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ON m-PROJECTIVELY FLAT ALMOST PSEUDO RICCI
SYMMETRIC MANIFOLDS

J. P. SINGH

ABSTRACT. In the present paper, we study m-projectively flat and almost pseudo
Ricci symmetric manifolds.

1. INTRODUCTION

As an extended class of pseudo Ricci symmetric manifolds, M. C. Chaki and
T. Kawaguchi [4] introduced the notion of almost pseudo Ricci symmetric mani-
folds. An n-dimensional Riemannian manifold (M™; g) is called an almost pseudo
Ricci symmetric manifold if its Ricci tensor S of type (0,2) is not identically zero
and satisfies the condition

(1.1) (VxS)(Y,Z)=[AX)+ B(X))S(Y,Z)+ AY)S(X,Z) + A(Z)S(Y, X),

where V denotes the operator of covariant differentiation with respect to the metric
tensor g and A, B are nowhere vanishing associated 1-forms such that g(X, p1) =
A(X) and ¢g(X, p2) = B(X) for all vector fields X and p1, p2 are called the basic
vector fields of the manifold. An n-dimensional manifold of this kind is denoted
by A(PRS),. In particular if, B = A, then (1.1) reduces to

(1.2) (VxS)(Y, Z) = 24(X)S(Y, Z) + A(Y)S(X, Z) + A(Z)S(Y, X),

which represents a pseudo Ricci symmetric manifold [3]. In [4], Chaki and Kawa-
guchi also studied conformally flat A(PRS),. In 1971, Pokhariyal and Mishra [8]
established a new curvature tensor known as an m-projective curvature tensor on
Riemannian manifolds. Many geometers such as Ojha ([6], [7]), Singh [9], Chaubey
and Ojha [5] studied properties of an m-projective curvature tensor in different
manifolds. A Riemannian manifold is flat if its curvature tensor vanishes at each
point. Following this sense, Ojha [7] and Zengin [12] considered the m-projectively
flat curvature tensor in the Sasakian and LP-Sasakian, manifolds, respectively.
Motivated by the above study the author considers the m-projectively flat
A(PRS),, and established some geometrical properties. The paper is organized as
follows: Section 2 concerns with preliminaries. Section 3 is devoted to the study
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of an m-projectively flat A(PRS), and it is proved that such a manifold is of
quasi constant curvature. It is shown that in an m-projectively flat A(PRS),, the
vector field defined by ¢g(X,p) = H(X) is a unit proper concircular vector field.
The notion of special conformally flat manifold which generalizes the notion of sub
projective manifold was introduced by Chen and Yang [2]. In the same paper, the
authors also introduced the notion of K-special conformally flat manifold which
generalizes the notion of special conformally flat manifold as well as sub projec-
tive manifold. In this section, it is shown that an m-projectively flat A(PRS),
with non constant and non negative scalar curvature is a K-special conformally
flat manifold. It is also proved that such a simply connected manifold with non
constant and non negative scalar curvature can be isometrically immersed in an
Euclidean manifold E™*! as a hypersurface.

2. PRELIMINARIES

Let Q be the symmetric endomorphism of the tangent bundle of the manifold
corresponding to the Ricci tensor S, i.e., S(X,Y) = g(QX,Y) for all vector fields
X,Y. Let {e; : i =1,2,...,n} be an orthonormal basis of the tangent apace at any
point of the manifold. Putting Y = Z = ¢; in (1.1) and then taking summation
over 7,1 <¢ < n, we obtain

(2.1) dr(X) =r[A(X) + B(X)] +24(QX),

where r is the scalar curvature of the manifold.

Again from (1.1), we get

(22)  (VxS)(Y,2) — (VyS)(X, Z) = BX)S(Y, Z) - B(Y)S(X, Z).

Putting Y = Z = ¢; in (2.2) and then taking summation {e; : ¢ = 1,2,...,n}, we
obtain

(2.3) dr(X) = 2rB(X) — 2B(QX).
If the scalar curvature r is constant, then

(2.4) dr(X)=0

for all X. Using (2.4) in (2.3), we obtain

(2.5) B(QX) = rB(X),

i.e.,

(2.6) S(X, p2) = rg(X, p2).

Thus we can state the following theorem.

Theorem 2.1. In an A(PRS), of constant curvature, the scalar curvature r
is an eigenvalue of the Ricci tensor S corresponding to the eigenvector ps.

The m—projective curvature tensor W* of type (1,3) is defined by [8]
W*(X,Y,Z)= R(X,Y,Z)+ [(S(Y.Z)X — S(X,2)Y

2.7)
+9(Y,2)QX — g(X, Z)QY].
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Differentiating (2.7) covariantly with respect to V, we get
ot
2(n—1)
38) ~ (DvS)(X. 2)Y + (Y. 2)(Dyv@Q)(X)
—9(X, Z)(DyQ)(Y)}.

Contracting the above with respect to V', we get

(divIW*)(X,Y, Z) = (div R)(X, Y, Z) — ﬁ [(DxS)(Y, )

(2.9) — (DyS)(X, Z) + g(V, Z)(div Q)(X)
— 9(X, Z)(divQ)(V)},

where div denotes the divergence.
We know that in a Riemannian manifold

(2.10) (divR)(X,Y,Z) = (DxS)(Y,Z) — (DyS)(X, Z).
Using (2.10) in (2.9), we get
(2n —3)

(divW*)(X,Y, Z) = TCESY

[(DxS)(Y. 2)

(2.11)

~ (Dy8)(X.2)) = g5 { H(X)9(v.2)

4(n
—dr(Y)g(X, 2)}.

3. m—PROJECTIVELY FLAT A(PRS),

Let us consider an m-projectively flat A(PRS),. Then
(divW*)(X,Y,Z) =0,
and hence, (2.11) yields
(3.1) 220-3)[(DxS)(Y. 2)~(DyS)(X, 2)] = { dr(X)g(Y. Z)~de(¥)g(X. 2)}.

Making use of (2.2) and (2.3) in (3.1), we obtain
(3.2)

B(X)S(Y,Z) ~ B(Y)S(X, 2) = S [r(BEXa.2) - BO9(x, 2)}

-
(2n—3
—{B@X)g(Y.2) - BQQY)g(X. 2)} .
Now putting Z = ps in (3.2), we get

(3-3) B(X)B(QY) — B(Y)B(QX) =0,

provided n > 2.
Let B(QX) =g(QX,p2) = P(X) = g(X,¢§) for all X. Then (3.3) reduces to

(3-4) B(X)P(Y) = B(Y)P(X),
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which implies that the vector fields po and & are co-directional. This leads to the
following theorem.

Theorem 3.1. In an m-projectively flat A(PRS),, with (n > 2) , the vector
fields pa and & are co-directional.

Again setting Y = Z = ¢; in (3.2) and then taking summation {e; : i =
1,2,...,n}, we obtain

(3.5) B(QX) =r B(X),
provided that n > 2, i.e.,

(3.6) S(X, p2) =1 9(X, p2).
Hence, we can state the following theorem.

Theorem 3.2. In an m-projectively flat A(PRS),, with n > 2, the scalar cur-
vature v is an eigenvalue of the Ricci tensor S corresponding to the eigenvector ps.

In view of (3.5), the relation (3.2) yields
(3.7 B(X)S(Y,Z)=B(Y)S(X, Z).
Setting X = py in (3.7), we get

(3.8) S(Y.2) = 5= BY)B(Q2)
Again using (3.5) in (3.8), we obtain
(3.9) S(Y,2) = rH(Y)H(Z),

where H(Y) = g(Y, p) = j%, p is a unit vector field.

From (3.9), it follows that if = 0, then S(Y, Z) = 0, which is inadmissible by
the definition of A(PRS),. Hence, we can state the following theorem.

Theorem 3.3. In a Pseudo projectively flat A(PRS),, with n. > 2 , the scalar
curvature can not vanish and the Ricci tensor is given by (3.9).

As a generalization of the manifold of constant curvature, the notion of the
manifold of quasi-constant curvature arose during the study of conformally flat
hypersurfaces by Chen and Yano [1]. A Riemannian manifold (M",g) is said to
be of quasi constant curvature [1] if it is conformally flat and its curvature tensor
R of type (0,4) is of the form

'R(X,Y,2,U) = ar{g(Y. 2)9(X,U) — g(X, Z)g(Y,U) }
(3.10) +ax{g(Y, 2)A(X)A(U) — g(X, 2)A(Y)A(U)
+9(X, U)A(Y)A(Z) — g(Y.U)A(X)A(Z)},

where A is a nowhere vanishing 1-form and a1, as are scalars of which as # 0.
Now from (2.7), it follows that in an m-projectively flat A(PRS),,, the curvature
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tensor R of type (0,4) is of the following form

(3.11) RXY,2,0) = 2(n — 1)

+8(X,U)g(Y, 2) = S(Y,U)g(X, 2)}.
Using (3.9) in the above relation, we have
'R(X,Y, Z,U) = a1{g(Y, 2)9(X,U) — g(X, Z)g(Y,U) }
(3.12) +ax{g(Y, Z)H(X)H(U) - g(X, 2)H(Y)H(U)
+9(XU)H(Y)H(Z) — g(Y,U)H(X)H(Z)},

where a1 = 0 and ay = 2(+_1) are scalars. By virtue of (3.11), it follows from

{S(Y,Z)g(X,U) — S(X, Z)g(Y,U)

(3.12) that an m-projectively flat A(PRS),, is a manifold of quasi constant curva-
ture. This leads to the following theorem.

Theorem 3.4. Every m-projectively flat A(PRS),, is a manifold of quasi con-
stant curvature.

In consequence of (3.9), we have

(Dx9)(Y,Z) = dr(X)H(Y)H(Z) +r[(DxH)(Y)H(Z)
+ (DxH)(Z)H(Y)].

Using (3.13) in (3.1), we obtain

(3.13)

2(2n — 3) [dr(X)H(Y)H(Z) — de(Y)H(X)H(Z)
+r{(DxH)(Y)H(Z) + (Dx H)(Z)H(Y)
~ (Dy H)(X)H(Z) ~ (Dy H)(Z)H(X)}]
={ dr(X)g(Y, 2) — dr(Y)g(X, 2)}.
Wef;létt‘;iir;g Y =Z =e; in (3.14) and then taking summation {e; : i =1,2,...,n},

(3.15)
[dr(p)H(X) + r{(D,H)( X) Y (Do, H)(ei)} :{23"7_5}&()().
i=1

(3.14)

(2n — 3)
Now, putting Y = Z = p in (3.14), we get
(3.16) 2(2n —3)r(D,H)(X) = (4n — T){dr(X) — dr(p)H(X)}.
By the virtue of (3.16), the equation (3.15) yields
i=1
(3.17) (n—2)dr(X) —dr(p)H(X) + 2(2n — 3)r H(X) Z(DeiH)(ei) = 0.
Now putting X = p in the relation (3.17), we have

i=1

(3.18) 2(2n = 3)r > (D¢, H)(ei) = —(n — 3) dr(p).

n
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From (3.18) and (3.17), we get

(3.19) dr(X) =dr(p)H(X).

Now setting Z = p in (3.14) and then using (3.19), we have
(3.20) 2(2n = 3)r[(Dx H)(Y) — (Dy H)(X)],
which implies that

(3.21) (DxH)(Y) = (DyH)(X) =0

for n > 2. The above equation shows that a 1-form H is closed.
By virtue of (3.19), the equation (3.16) gives

(3.22) (V,H)(X) =0,

provided n > 2, which implies that D,p = 0 and hence, we can state the following
theorem

Theorem 3.5. In an m-projectively flat A(PRS), with n > 2 , the integral
curves of the generator p are geodesic.

Again replacing Y for = p in (3.14) and then using (3.19) and (3.22), we get

dr(p)

(3.23) (DxH)(Z) = m{

H(X)H(Z) - g(X, Z)}.

dr(p)

5T 2n=3)" where r is non zero

Now, let us consider a non zero scalar function f =

scalar curvature tensor. We have

(3.24) Vxf= *m dr(p)(X) + m

Again from (3.19), we get
(3.25) d’r(X,Y) = d*r(p, Y)H(X) + dr(p)(Vy H)(X).

We know that in a Riemannian manifold, the second covariant differential of any
function h € C°(M™) is defined by

d*hX,Y)=X(Yh) - (VxY)h
for all vector fields X,Y’, which shows that
d*h(X,Y) = d*n(Y, X).
Taking account of (3.21), the equation (3.25) gives

d*r(p, X).

(3.26) d*h(p,Y)H(X) = d*h(p, X)H(Y).
Again setting Y = p in (3.26), we get
(3.27) d*h(p, X) = d*h(p, p)H(X) = —¢pH (X),

where ¢ = d?r(p, p) is a scalar function.
Now in consequence of (3.19) and (3.27), (3.24) assumes the form

(3.28) Vxf=06H(X),

where § = —mbw + {dr(p)}?] is a non zero scalar.
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Now we consider a 1-form A given by

_ 1
2r(2n — 3)

In view of (3.21) and (3.28), equation (3.29) becomes

(3.30) dA(X,Y) =0,

i.e., the 1-form A is closed. Therefore, (3.23) can be rewritten as

(3.31) (VxH)(Y) = AX)H(Y) = f 9(X,Y),

where A is closed. But this means that the vector field p corresponding to the
1-form H defined by ¢g(X,p) = H(X) is a proper concircular vector field ([10],
[11]). Hence we can state the following theorem.

(3.29) A(X) dr(p)H(X) = f H(X).

Theorem 3.6. In an m-projectively flat A(PRS),, of non constant scalar cur-
vature, the vector field p defined by g(X,p) = H(X) is a unit proper concircular
vector field.

In 1973, Chen and Yano [2] introduced the notion of special conformally flat
manifolds which generalizes the notion of sub projective manifolds. According to
them, a conformally flat Riemannian manifold is said to be a special conformally
flat manifold if the tensor field H of type (0,2) defined by

1 r
is expressible in the form
(3.33) H(X,)Y) = —O‘;g()g Y)+ B(Xa)(Ya),

where «, 8 are two scalars such that « is positive.
In view of (3.9), the expression (3.32) can be written as

Putting
(3.35) a? = —m >0,  provided r <0,
then

a(Xa) = — dr(X)
(3.36) 2a(Xa) D=2
which implies by virtue of (3.19) that

A H(X)

(3.37) 20(Xar) = RCECEDR
Hence

(3.38) H(X)H(Y) = A —=1)(n —QQQ)T(XQ)(YQ)7
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where Q = dr(p). Thus in consequence of (3.35), the expression (3.34) can be
written as

2
!

(3.39) H(X,Y) = =59(X,Y) + B(Xa)(Ya),

where 4("5721)7“2. Hence the manifold under consideration is a special conformally

flat manifold. Since an Einstein m-projectively flat manifold is conformally flat

[5], we can state the following theorem.

Theorem 3.7. An Finstein m-projectively flat A(PRS),, with non constant
negative scalar curvature tensor is a special conformally flat manifold.

Also in [2], the authors proved that every simply connected special conformally
flat manifold can be isometrically immersed in an Euclidean manifold E*t! as
a hypersurface. Therefore, by virtue of Theorem 3.7, we can state the following
theorem

Theorem 3.8. FEvery simply connected m-projectively flat (APRS),, with non
constant negative scalar curvature tensor can be isometrically immersed in an Fu-
clidean manifold E™ as a hypersurface.

The notion of K-special conformally flat manifold which generalizes the notion
of special conformally flat manifold as well as sub projective manifold was intro-
duced by Chen and Yano [2]. According to them, a conformally flat manifold is
said to be K-special conformally flat manifold if the tensor H of type (0,2) defined
in (3.32) is expressible in the form

(3.40) HX,Y)= -BF o

9(X,Y) + pym(X)m(Y),
where (Xa) = 7(X) on G, G is an open set on M" defined by
(3.41) G={p": B #0)

and 7 is a 1-form on G, «, 3, 7y are scalar functions and K is a constant. We consider
an Einstein m-projectively flat A(PRS),. Then such a manifold is conformally
flat. Using (3.9) in (3.32), we obtain (3.34). Let put

r
2(n—1)(n—2)

where K is a constant. Then proceeding similarly as before, it can be easily shown
that

(3.42) K+ao?=— >0, provided 7 < 0,

K +a?

(3.43) HX)Y)=— 9(X,Y) + Byn(X)n(Y),

where 3 = 4(”621)’“2, N = 16T3("71)2{%5(”71)("72)}. Thus we can state the follow-
ing theorem.

Theorem 3.9. An Finstein m-projectively flat A(PRS),, with non constant
negative scalar curvature tensor is a K-special conformally flat manifold.
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