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ON THE CONVERGENCE OF HE AND ZHU’S NEW SERIES

SOLUTION FOR PRICING OPTIONS

WITH THE HESTON MODEL

SONG-PING ZHU and XIN-JIANG HE

Abstract. In this paper, a modified formula for European options and a set of

complete convergence proofs for the solution that cover the entire time horizon of
a European option contact are presented under the Heston model with minimal

entropy martingale measure. Although He & Zhu [5] worked on this model, they

only provided a converged solution with a condition imposed on the time to expiry.
The new solution presented here is only slightly modified in its form. But, it is

accompanied with the proof of convergence of the solution for the entire span of the

time horizon of an option.

1. Introduction

Despite the great success of the Black-Scholes model [1], their over-simplified as-
sumptions to achieve the analytical tractability could lead to pricing biases. There-
fore, many different models have been proposed to modify the Black-Scholes model.
In particular, stochastic volatility models are one kind of the most popular modi-
fications and many authors such as Hull & White [3] and Stein & Stein [4]worked
on this category. Among all of these models, the Heston model [2] with a closed-
form pricing formula is very popular. To a large extent, the popularity of the
Heston model stems from not only nice features such as the mean-reverting prop-
erty that have well captured some primary characteristics of market dynamics,
but also the “close-formness” of the solution which has considerably facilitated
model calibration. However, a fundamental assumption in the Heston model is
that the underlying market is an incomplete one, and thus there exist different
equivalent martingale measures. Thus, the attempts of deriving option pricing
formulae, based on the Heston model but for other equivalent and meaningful
martingale measures are pursued with the aim of preserving the unique feature of
“close-formness” of the pricing formula.

Recently, He & Zhu [5] worked on the Heston stochastic volatility model under
the minimal entropy martingale measure and derived a closed-form pricing formula
for European options based on a series solution approach. Although their solution
is in an infinite series form, which is different from Heston’s original formula in the
form of inverse Fourier transformation, they indeed preserved the “close-formness”
of the pricing formula which is defined in [7], as they provided a convergence proof
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of the solution [5]. However, a noticeably shortfall of their proof is that it is
only valid for a particular time interval, rather than the entire time horizon that
is defined in an option contract. As a supplementary paper, this short research
article presents a set of complete convergence proofs for the solution that cover the
entire time horizon of a European option contact. The slightly modified formulae
for other time range are based on shifting the point at which the series is expanded
sequentially until the entire time horizon of an option is covered.

Such a simple and yet important supplement is provided in the next section,
which is accompanied by numerical experiments showing the accuracy of the newly
derived formulae.

2. Pricing formulae

In this section, a set of option pricing formulae for different time range under the
Heston stochastic volatility model with the minimal entropy martingale measure
that converges outside the converged area shown in [5] is derived. Numerical
experiments are also carried out to show the accuracy of the new formulae.

2.1. Theoretical derivation

Let St and vt be the underlying asset price and the volatility, respectively, the
dynamics of the Heston model under the physical measure are specified as follows

dSt
St

= µvt d t+
√
vt dBt,

d vt = k(θ − vt) d t+ β
√
vt dWt,

where Bt and Wt are two standard Brownian motions with correlation ρ. k and
θ represent the mean-reverting speed and level, respectively. β is the so-called
volatility of volatility. According to the results in [5], if we set

(2.1) Wt = ρBt +
√

1− ρ2Ct,

where Bt and Ct are two independent Brownian motions, the dynamics under the
minimal entropy martingale measure Q can be obtained by the following transfor-
mation

dBQt = dBt + µv
√
vt d t,

dCQt = dCt +
1

β
√

1− ρ2
λ(τ)
√
vt d t,

where τ = T−t, λ(τ) = 2∆ tanh(∆τ+b)−k−ρβµ with ∆=
√

1
4k

2+ 1
2kρβµ+ 1

4β
2µ2

and b = tanh−1( 1
2
k+βρµ

∆ ). In this way, the corresponding expression for the dy-
namics under the minimal entropy martingale measure can be derived as

(2.2)

dSt
St

=
√
vt dBQt ,

d vt = [k(θ − vt)− βρµvt − λ(τ)vt] d t+ β
√
vt dWQ

t ,
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and we can also find that the European call option price U(S, v, t) satisfies the
following PDE (partial differential equation)

(2.3)

1

2
vS2 ∂

2U

∂S2
+ ρσvS

∂2U

∂S∂v
+

1

2
σ2v

∂2U

∂v2

+ [k(θ − v)− βρµv − λ(τ)v]
∂U

∂v
+
∂U

∂t
= 0

with terminal condition

(2.4) U(S, v, T ) = max(ST −K, 0),

and boundary conditions:

U(0, v, t) = 0, lim
S→+∞

U(S, v, t) = S,

U(S,∞, t) = S, lim
v→0

U(S, v, t) = max(S −K, 0).

If we make the assumption that U(S, v, t) takes the form of

(2.5) U(S, v, t) = StP1(S, v, t)−K e−r(T−t) P2(S, v, t)

and make the transformation of x = ln(S), it is not difficult to find that Pj , j = 1, 2
can be calculated with the conditional characteristic function of the log-returns
fj(x, v, t;φ)

(2.6) Pj =
1

2
+

1

π

∫ +∞

0

Re

[
e− iφ ln[K] fj

iφ

]
dφ.

If we further assume that the conditional characteristic function of the log-returns
fj(x, v, t;φ) is in the form of

(2.7) fj = eC(τ ;φ)+D(τ ;φ)v+iφx,

the pricing problem can be reduced to solve the following two ODEs (ordinary
differential equations)

D′(τ) =
1

2
σ2D2 + [i ρσφ− k +mj − βρµ− λ(τ)]D +

(
lj iφ− 1

2
φ2
)
,(2.8)

C ′(τ) = kθD,(2.9)

with the initial condition C(0) = D(0) = 0. Here l1 = 1
2 , l2 = − 1

2 , m1 = ρσ,
m2 = 0. It is obvious that once D is derived, C can be worked out straightfor-
wardly, and thus what we need to do is to solve the ODE for D, which is actually
a Riccati equation with variable coefficients. By making the transformation of

D = − u′

q2u
, it can be transformed into a second-order linear ODE with variable

coefficients as

(2.10) u′′ − q1u
′ + q0q2u = 0,

where q0 = ljiφ − 1
2φ

2, q1 = iρσφ + mj − 2∆ tanh(∆τ + b) and q2 = 1
2σ

2. Also,
the boundary condition for ODE (2.10) is u′ = 0.

It should be noticed that to seek a series solution of Equation (2.10), He &
Zhu [5] expanded the solution at τ = 0, which converges in the region of τ ≤
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1
∆

√
b2 + π2

4 . Obviously, when τ is larger than this radius, the convergence of the

solution can not be guaranteed. As a result, other solutions should be found in
this case. In particular, if we assume that

tm =

m∑
k=1

1

∆

√
b2 +

π2

4
∗ k − b

∆
,

then we can expand the solution u at the point τ = tm when tm ≤ τ ≤ tm+1, i.e.,

(2.11) u =

∞∑
n=0

an(τ − tm)n.

As tanh(x) can be expressed as tanh(x) = e2x−1
e2x +1 , and e2∆τ can be expanded as

e2∆τ = e2∆tm
∑+∞
n=0 cn(τ − tm)n with cn = 1

n (2∆)n, ODE (2.10) can be converted
into the following equation

(2.12)

[e2b+2∆tm

∞∑
n=0

cn(τ − tm)n + 1]

∞∑
n=0

(n+ 1)(n+ 2)an+2(τ − tm)n

− [(i ρσφ+mj − 2∆) e2b+2∆tm

∞∑
n=0

cn(τ − tm)n

+ (i ρσφ+mj + 2∆)]

∞∑
n=0

(n+ 1)an+1(τ − tm)n

+ [e2b+2∆tm

∞∑
n=0

cn(τ − tm)n + 1]q0q2

∞∑
n=0

an(τ − tm)n = 0.

It should be remarked that Equation (2.12) holds for any τ , which implies that
the coefficients of {(τ − tm)k, for all k ≥ 0} equal to zero. Hence, we obtain the
following equation

(2.13) (k+1)(k+2)ak+2 +e2b+2∆tm

k∑
l=0

[(k− l+2)(k− l+1)ak−l+2ci]+I2−I1 = 0

for any k ≥ 0. Here, I1 and I2 are defined as

I1 =
{

(i ρσφ+mj − 2∆) e2b+2∆tm

×
k∑
l=0

[(k − l + 1)ak−i+1ci] + (i ρσφ+mj + 2∆)(k + 1)ak+1

}
= 0,

I2 = e2b+2∆tm q0q2

k∑
l=0

(ak−lcl) + q0q2ak.

In order to reach the final solution, a0 and a1 need to be figured out. However,
from the boundary condition u′(0) = 0, one can only obtain a1 = 0 while the
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value of a0 keeps unknown. To solve this problem, both sides of Equation (2.13)
are divided by a0 and we define

(2.14) âk =
ak
a0
, k ≥ 0.

In this case, {âk, k ≥ 0} can be evaluated with â0 = 1, â1 = 0, through
(2.15)

âk+2 =
Î1 − Î2 − e2b+2∆tm

∑k
l=1[(k − l + 1)(k − l + 2)âk−l+2ci]

(e2b+2∆tm +1)(k + 2)(k + 1)
, k ≥ 0,

where

Î1 = {(i ρσφ+mj − 2∆) e2b+2∆tm

×
k∑
l=0

[(k − l + 1)âk−i+1ci] + (i ρσφ+mj + 2∆)(k + 1)âk+1},

Î2 = e2b+2∆tm q0q2

k∑
i=0

(âk−ici) + q0q2âk.

Once {âk, k ≥ 0} is derived, D can be easily worked out by

(2.16) D(τ) = − 1

q2

∑∞
n=0(n+ 1)ân+1(τ − tm)n∑∞

n=0 ân(τ − tm)n
,

and thus C can be calculated as

(2.17) C(τ) =

∫ τ

0

kθD(t) d t.

By now, we have derived a set of pricing formulae based on different points at
which the series is expanded. In the following, the convergence of these solutions in
the considered region is verified. It is well-known that the radius of convergence of
the series solution to a second order linear ODE near an ordinary point is at least
as large as the distance from the ordinary point to the nearest singularity of the
ODE [6]. Moreover, according to the results obtained in [5], all the singularities
in ODE (2.10) can be specified as

(2.18) τk = − b

∆
+ i

(2k + 1)π

2∆
, k = 0, 1, 2 . . .

Combining both of the two facts, it is not difficult to find that the nearest sin-
gularity to any expansion point is always − b

∆ + i π
2∆ . As a result, the radius of

convergence for the series solution expanded at tm is at least

(2.19) Rm =

√√√√(

m∑
k=1

1

∆

√
b2 +

π2

4
∗ k)2 +

1

∆2

π2

4
>

1

∆

√
b2 +

π2

4
∗ (m+ 1),

which shows that the solution expanded at τ = tm converges in the region tm ≤
τ ≤ tm+1. It should also be noticed that

(2.20) lim
m→+∞

tm = +∞,
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which implies that when τ > t1, there always exists m > 1 such that τ < tm.
Another issue that should also be mentioned is whether all these solutions in-

cluding the formula obtained in [5] as well as those derived in this paper, have
already covered the whole region [0,+∞]. Given that the converged region for

the solution presented in [5] is [0, 1
∆

√
b2 + π2

4 ], it is not difficult to find that when

b > 0, 1
∆

√
b2 + π2

4 > t1 holds. In this case, we have already finished our task. On

the other hand, when b ≤ 0, our solution expanded at t1 can be used if τ falls

in the gap [ 1
∆

√
b2 + π2

4 , t1] since the radius of convergence for this solution is at

least 1
∆

√
b2 + π2

4 ∗ 2, which is obviously larger than the length of the interval − b
∆ .

Therefore, we can certainly reach the conclusion that for any τ ∈ [0,+∞], we can
always find a converged solution.

Once a new pricing formula is derived, it is natural to numerically check its
accuracy, the results of which are presented in next subsection.

2.2. Numerical experiments

In this subsection, the accuracy of the newly derived formulae is numerically shown
by comparing the results calculated with our formula and those obtained through
the finite difference method and Monte-Carlo simulation. The parameters we use
are listed as follows. The drift term u is 0.8 and the correlation ρ is 0.5. The
mean-reverting speed k and mean-reverting level θ take the value of 5 and 0.01,
respectively. The volatility of volatility β is 0.05 while the current volatility v0 is
0.2. Both of the underlying price S and strike price K are set to be 100. It should
be remarked here that the numerical results provided here are obtained with the
series solution being expanded at τ = t1, which is different from those in [5], where
the series solution is expanded at τ = 0.
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(a) Our price vs finite difference method price.

Time to expiration

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

R
el

at
iv

e 
di

ffe
re

nc
e

0.5%

0.6%

0.7%

0.8%

0.9%

1.0%

1.1%

1.2%

1.3%

1.4%

1.5%

(b) Our price vs Monte Carlo price.

Figure 1. Comparison of our price with those obtained by other numerical method..

The comparison results of option prices calculated through our formula and
those obtained by solving the PDE with the finite difference method as well as
by directly simulating the pricing dynamics are depicted in Figure 1. In specific,
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Figure 1(a) exhibits the relative difference between our prices and finite difference
prices, and it is clear that our pricing formula is quite accurate with the maximum
relative difference being no more than 1.1 %. Figure 2(b) further verifies our
formula by showing that the maximum relative difference between our prices and
Monte-Carlo prices is less than 1.5 %, which is certainly acceptable in real markets.

3. Conclusion

In this paper, we have presented a slightly modified formula for European options
under the Heston model with minimal entropy martingale measure. As a supple-
ment to [5], in which a series solution is presented and the radius of convergence
for such a solution is shown, the new solution constructed with a set of different
formulae for different time range is accompanied by a set of complete convergence
proofs for the solution that covers the entire time horizon of a European option
contact.
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