defined by A^0_+ .

We first prove that if A_+ contains no algebraic zero divisors, then Sym(A) does not contain any too.

Proposition 1. Let A be a symmetric m-convex algebra. The set Sym(A) contains no algebraic zero divisors if and only if A_+ does not contain any zero divisors.

Proof. Suppose that A_+ does not contain any algebraic zero divisors, and let $a, b \in \text{Sym}(A)$ such that ab = 0. Since A is symmetric, $a^2, b^2 \in A_+$. We have $a^2b^2 = aabb = 0$. Thus, according to the assumption, $a^2 = 0$ or $b^2 = 0$; and so $\text{Sp}(a) = \{0\}$ or $\text{Sp}(b) = \{0\}$. Now $a \in A_+$ and $a^2 = 0$, or $b \in A_+$ and $b^2 = 0$. Hence, by the assumption again, a = 0 or b = 0.

Theorem 2. Let A be a symmetric m-convex algebra. If A_+ contains no algebraic zero divisors, then the two convex cones A^0_+ and $(-A^0_+)$ form a partition of $\operatorname{Sym}(A) \cap G$; that is, $\operatorname{Sym}(A) \cap G = (-A^0_+) \cup A^0_+$.

Proof. Let $h \in \text{Sym}(A) \cap G$. We have $\text{Sp}(h^2) \subset \mathbb{R}^+ \setminus \{0\}$, so $h^2 \in A^0_+$. Let A_h be the maximal commutative sub-algebra containing h and e [3, Theorem 4.13]. There exists $u \in A^0_+ \cap A_h$ such that $h^2 = u^2$ [3, Theorem 5.8]. Then, by [3, Theorem 4.18],

$$\operatorname{Sp}_A(u \pm h) = \operatorname{Sp}_{A_h}(u \pm h) = \{\phi(u) \pm \phi(h) : \phi \in \Phi_{A_h}\},\$$

where Φ_{A_h} designates the set of all characters on A_h . For $\phi \in \Phi_{A_h}$, we have

$$\phi(h)^2 = \phi(h^2) = \phi(u^2) = \phi(u)^2, \qquad \phi(h) = \pm \phi(u).$$

It follows that $\operatorname{Sp}_A(u \pm h) \subset \mathbb{R}^+$, and so $u \pm h \in A_+$. Let $p = \frac{1}{2}(u+h)$ and $q = \frac{1}{2}(u-h)$, we have

$$h = p - q$$
 and $pq = qp = 0$.

Since $p, q \in A_+$ and A_+ is supposed to contain no algebraic zero divisors, one has p = 0 or q = 0. Hence $h = p \in A^0_+$ or $h = -q \in (-A^0_+)$.

The following corollaries are equivalent forms of Theorem 2.

Corollary 3. Let A be a symmetric m-convex algebra. If A_+ contains no algebraic zero divisors, then each element of $Sym(A) \cap G$ is either positive or negative with respect to the order defined by A_+^0 .

Corollary 4. Let A be a symmetric m-convex algebra. If A_+ does not contain algebraic zero divisors, then for every $h \in \text{Sym}(A) \cap G$, there exists a unique $u \in A^0_+$ such that $h = u^2$ or $h = -u^2$.

Remark 5.

- 1. In a symmetric *m*-convex algebra, if there exists at least one invertible and self-adjont element whose spectrum contains both positive and negative real numbers, then the algebra necessarily contains zero divisors.
- 2. In a symmetric *m*-convex algebra A, we don't have in general, $Sym(A) \cap G =$

 $(-A^0_+) \cup A^0_+$. Indeed, in the previous example, the matrix $L = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ is self-adjoint and invertible but does not belong to A^0_+ or $(-A^0_+)$. Moreover,

according to the preceding theorem, we can conclude that there are necessarily algebraic zero divisors in A_+ .

3. The condition $\operatorname{Sym}(A) \cap G = (-A^0_+) \cup A^0_+$ in the previous theorem is necessary but not sufficient to imply the non-existence of algebraic zero divisors. Indeed, consider the symmetric Banach algebra $(C([0,1]), \|\cdot\|_{\infty})$ endowed with usual operations and involution. We have $\operatorname{Sym}(A) \cap G = (-A^0_+) \cup A^0_+$. Now take f and g such that $f(x) = \frac{1}{2} - x$, g(x) = 0 for $x \in [0, \frac{1}{2}]$ and f(x) = 0, $g(x) = x - \frac{1}{2}$ for $x \in [\frac{1}{2}, 1]$, $f \neq 0$ and $g \neq 0$ but fg = 0.

M. A. NEJJARI

4. The condition $a^2 = 0 \implies a = 0$ for every $a \in A_+$, is weaker than that considered in Theorem 2, but it can not replace it as shown by the following example. Consider the symmetric Banach algebra \mathbb{C}^2 with usual operations. It satisfies the first condition but there exist self-adjoint and invertible elements whose spectrum contains positive and negative numbers.

In the next, we give some characterisations of the spectrum of self-adjoint elements.

Theorem 6. Let A be a symmetric m-convex algebra. If A_+ does not contain algebraic zero divisors, then the spectrum of each element of Sym(A) is an interval.

Proof. Let $a \in \text{Sym}(A)$. Suppose that Sp(a) is not an interval. There exist $\alpha, \beta \in \text{Sp}(a)$ and $\gamma \notin \text{Sp}(a)$ such that $\alpha < \gamma < \beta$. Then $a - \gamma \in \text{Sym}(A) \cap G$ and $\text{Sp}(a - \gamma)$ contains positive and negative real numbers. This contradicts the result of Theorem 2.

Corollary 7. Let A be a symmetric m-convex algebra. If A_+ does not contain algebraic zero divisors, then the spectrum of each element of Sym(A) is either infinite or reduced to a single element.

Corollary 8. Let A be a symmetric m-convex algebra without algebraic zero divisors. A self-adjoint element whose spectrum contains both positive and negative real numbers is necessarily not invertible.

Remark 9. The result of Theorem 2 remains true for every symmetric *m*-convex algebra satisfying:

- 1. For every $x \in A^0_+$, there exists $u \in A^0_+$ such that $x = u^2$.
- 2. A_+ contains no algebraic zero divisors.

If we suppose that the first condition is satisfied by A_+ (every positive element has a positive square root), then we can state a theorem of a Gelfand-Mazur type as follows.

Theorem 10. Let A be a symmetric m-convex algebra. If A_+ satisfies the two conditions:

1. For every $x \in A_+$, there exists $u \in A_+$ such that $x = u^2$.

2. A_+ contains no algebraic zero divisors.

Then A is isomorphic to $\mathbb{C} + \operatorname{Rad}(A)$, where $\operatorname{Rad}(A)$ is the Jacobson radical of A. In addition, if the algebra A is semi-simple or if the cone A_+ is salient $((-A_+) \cap A_+ = \{0\})$, then A is isomorphic to \mathbb{C} .

Proof. By replacing A^0_+ and $\operatorname{Sym}(A) \cap G$, respectively, by A_+ and $\operatorname{Sym}(A)$ in the proof of Theorem 2, we obtain that $\operatorname{Sym}(A) = (-A_+) \cup A_+$. Now for $x \in \operatorname{Sym}(A)$, suppose that $\operatorname{Sp}(x)$ contains more than one element; α and β for example. We have that $x - \frac{\alpha+\beta}{2}$ belongs to $\operatorname{Sym}(A)$ but not to $(-A_+) \cup A_+$, a contradiction. Let $x \in \operatorname{Sym}(A)$ and let $\mu \in \mathbb{R}$ such that $\operatorname{Sp}(x) = \{\mu\}$, we have that $p_A(x - \mu) = \rho(x - \mu) = 0$, where $p_A(x) := \rho(xx^*)^{\frac{1}{2}}$ for all $x \in A$, is the "Pták function" [3, (22.1) p. 279]. Since the algebra A is symmetric and satisfies $\rho \mid_{\operatorname{Sym}(A)} < \infty$, it

332

is a spectral algebra [1, Theorem 4.4.]. Hence, by [3, Corollary 22.15, p. 291], $x - \mu \in \text{Ker } p_A = \text{Rad}(A)$. Finally, $A = \text{Sym}(A) + i \text{Sym}(A) \simeq \mathbb{C} + \text{Rad}(A)$. \Box

Since any locally \mathbb{C}^* -algebra is semi-simple and satisfies the first condition, we obtain [2, Theorem 4.4] as corollary.

Corollary 11. ([2, Theorem 4.4]) The algebra of complex numbers is the unique locally \mathbb{C}^* -algebra for which the cone of positive elements contains no algebraic zero divisors.

As a consequence of Corollary 7, we obtain another result of Gelfand-Mazur type.

Theorem 12. Let A be a symmetric m-convex algebra. If A_+ satisfies the two conditions:

1. Each element of A_+ has a finite spectrum,

2. A_+ contains no algebraic zero divisors,

then A is isomorphic to $\mathbb{C} + \operatorname{Rad}(A)$.

Proof. According to Corollary 7, the spectrum of each element of Sym(A) is reduced to a single element. We conclude with the same arguments used in the proof of Theorem 10.

References

- Birbas D. and Pták V., Function and Symmetry, Rend. Circ. Mat. Palermo, 47 (1998), 431–446.
- El Kinani A., Nejjari M. A. and Oudadess M., On classifying involutive locally m-convex algebra, via cones, Bull. Belg. Math. Soc. Simon Stevin 13(4) (2006), 681–687.
- 3. Fragoulopoulou M., Topological Algebras with Involution, North-Holland, Amsterdam, 2005.
- Hirschfeld R. A., and Rolewîcz S., A class of non-commutative Banach algebras without divisors of zero, Bull. Acad. Polon. Sci. 17 (1969), 751–753.
- Michael E. A., Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc. 11 (1952).

M. A. Nejjari, CRMEF Oujda, Morocco, e-mail: m_a_nejjari@hotmail.com