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ON m-PROJECTIVELY FLAT ALMOST PSEUDO RICCI

SYMMETRIC MANIFOLDS

J. P. SINGH

Abstract. In the present paper, we study m-projectively flat and almost pseudo
Ricci symmetric manifolds.

1. Introduction

As an extended class of pseudo Ricci symmetric manifolds, M. C. Chaki and
T. Kawaguchi [4] introduced the notion of almost pseudo Ricci symmetric mani-
folds. An n-dimensional Riemannian manifold (Mn; g) is called an almost pseudo
Ricci symmetric manifold if its Ricci tensor S of type (0, 2) is not identically zero
and satisfies the condition

(1.1) (∇XS)(Y, Z) = [A(X) +B(X)]S(Y,Z) +A(Y )S(X,Z) +A(Z)S(Y,X),

where∇ denotes the operator of covariant differentiation with respect to the metric
tensor g and A, B are nowhere vanishing associated 1-forms such that g(X, ρ1) =
A(X) and g(X, ρ2) = B(X) for all vector fields X and ρ1, ρ2 are called the basic
vector fields of the manifold. An n-dimensional manifold of this kind is denoted
by A(PRS)n. In particular if, B = A, then (1.1) reduces to

(1.2) (∇XS)(Y,Z) = 2A(X)S(Y, Z) +A(Y )S(X,Z) +A(Z)S(Y,X),

which represents a pseudo Ricci symmetric manifold [3]. In [4], Chaki and Kawa-
guchi also studied conformally flat A(PRS)n. In 1971, Pokhariyal and Mishra [8]
established a new curvature tensor known as an m-projective curvature tensor on
Riemannian manifolds. Many geometers such as Ojha ([6], [7]), Singh [9], Chaubey
and Ojha [5] studied properties of an m-projective curvature tensor in different
manifolds. A Riemannian manifold is flat if its curvature tensor vanishes at each
point. Following this sense, Ojha [7] and Zengin [12] considered the m-projectively
flat curvature tensor in the Sasakian and LP-Sasakian, manifolds, respectively.

Motivated by the above study the author considers the m-projectively flat
A(PRS)n and established some geometrical properties. The paper is organized as
follows: Section 2 concerns with preliminaries. Section 3 is devoted to the study
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of an m-projectively flat A(PRS)n and it is proved that such a manifold is of
quasi constant curvature. It is shown that in an m-projectively flat A(PRS)n, the
vector field defined by g(X, ρ) = H(X) is a unit proper concircular vector field.
The notion of special conformally flat manifold which generalizes the notion of sub
projective manifold was introduced by Chen and Yang [2]. In the same paper, the
authors also introduced the notion of K-special conformally flat manifold which
generalizes the notion of special conformally flat manifold as well as sub projec-
tive manifold. In this section, it is shown that an m-projectively flat A(PRS)n
with non constant and non negative scalar curvature is a K-special conformally
flat manifold. It is also proved that such a simply connected manifold with non
constant and non negative scalar curvature can be isometrically immersed in an
Euclidean manifold En+1 as a hypersurface.

2. Preliminaries

Let Q be the symmetric endomorphism of the tangent bundle of the manifold
corresponding to the Ricci tensor S, i.e., S(X,Y ) = g(QX,Y ) for all vector fields
X,Y . Let {ei : i = 1, 2, . . . , n} be an orthonormal basis of the tangent apace at any
point of the manifold. Putting Y = Z = ei in (1.1) and then taking summation
over i, 1 ≤ i ≤ n, we obtain

(2.1) dr(X) = r[A(X) +B(X)] + 2A(QX),

where r is the scalar curvature of the manifold.
Again from (1.1), we get

(2.2) (∇XS)(Y, Z)− (∇Y S)(X,Z) = B(X)S(Y, Z)−B(Y )S(X,Z).

Putting Y = Z = ei in (2.2) and then taking summation {ei : i = 1, 2, . . . , n}, we
obtain

(2.3) dr(X) = 2rB(X)− 2B(QX).

If the scalar curvature r is constant, then

(2.4) dr(X) = 0

for all X. Using (2.4) in (2.3), we obtain

(2.5) B(QX) = rB(X),

i.e.,

(2.6) S(X, ρ2) = rg(X, ρ2).

Thus we can state the following theorem.

Theorem 2.1. In an A(PRS)n of constant curvature, the scalar curvature r
is an eigenvalue of the Ricci tensor S corresponding to the eigenvector ρ2.

The m−projective curvature tensor W ∗ of type (1, 3) is defined by [8]

(2.7)
W ∗(X,Y, Z) = R(X,Y, Z) +

[
(S(Y,Z)X − S(X,Z)Y

+ g(Y,Z)QX − g(X,Z)QY
]
.
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Differentiating (2.7) covariantly with respect to V , we get

(2.8)

(DVW
∗)(X,Y, Z) = (DVR)(X,Y, Z)− 1

2(n− 1)

{
(DV S)(Y, Z)X

− (DV S)(X,Z)Y + g(Y, Z)(DVQ)(X)

− g(X,Z)(DVQ)(Y )
}
.

Contracting the above with respect to V , we get

(2.9)

(divW ∗)(X,Y, Z) = (divR)(X,Y, Z)− 1

2(n− 1)

{
(DXS)(Y,Z)

− (DY S)(X,Z) + g(Y, Z)(divQ)(X)

− g(X,Z)(divQ)(Y )
}
,

where div denotes the divergence.
We know that in a Riemannian manifold

(2.10) (divR)(X,Y, Z) = (DXS)(Y, Z)− (DY S)(X,Z).

Using (2.10) in (2.9), we get

(2.11)

(divW ∗)(X,Y, Z) =
(2n− 3)

2(n− 1)

[
(DXS)(Y,Z)

− (DY S)(X,Z)
]
− 1

4(n− 1)

{
dr(X)g(Y,Z)

− dr(Y )g(X,Z)
}
.

3. m−projectively flat A(PRS)n

Let us consider an m-projectively flat A(PRS)n. Then

(divW ∗)(X,Y, Z) = 0,

and hence, (2.11) yields

(3.1) 2(2n−3)
[
(DXS)(Y,Z)−(DY S)(X,Z)

]
=
{

dr(X)g(Y, Z)−dr(Y )g(X,Z)
}
.

Making use of (2.2) and (2.3) in (3.1), we obtain
(3.2)

B(X)S(Y,Z)−B(Y )S(X,Z) =
1

(2n− 3)

[
r
{
B(X)g(Y,Z)−B(Y )g(X,Z)

}
−
{
B(QX)g(Y,Z)−B(QY )g(X,Z)

}]
.

Now putting Z = ρ2 in (3.2), we get

(3.3) B(X)B(QY )−B(Y )B(QX) = 0,

provided n > 2.
Let B(QX) = g(QX, ρ2) = P (X) = g(X, ξ) for all X. Then (3.3) reduces to

(3.4) B(X)P (Y ) = B(Y )P (X),
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which implies that the vector fields ρ2 and ξ are co-directional. This leads to the
following theorem.

Theorem 3.1. In an m-projectively flat A(PRS)n with (n > 2) , the vector
fields ρ2 and ξ are co-directional.

Again setting Y = Z = ei in (3.2) and then taking summation {ei : i =
1, 2, . . . , n}, we obtain

(3.5) B(QX) = r B(X),

provided that n > 2, i.e.,

(3.6) S(X, ρ2) = r g(X, ρ2).

Hence, we can state the following theorem.

Theorem 3.2. In an m-projectively flat A(PRS)n with n > 2, the scalar cur-
vature r is an eigenvalue of the Ricci tensor S corresponding to the eigenvector ρ2.

In view of (3.5), the relation (3.2) yields

(3.7) B(X)S(Y,Z) = B(Y )S(X,Z).

Setting X = ρ2 in (3.7), we get

(3.8) S(Y,Z) =
1

B(ρ2)
B(Y )B(QZ).

Again using (3.5) in (3.8), we obtain

(3.9) S(Y, Z) = rH(Y )H(Z),

where H(Y ) = g(Y, ρ) = B(Y )√
B(ρ2)

, ρ is a unit vector field.

From (3.9), it follows that if r = 0, then S(Y,Z) = 0, which is inadmissible by
the definition of A(PRS)n. Hence, we can state the following theorem.

Theorem 3.3. In a Pseudo projectively flat A(PRS)n with n > 2 , the scalar
curvature can not vanish and the Ricci tensor is given by (3.9).

As a generalization of the manifold of constant curvature, the notion of the
manifold of quasi-constant curvature arose during the study of conformally flat
hypersurfaces by Chen and Yano [1]. A Riemannian manifold (Mn, g) is said to
be of quasi constant curvature [1] if it is conformally flat and its curvature tensor
R of type (0, 4) is of the form

(3.10)

′R(X,Y, Z, U) = a1

{
g(Y, Z)g(X,U)− g(X,Z)g(Y, U)

}
+ a2

{
g(Y,Z)A(X)A(U)− g(X,Z)A(Y )A(U)

+ g(X,U)A(Y )A(Z)− g(Y, U)A(X)A(Z)
}
,

where A is a nowhere vanishing 1-form and a1, a2 are scalars of which a2 6= 0.
Now from (2.7), it follows that in an m-projectively flat A(PRS)n, the curvature
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tensor R of type (0, 4) is of the following form

(3.11)

′R(X,Y, Z, U) =
1

2(n− 1)

{
S(Y,Z)g(X,U)− S(X,Z)g(Y,U)

+ S(X,U)g(Y, Z)− S(Y,U)g(X,Z)
}
.

Using (3.9) in the above relation, we have

(3.12)

′R(X,Y, Z, U) = a1

{
g(Y,Z)g(X,U)− g(X,Z)g(Y,U)

}
+ a2

{
g(Y, Z)H(X)H(U)− g(X,Z)H(Y )H(U)

+ g(X,U)H(Y )H(Z)− g(Y,U)H(X)H(Z)
}
,

where a1 = 0 and a2 = r
2(n−1) are scalars. By virtue of (3.11), it follows from

(3.12) that an m-projectively flat A(PRS)n is a manifold of quasi constant curva-
ture. This leads to the following theorem.

Theorem 3.4. Every m-projectively flat A(PRS)n is a manifold of quasi con-
stant curvature.

In consequence of (3.9), we have

(3.13)
(DXS)(Y, Z) = dr(X)H(Y )H(Z) + r[(DXH)(Y )H(Z)

+ (DXH)(Z)H(Y )].

Using (3.13) in (3.1), we obtain

(3.14)

2(2n− 3)
[

dr(X)H(Y )H(Z)− dr(Y )H(X)H(Z)

+ r
{

(DXH)(Y )H(Z) + (DXH)(Z)H(Y )

− (DYH)(X)H(Z)− (DYH)(Z)H(X)
}]

=
{

dr(X)g(Y,Z)− dr(Y )g(X,Z)
}
.

Putting Y = Z = ei in (3.14) and then taking summation {ei : i = 1, 2, . . . , n},
we obtain
(3.15)[

dr(ρ)H(X) + r{(DρH)(X) +H(X)

n∑
i=1

(DeiH)(ei)}
]

=
{ 3n− 5

2(2n− 3)

}
dr(X).

Now, putting Y = Z = ρ in (3.14), we get

(3.16) 2(2n− 3)r(DρH)(X) = (4n− 7){dr(X)− dr(ρ)H(X)}.
By the virtue of (3.16), the equation (3.15) yields

(3.17) (n− 2) dr(X)− dr(ρ)H(X) + 2(2n− 3)r H(X)

i=1∑
n

(DeiH)(ei) = 0.

Now putting X = ρ in the relation (3.17), we have

(3.18) 2(2n− 3)r

i=1∑
n

(DeiH)(ei) = −(n− 3) dr(ρ).
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From (3.18) and (3.17), we get

(3.19) dr(X) = dr(ρ)H(X).

Now setting Z = ρ in (3.14) and then using (3.19), we have

(3.20) 2(2n− 3)r[(DXH)(Y )− (DYH)(X)],

which implies that

(3.21) (DXH)(Y )− (DYH)(X) = 0

for n > 2. The above equation shows that a 1-form H is closed.
By virtue of (3.19), the equation (3.16) gives

(3.22) (∇ρH)(X) = 0,

provided n > 2, which implies that Dρρ = 0 and hence, we can state the following
theorem

Theorem 3.5. In an m-projectively flat A(PRS)n with n > 2 , the integral
curves of the generator ρ are geodesic.

Again replacing Y for = ρ in (3.14) and then using (3.19) and (3.22), we get

(3.23) (DXH)(Z) =
dr(ρ)

2r(2n− 3)
{H(X)H(Z)− g(X,Z)}.

Now, let us consider a non zero scalar function f = dr(ρ)
2r(2n−3) , where r is non zero

scalar curvature tensor. We have

(3.24) ∇Xf = − 1

2r2(2n− 3)
dr(ρ)(X) +

1

2r(2n− 3)
d2r(ρ,X).

Again from (3.19), we get

(3.25) d2r(X,Y ) = d2r(ρ, Y )H(X) + dr(ρ)(∇YH)(X).

We know that in a Riemannian manifold, the second covariant differential of any
function h ∈ C∞(Mn) is defined by

d2h(X,Y ) = X(Y h)− (∇XY )h

for all vector fields X,Y , which shows that

d2h(X,Y ) = d2h(Y,X).

Taking account of (3.21), the equation (3.25) gives

(3.26) d2h(ρ, Y )H(X) = d2h(ρ,X)H(Y ).

Again setting Y = ρ in (3.26), we get

(3.27) d2h(ρ,X) = d2h(ρ, ρ)H(X) = −φH(X),

where φ = d2r(ρ, ρ) is a scalar function.
Now in consequence of (3.19) and (3.27), (3.24) assumes the form

(3.28) ∇Xf = δ H(X),

where δ = − 1
2r2(2n−3) [rφ+ {dr(ρ)}2] is a non zero scalar.
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Now we consider a 1-form λ given by

(3.29) λ(X) =
1

2r(2n− 3)
dr(ρ)H(X) = f H(X).

In view of (3.21) and (3.28), equation (3.29) becomes

(3.30) dλ(X,Y ) = 0,

i.e., the 1-form λ is closed. Therefore, (3.23) can be rewritten as

(3.31) (∇XH)(Y ) = λ(X)H(Y )− f g(X,Y ),

where λ is closed. But this means that the vector field ρ corresponding to the
1-form H defined by g(X, ρ) = H(X) is a proper concircular vector field ([10],
[11]). Hence we can state the following theorem.

Theorem 3.6. In an m-projectively flat A(PRS)n of non constant scalar cur-
vature, the vector field ρ defined by g(X, ρ) = H(X) is a unit proper concircular
vector field.

In 1973, Chen and Yano [2] introduced the notion of special conformally flat
manifolds which generalizes the notion of sub projective manifolds. According to
them, a conformally flat Riemannian manifold is said to be a special conformally
flat manifold if the tensor field H of type (0,2) defined by

(3.32) H(X,Y ) = − 1

n− 2
S(X,Y ) +

r

2(n− 1)(n− 2)
g(X,Y )

is expressible in the form

(3.33) H(X,Y ) = −α
2

2
g(X,Y ) + β(Xα)(Y α),

where α, β are two scalars such that α is positive.
In view of (3.9), the expression (3.32) can be written as

(3.34) H(X,Y ) = − r

n− 2
H(X)H(Y ) +

r

2(n− 1)(n− 2)
g(X,Y ).

Putting

(3.35) α2 = − r

2(n− 1)(n− 2)
> 0, provided r < 0,

then

(3.36) 2α(Xα) = − dr(X)

(n− 1)(n− 2)
,

which implies by virtue of (3.19) that

(3.37) 2α(Xα) = − dr(ρ)H(X)

(n− 1)(n− 2)
.

Hence

(3.38) H(X)H(Y ) = −4(n− 1)(n− 2)r(Xα)(Y α)

Ω2
,
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where Ω = dr(ρ). Thus in consequence of (3.35), the expression (3.34) can be
written as

(3.39) H(X,Y ) = −α
2

2
g(X,Y ) + β(Xα)(Y α),

where 4(n−1)r2

Ω2 . Hence the manifold under consideration is a special conformally
flat manifold. Since an Einstein m-projectively flat manifold is conformally flat
[5], we can state the following theorem.

Theorem 3.7. An Einstein m-projectively flat A(PRS)n with non constant
negative scalar curvature tensor is a special conformally flat manifold.

Also in [2], the authors proved that every simply connected special conformally
flat manifold can be isometrically immersed in an Euclidean manifold En+1 as
a hypersurface. Therefore, by virtue of Theorem 3.7, we can state the following
theorem

Theorem 3.8. Every simply connected m-projectively flat (APRS)n with non
constant negative scalar curvature tensor can be isometrically immersed in an Eu-
clidean manifold En+1 as a hypersurface.

The notion of K-special conformally flat manifold which generalizes the notion
of special conformally flat manifold as well as sub projective manifold was intro-
duced by Chen and Yano [2]. According to them, a conformally flat manifold is
said to be K-special conformally flat manifold if the tensor H of type (0,2) defined
in (3.32) is expressible in the form

(3.40) H(X,Y ) = −K + α2

2
g(X,Y ) + βγπ(X)π(Y ),

where (Xα) = βπ(X) on G, G is an open set on Mn defined by

(3.41) G = {pn : β 6= 0}

and π is a 1-form on G, α, β, γ are scalar functions and K is a constant. We consider
an Einstein m-projectively flat A(PRS)n. Then such a manifold is conformally
flat. Using (3.9) in (3.32), we obtain (3.34). Let put

(3.42) K + α2 = − r

2(n− 1)(n− 2)
> 0, provided r < 0,

where K is a constant. Then proceeding similarly as before, it can be easily shown
that

(3.43) H(X,Y ) = −K + α2

2
g(X,Y ) + βγπ(X)π(Y ),

where β = 4(n−1)r2

Ω2 , γ = 16r3(n−1)2{r+K(n−1)(n−2)}
Ω4 . Thus we can state the follow-

ing theorem.

Theorem 3.9. An Einstein m-projectively flat A(PRS)n with non constant
negative scalar curvature tensor is a K-special conformally flat manifold.
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